PHYSICAL REVIEW A

VOLUME 13,

NUMBER 6 JUNE 1976

Density fluctuations in molten salts. II. Molecular dynamics study of liquid RbBr 1

J. R. D. Copley

Solid State Science Division, Argonne National Laboratory, Argonne, Illinois 60439
and Institut Laue Langevin, BP 156 Centre de tri, 38042 Grenoble, Cedex, France*

A. Rahman
Solid State Science Division, Argonne National Laboratory, Argonne, Illinois 50439
(Received 14 January 1976)

Liquid Rb*Br~ has been investigated by molecular dynamics for comparison with neutron inelastic scattering
results. The properties of Rb* and Br~ on the one hand and those of the nuclei of Rb and Br on the other offer
rather special features for such a parallel investigation. The results reported here use the Born-Mayer type of
interaction between nonpolarizable ions. Based on a molecular dynamics study of a rather small, 122-ion
system, our conclusion is that such a force model is probably inadequate for a satisfactory explanation of the
neutron scattering data; we also conclude that allowing for ion polarization will impove the situation. Thus
detailed studies of the equation of state have to be complemented with dynamical studies of molten salts
before one can draw conclusions about the dependability of the Hamiltonian used for the system. Our results
for g,, and g__ show a shoulder to the right of the first maximum. This feature has also been observed in
neutron experiments on NaCl and in Monte Carlo calculations on “hard sphere” molten salts. As has already
been reported, the calculated and observed static structure factors are in fair agreement. However, a detailed
comparison shows more marked features in the calculated results than have been found experimentally. From
the density fluctuations a velocity of sound has been deduced which is considerably larger than the only
available experimental value. A comparison of the frequency characteristics of the density fluctuations at
various wavelengths with neutron scattering data shows that at certain wavelengths there are large
discrepancies which are, at least in part, related to the inadequacy of the rigid-ion model Hamiltonian used

for these calculations.

I. INTRODUCTION

In this paper we report a computer-simulation
study of a RbBr-like system using the technique
known as molecular dynamics (MD). This work
was done in parallel with neutron inelastic scat-
tering (NIS) investigation of molten rubidium bro-
mide (Ref. 1, hereafter referred to as I). RbBr
was chosen for the NIS study because naturally
occurring Rb and Br nuclei have (to within ex-
perimental error) the same scattering amplitudes
for low-energy neutrons; moreover, the neutron
cross section is almost entirely coherent. Thus
the neutron scattering cross section for this liquid
depends almost entirely on the dynamical behavior
of the fluctuations in the number density, regard-
less of the type of ion; the term “indiscriminate
scattering function” is therefore appropriate to
this situation. The dynamical behavior of RbBr
has additional special features in that the masses
of the two types of ion differ by about 7% and the
ionic radii by the same amount. We therefore
expect the (++)- and (- — )-type two-particle
correlations to be very similar. Thus in the de-
velopment of our understanding of ionic liquids
RbBr can play an important role, firstly because
NIS experiments provide unambiguous information
about the number fluctuations, and secondly be-
cause the (++)- and (— — )-type correlations in this
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binary system can be assumed to be identical, re-
ducing the number of unknown two-particle cor-
relations from three to two.

Several computer simulation studies of systems
of charged particles have already been published.?
Extensive Monte Carlo (MC) studies®* of the one-
component plasma (OCP) have been reported, and
the dynamical behavior of this system has been
investigated using MD.® The OCP, which com-
prises a set of identical particles with charge Ze,
interacting through the repulsive Coulomb poten-
tial, and immersed in a uniform background of
opposite charge, is characterized by the dimen-
sionless parameter

I'=(Ze)/(kyTa) ,

where T is the temperature and a = (3/47p)'”® is
the ion-sphere radius; here p is the number den-
sity of particles. For future reference we note
that the equivalent I' for the RbBr system des-
cribed in this paper is 60.2.

Larsen® has made MC computations on systems
of charged hard spheres of equal size, which are
characterized not only by a I'" but also by a packing
fraction n= (4)mpo®, where ¢ is the hard-sphere
diameter. A simplified potential,” which includes
the long-range Coulomb contribution and a short-
range repulsive interaction, and which retains the
advantage that it is completely specified by a
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single parameter, has been used in computer-
simulation studies of both static® and dynamic®
properties. The potential takes the form

2 9
oaotr) =S [ A= 2a) (XY 72,2 |,
where Z, is the charge on ion A in units of e.
Hansen and McDonald® left out the factor (1-6,5)
in the repulsive term, but the effect of this
omission is small.® They studied a system with
I'=51.3, which is fairly close to the value
(I'=60.2) appropriate to the RbBr system dis-
cussed in the present paper. (Note that Hansen
and McDonald’s definition of I" involves the total
number density, whereas our definition involves
the number density of positively charged particles.
The two definitions give I'’'s which differ by a
factor of 2°72),

A number of workers have computer simulated
specific alkali halides by the MC'®~!® and MC™'8
techniques, using the Born-Mayer-Huggins (BMH)
pair potential to describe the interactions. This
potential may be written in dimensionless form as

51145_@ - 2,2, 78 b, +p) exp (m)

p
7, )\ & 7, \ @
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where the first term is the Coulomb interaction,
the second term is the Huggins-Mayer form for
the short-range repulsive interaction,’ and the
third and fourth terms represent dipole-dipole
and dipole-quadrupole attractive interactions:

€ (=e?/r,) and 7, are units of energy and distance,
respectively. Romano and McDonald*® and Adams
and McDonald"! tried instead using the Pauling
form for the short-range repulsive interaction,'®
but they concluded that the Huggins-Mayer choice
is superior in virtually all respects.

The effects of allowing for ionic polarizability
have been investigated by Dixon and Sangster?
and by Jacucci et al.??> The effects are visible in
some properties, such as the pair distribution
functions and the diffusion coefficients, whereas
the electrical conductivity is virtually unaltered.
The influence of ionic polarization on the spectra
of density fluctuations®? is of particular interest
in the present context, and we shall discuss this
matter further in a later section.

We have undertaken a molecular-dynamics study
of liquid RbBr because of the existence of neutron-
inelastic-scattering data for this material. The
purpose has been to investigate the extent to which
a rigid-ion model of the BMH type can account for
the dynamical correlations in molten salts. In-
dications are that this model needs considerable

improvement mainly by including the effects of
ion polarization. The results of other MD in-
vestigations?!*?? with polarizable ions (but on
molten salts for which neutron experiments are
not available) substantiate this statement.

In Sec. I we describe the model system and the
calculation of its time evolution using the MD
method. The time-dependent one-particle cor-
relations are described in Sec. III, and in Sec. IV
we present our results for the pair correlation
functions and their Fourier transforms, the static
structure factors. In Sec. V we describe our re-
sults for the time-dependent correlation functions
and their Fourier transform. Section VI contains
a discussion of the implications of this work with
particular regard to NIS experiments.

II. MOLECULAR-DYNAMICS CALCULATION

In the MD program distance was expressed in
units of »,=3.43 A and energy in units of
€=¢%/r,=6.7255x 10"!2 erg. For the pair poten-
tials we used the BMH model. The parameters of
the potentials are given in Table I. The constants
in the exponential repulsive term were taken from
Tosi and Fumi,?® whereas the coefficients of the
last two terms are given by Mayer.?* The po-
tentials are displayed in Fig. 1 of I.

The system consisted of 61 Rb* ions and 61 Br~
ions, with masses 141.92x 1072 and 132,68 X 107%*
g, respectively, situated in a cubic box of side
L=5.360r,=18,385A. The density was therefore
2.696 g cm™3, for comparison, molten RbBr at
atmospheric pressure and at 986 K (the tempera-
ture of the NIS experiment) has a density of
2.682 gem™ (see I). The unit of mass was taken
to be the reduced mass of an ion pair, M=68.570
x10~2* g, The unit of time was then given by
T= (Mrf,/s)‘/2 =1.0952x107!® sec. The time evolu-
tion of the system was obtained by numerically
integrating the equations of motion of the ions over
a time step A¢=0,057=5.476 X107'® sec, using a
predictor-corrector technique (see, e.g., Gear®®),
Once the system was in equilibrium it was allowed
to evolve for 7100 time steps (3.888 x107"! sec),
and the positions and the first two time derivatives
of the positions of each particle after each time
step were written on magnetic tape.

The potential energy and the force on each ion
contain short-range contributions which were
assumed to vanish beyond a distance 3L =2,687,,.
Periodic boundary conditions were applied to
their calculation in the normal way. However,
the long-range nature of the Coulomb interaction
makes it necessary to perform Ewald summations
in order to get the Coulomb contributions to the
potential energy and the force acting on an ion.
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TABLE I. Parameters of the Born-Mayer-Huggins
potential used in the present calculations. The sub-
scripts 1 and 2 refer to the cation and anion, respective-
ly.

Z, =1 p=0.341 A

Zy=—1 Cyy=—5.42x1073
b=0.028 C1p==9.04x1073
hy=0.625 Cpp=—19.6x1073
hy=0.375 Dy =—6.36x107*
7 =1.691 & Dyp=—14.0x107*
r,=1.814 A Dy, =—38.0x107*

For example, the Coulomb energy is given by
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Here Z,e is the charge on ion %, ?,,,a is the mini-
mum image vector joining ions k and k’, and n is
a vector with integer components. The parameter
a is arbitrary, but since the sums over N must be
truncated, o is chosen to optimize the convergence
of the whole expression. The corresponding ex-
pression for the forces converges considerably
more slowly. In the present study we chose
aL=2.25 we summed over all pairs of ions in the
box, and we summed over all vectors N such that
[ni|<2 (i=x,y, or z).

The inverse of the Ewald sum for the potential
and the three first derivatives of this inverse
were calculated as above, and tabulated on a mesh
of 2925 points (x, y, 2) in the “irreducible & of
the cube, defined by 0 <x <y sz <zL. This table,
with suitable interpolation, was then used during
the MD run to obtain the Coulomb potential and
the consequent forces between all pairs of ions in
the system.

As is usual in MD calculations, the constancy of
the total energy was used to minitor the “goodness”
of the numerical solution of the equations of
motion and the adequacy of the approximations in-
troduced in evaluating the Ewald summations. In
the present calculation the total energy displayed
a small secular increase from -0.7187 at the
start of the run to —0.7171€¢ at the conclusion. The

]

mean potential energy, —0.7474¢, contained the
following contributions: —0.8181¢ (Coulomb),
0.1090¢ (repulsive), —0.0336¢ (»~¢ attractive),

and - 0.0048¢ (»~® attractive). The mean kinetic
energy, 0.0295¢, corresponded to a mean tempera-
ture of 958 K. In fact, the melting point of real
RbBr is reported to be in the range 953-965 K,
whereas the INS experiment reported in I was
performed at 986 +10 K.

The pressure, computed from the mean virial,
was 2218 atm. In an independent Monte Carlo
calculation on RbBr, at the same density and
temperature and using exactly the same inter-
atomic potential, McDonald and Adams®® found a
pressure of 2254 atm and a mean potential energy
of -0,7466¢, in good agreement with the present
MD results.

III. MOTION OF A SINGLE ION

Let R4;(¢) and V,;(¢) denote the position and
velocity, respectively, of the ith ion of type A at
time f. The mean square displacement (R%(¢)) is
defined by

(RA(EN = ([Rys (o +1) = Ry (8)17),

where the average (-« +) is performed over all
ions of type A and over all time origins ¢{,. Simi-
larly the velocity autocorrelation function

(Va(0)+ Vg (1)) =(Viay(to) - Vias(to +1)) .

The self-diffusion constants D, may be obtained!’
either from the mean square displacements
D, =1im (Ri(T))/6T ,
Tow (2)
or from the velocity autocorrelation function,

Dy=1im 3 [1T,(0)- 7,0 {1-l>d1. (3)
ron 3 T
Using these formulas, with T<500A¢, we find
that (R%(T))/6T is still far from convergence,
whereas the integral in Eq. (3) yields values of
3.4+0.1x107% and 3.3+0,1X 107° em? sec™! for
the cation (Rb*) and the anion (Br~), respectively.
Furthermore, the expression

2

pa-tim 5 S
which converges faster than (2) but more slowly
than (3), gives values which are consistent with
those we have quoted. The MD results for Da
are the same for both types of ion. We know of
no experimental data on self-diffusion in RbBr,
but our computed values are not inconsistent with
experimental results for other alkali halides.?’
On the other hand, the MD calculations of Hansen
and McDonald® yield D=8.5x 107% cm® sec™! for
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both ions in RbBr at 2.04 gem™ and 1014 K. (We
have taken their parameter A to be 2.916 A, the
position of the minimum in the BMH RbBr po-
tential.) This result is not unexpected, given
that their density is 24% smaller and their tem-
perature 6% higher than in our simulation.

The normalized velocity autocorrelation functions
are shown in Fig. 1. They show minima at about
38A/~2.1x 1071 sec, followed by a shoulder (for
Rb") or a weak secondary minimum (for Br~) at
about 80A¢~4.4x 107! gec. At longer times the
noise in the calculation precludes further state-
ments about their behavior. The principal minima
(in the normalized functions) have values of
—0.175 and -0.200 for the Rb* and Br~ ions, re-
spectively. Qualitatively similar results for
NaCl were found by Lantelme ef al.'®

Jacucci et al.*® have examined the effects of
ionic polarization on the transport properties of
ionic systems. They found that the diffusion con-
stants of molten KI change considerably (an
increase of ~70% in the case of the K* ion), and
the velocity autocorrelation function is corres-
pondingly more damped (the amplitude of the
minimum changed from -0.28 to —0.18 when
polarization was included). Their findings suggest
that we cannot place too much confidence in the
present results for the diffusion constants in RbBr.

IV. PAIR CORRELATIONS AND STRUCTURE FACTORS

In RbBr there are three distinct pair correla-
tions, g,,(r), g,,(r), and g,,(r). (The subscripts
1 and 2 refer to the Rb™ and Br~ ions, respective-
ly.) Within the accuracy of our calculation we
find that g,, = g,, =g;, the pair correlation between
like ions. For simplicity we shall sometimes
write g,, as g,, the pair correlation between un-
like ions. The pair correlations g; and g, ob-
tained from the MD calculation (for » <3L) are
shown in Fig. 2.

Maxima occur in g, at 0.95», and 2.14r,, and a
minimum occurs at 1.47r,; the values of g, at
these distances are 4.05, 1.41, and 0.44, re-
spectively. There are 5.8 unlike neighbors within
a sphere of radius 1.47r,. Thus the “first co-
ordination shell” in the liquid has the same popu-
lation as in the solid state (NaCl structure). The
nearest neighbors in the perfect lattice, for the
same number density, would be at a distance of
1.08r,, whereas the first peaks in g, and 4m?g,
occur at 0.957, and 0.98r,, respectively. Similar
effects have been observed in other computer-
simulation studies'®*!® of molten alkali halides.

A maximum occurs in g; at 1.39r, and a mini-
mum at 2.27,, the values of g; being 1.82 and 0.68,
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FIG. 1. Normalized velocity autocorrelation functions
for the two ions.

respectively. The mean number of like neighbors
within a sphere of radius 2.27, is 17. In the NaCl
structure, for the same number density, there are
12 like neighbors at 1.537, and 6 like neighbors at
2.16r,. Thus there are 18 like neighbors in the
lattice, as compared with 17 in the liquid, within
r <2.2r,. Furthermore, g; displays a shoulder on
the right-hand side of the first peak. There is no
maximum in g; at this point, but 4m?g, has a maxi-
mum at 1,97, (its first maximum occurs at 1.51r,).
The shoulder in g; is not generally observed in
MC or MD studies of molten salts, but we believe
that it is a real effect in the present calculations.
It also appeared (at the same place) in a MD run
using a smaller system (32 ions of each type).
Furthermore, McDonald and Adams®® obtained
essentially the same g; (and g,), using the same

T T T T T T T T T

q(n

FIG. 2. Pair correlation functions between like ions
(g;) and unlike ions (g,), computed by MD (crosses)
and by MC (open circles) (Ref. 26).
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potential, in a MC calculation for 216 ions (108 of
each type) at the same density and temnerature as
the present calculations. The two sets of data are
compared in Fig. 2. A well-resolved peak has also
been observed® in the function g; for a charged
hard-sphere system with I'=39.7, n=0.175.
Furthermore Edwards ef al.?® have observed
shoulders in g,, and g,, (and in g, also) in a recent
neutron experiment on NaCl.

Finally, we note that the oscillations in g; and g,
are almost exactly out of phase, and the mean
function gyy =3(&; +4&,) is quickly damped out;
thus departures from a uniform density distribution
of particles persist only up to about 6 .7\; charge
ordering, however, persists to much larger dis-
tances. The numbers of neighbors within certain
distances from a reference ion suggest that the
short-range order reflects to some extent the
NaCl-type structure (cf. Ref. 28). To gain further
insight into these structural questions, it would be
interesting to analyze the angular correlations be-
tween a reference ion and its near neighbors in the
liquid state.

In an alkali halide such as RbBr, there are three
distinct structure factors S ,z(«) defined (see I) by

SusK) =045 +2 [ & Dlg 0 -1],

where p is the total number density of ions.
An alternative expression (disregarding a
Kronecker-5 singularity at « =0) is (see I)

Sas(K)=(Qalk, 1)Qs(=k, o),

where

Na
Quli, 1) =N7/2 2 &' Faith
i=1

and where N, is the number of atoms of type A.

Since to within the errors of our calculation
81158 =&, it follows that S (k) =S,,(k) =S, (),
and we define S,,(k) =S,(k). We may then introduce
two new functions (cf. I),

Syn(K) =S, (k) +S,(k) and Sgo(k)=S;(k) = S,(k),

which represent the intensities of density fluctua-
tions and charge fluctuations, respectively. (In
this approximation the cross term Sy, (k) vanishes.)

In order to calculate structure factors from
gap(r), it is necessary to extend the real-space
functions to large ». Hansen and McDonald® dis-
cuss this problem as it applies to the molten-salt
situation. They conclude that a self-consistent
extrapolation can be very time-consuming. Given
the present data for RbBr, we do not believe such
a procedure is warranted. Instead, we have used
a much simpler and much more approximate

method. Since the indiscriminate function gNN(r)
converges rapidly, no extrapolation of gy, is
necessary. In order to extend g;(r), we interpo-
lated the OCP results of Brush, Sahlin, and Teller®
to I' =60, the value appropriate to our system,?®
The MD data were joined smoothly to the OCP
results, which were used as far as the node at
~0.7TL. It is certain that beyond this point there
still are regular non-negligible fluctuations of
order 5% around the asymptotic value.

The method of calculating S,z(k) from the func-
tions @, (k, t) is summarized in Sec. V. The re-
sults are given in Table II. In Fig. 3 we show the
functions Sy, (x) and Syo(k), obtained using the
two techniques described above. The function
shown in Fig. 7 of I is the Fourier transform of
gyvx(), except for the first six points, which were
obtained directly from the autocorrelation of
Q,(k, 1)+ Q,(k, t).

On the whole, the directly calculated values of
Syn(k) and Syq (k) are more reliable at small «.
Since gyo(7) was truncated at about 13 A, the
Fourier transform obtained for it is certainly less
sharp than it would otherwise be. Thus, for ex-
ample, the height of the main peak in Sgq(«) is
probably nearer 4.0 than 3.15, which is the value
obtained from the transform of g,o(»). Our results
for Syy(x) have already been compared with the
NIS results for liquid RbBr in Fig. 7 of I. The
agreement is generally good, except at large «,
where the neutron results are imperfectly normal-
ized. The small peak in the MD results at about
2.6 A°1 (kL/21~7.6) is probably exaggerated. How
ever, this peak does appear to correlate fairly
well with the shoulder which is observed in the
NIS results.

It is interesting to compare the present results
with those obtained by Hansen and McDonald.® The
latter results are appropriate (see Sec. III) to
RbBr at 2.04 g cm™ and 1014 K. The first peak in
g,(») is at the same distance in both calculations,
whereas the first peak in g; (r) is about 4% closer
in the present calculation than in the calculation
of Hansen and McDonald. On the other hand, the
peaks in Syy(k) and Sgq (k) lie, very roughly, 10%
closer and about 7% further out, respectively, in
the present calculation. These results lead us to
conclude that the nearest-neighbor distance is
dominated by the position of the minimum in the
anion-cation potential, whereas more-distant-
neighbor distances reflect the overall density of
the system. Furthermore, gqo(*), which con-
tinues to oscillate to large distances, produces a
strong peak in Sqq(k) whose position reflects the
density of the system.

Our results for S, (k) at small k indicate that
Sywn(k) and Sgq (k) tend to ~0.08 and ~0.0, re-
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TABLE II. Wave vectors k employed in the MD calculations. For each value of % we list
a representative vector, the number of equivalent wave vectors (N,), the magnitude of « in
A™!, and the values of S 4g(«).

II....

(kL/2m? KL/2n N, Kk (A™) Syy(k) Sya(K) Spa(K)
1 {1,0,0} 6 0.342 0.043 0.040 0.043
2 {1,1,0} 12 0.483 0.059 0.051 0.058
3 {1,1,1} 8 0.592 0.064 0.053 0.066
4 {2,0,0} 6 0.684 0.071 0.052 0.071
5 {2,1,0} 24 0.764 0.082 0.053 0.084
6 {2,1,1} 24 0.837 0.093 0.053 0.101
9 {3,0,0} 6 1.025 0.205 0.071 0.199
11 {3,1,1} 24 1.134 0.285 -0.001 0.294
13 {3,2,0} 24 1.232 0.522 —-0.144 0.527
14 {3,2,1} 48 1.279 0.688 —-0.290 0.676
16 {4,0,0} 6 1.367 1.797 —1.248 1.757
18 {4,1,1} 24 1.450 2.574 -1.912 2.585

20 {4,2,0} 24 1.528 1.680 —1.009 1.677
21 {4,2,1} 48 1.566 1.553 —0.745 1.539
22 {3,3,2} 24 1.603 1.310 -0.375 1.252
24 {4,2,2} 24 1.674 1.072 -0.117 1.074
25 {5,0,0} 6 1.709 0.945 —0.150 0.929
29 {5,2, 0} 24 1.841 0.864 0.213 0.876
32 {4,4,0} 12 1.933 1.075 0.473 1.060
36 {6,0,0} 6 2.051 1.093 0.552 1.086
41 {4,4,3} 24 2.188 0.962 0.424 0.955
49 {7,0,0} 6 2.392 0.700 0.103 0.726
64 {8,0,0} 6 2.734 1.092 0.197 1.172
81 {9,0,0} 6 3.076 1.046 —-0.131 1.087
100 {10,0,0} 6 3.418 0.915 -0.138 0.944
144 {12,0,0} 6 4.101 1.070 0.107 1.006
196 {14,0,0} 6 4,785 0.978 —0.004 1.027
256 {16,0,0} 6 5.468 0.961 —-0.034 0.974
324 {18,0,0} 6 6.152 0.998 0.003 0.962
400 {20,0,0} 6 6.836 1.004 —-0.026 0.987
N

spectively, as k tends to zero. The latter number
is as expected,® whereas the former number may
be compared with the well-known result

lim Syy(x) =pkpTX 1 ,

K=+ 0

where p is the fotal number density of particles and
X7 is the isothermal compressibility. Using publi-
shed results for the sound velocity®! and the den-
sity®? of RbBr at elevated temperatures, we obtain

Xxr=4.5x10""" cm? dyn~! at 958 K, and hence

S(0)=0.12. This is afactor of 1.5 larger than the
value obtained in the MD calculations.

V. TIME-DEPENDENT DENSITY AND CURRENT
CORRELATIONS

The number densities Q4(k, t) (defined in Sec.
IV), and the longitudinal and transverse current
densities L,(k,t), T4(x,t), and T%(k, t), defined

below, were computed for the wave vectors
listed in Table II. With the definition

A
CA(T<1’T<2y t)zNA-llzz: vAi(t)'sz eik1Ragld) ,

we have

Lk, t)=C 4(k, &, t), T4(k,t)=C,(k, k", 1t),

and

i=1

T4k, t)=C (k, k", t) ,

2281

where k, k' and k” are mutually orthogonal unit
vectors, with & parallel to k.
The autocorrelations of these quantities were

then computed:

Fan(, 1) =(Qu(k, ,)Qp(=k, t, +1)),

Jhs(k, )= (L sk, to)Lp(~K, ty +1)),

JIB(T(y t) =%< T:i(-’.(r to)T’B(_-’;y ty +t)

+T4(k, t)T3 (=K, ty+1)),
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T T

2
x (&)

FIG. 8. Static structure factors Syy(«) and Sgq (k),
computed from QA(K',t) (closed circles) and by Fourier
transforming & yy () 0r £qq(7) (continuous curves).
Note the change in scale at k =3.5 A™1,

where the averages (- ++) are over time origins ¢,.
The autocorrelations were then averaged over all
wave vectors k having the same magnitude.

The function F,g(x, 0), i.e., S,5(k), is discussed
in Sec. IV. The corresponding functions derived
from the current densities are given by

JIAB(K’ 0)=J:B(K: 0) = 6ABkBTIM;l .
Using the definition
T 4a(K) =95 a(k, 0)(M,Mp) k5"

we have computed “temperatures” T'%;(«) which
are shown in Fig. 4. Similar results were obtain-
ed using J T;(«, 0) to define “temperatures” T I,(x).
The fluctuations indicate that the statistical
averaging processes used to obtain the autocor-
relation functions are good to better than 5%.

Another measure of the computational uncer-
tainties is obtained by examining the imaginary
parts of F,g(k,t), etc. In an exact calculation
these functions have no imaginary part (since the
system is classical). On the other hand, the
computed functions have an imaginary part which
decreases as the statistics of the run are improved.
In the present study we found that the imaginary
part of F,(k, t) was typically less than 0.07 in ab-
solute value.

We shall examine functions such as Fyy(k, t) and
Fyq(k,t) rather than the functions F,pz(x, t). We
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FIG. 4. “Temperatures” T4z (k) (in K) defined in Sec.
V. The subscripts 1 and 2 refer to the Rb* and Br~
ions, respectively.

write

Xyw(k, £) =3[ X (&, £) +2X,,(k, t) + X,, (K, 1)]
and

Xoo (K, 1) =3[X,,(k, £) = 2X,,(k, ) + X,5(k, )],

where X signifies, F, J¥, or J7. In general, a
third function,

XNQ(K) t) =%[X”(K, t) - Xzz("y t)] )

exists, but in the present case this function is
small and we shall not discuss it.

We have also computed the Fourier transforms
of the function Xy (k, ) and X,q(«, ¢), denoted by
Xyy(k,w) and Xqqo(k, w). The transforms F(k, w)
are identical to the appropriate scattering
functions S (k, w) introduced in Sec. II of I. Indeed
Fyy(k,w) is essentially the function measured in
the neutron scattering investigation which was
reported in I. Furthermore, the functions JZ(k, w)
are given by

IJE(k, w)=(w/kPF(k, w) .

The functions F(k, t), for representative values
of k, are shown in Fig. 5. As k increases, Fyy(k,t)
becomes more short lived. Due to the tendency of
the system to maintain charge neutrality, the
charge density fluctuations show marked oscil -
lations in time (Fig. 5). The period decreases
with increasing «, and for kL/27>3 (i.e., k21 A"")
oscillations are no longer found. The transforms
(Fig. 8) are strongly peaked for small values of «,
the peak frequency decreasing with increasing «.
At large values of « the functions Fyy and Fy, be-
come more and more alike, reflecting the nature
of the single-particle motions.

The longitudinal current density fluctuations
Jyn(k,t) and J §o(x, £) must have an oscillatory be-
havior in time and, in addition, the Fourier trans-
forms J%(x, w) must vanish at w =0, showing a
peak at finite w for any value of k. In all cases
JE(k, w =0) was found to be negligibly small. The
positions of the peaks in these functions will be
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FIG. 5. Functions F yy(k,t)/Syy (k) (solid line) and
Fqq(k,t)/Sqq (k) (dashed line) for kL /2m=1, 2, and V41,
i.e., k=0.34, 0.68, and 2.19 ;\'1, respectively.

discussed below.

The transverse current density fluctuations in
number and in charge, even for the smallest «
available (~0.34 A~!), show oscillatory behavior,
i.e., the tendency of the system to propagate such
fluctuations. Obviously for much larger systems
the small-« behavior of J §(k, ¢) will show non-
propagating behavior.

The positions of the peaks in the transforms
JE(k, w) and J T (k, w) are plotted in Fig. 7. Also
shown as open circles in Fig. 7(a) are the positions
of the peaks in Fyo(k, w). Finally, the two closed
circles, at kL/2m=1 and V2, were obtained from
the functions w'zJI,{,N(K, w), which would be pro-
portional to Fyy(k,w), given sufficiently good
statistics. The curves plotted in Fig. 7 show a
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FIG. 6. Function Fgq (k,w)/Sqq (k) for kL /21 =1, 2,
and V41, i.e., k=0.34, 0.68, and 2.19 A~! respectively.

number of interesting features. At small « the
curves are reminiscent of the dispersion curves in
a solid alkali halide. The slopes of the “acoustic”
curves, derived from J 5, and J%,, are 1.0x 10°
and 2.04 X 10° cm sec™’, respectively, whereas
the slope derived from w~2J%, is roughly

1.5%x10° emsec™'. On the other hand, the ob-
served®! adiabatic sound velocity in molten RbBr at
958 K, 1.1x10° cmsec™!, is much lower than our
calculated value (1.5 % 10° cm sec™!). If we extra-
polate the “optic” curves (derived from J%5, and

J &) to k=0, we obtain frequencies of roughly
2.6x 10" and 1.4 x 10'® sec”!, respectively. For
comparison, we note that the corresponding fre-
quencies in solid RbBr at 80 K are 2.44x 10" and
1.77x 10" sec™!, respectively.>® The inclusion of



2284 J. R. D. COPLEY AND A. RAHMAN 13

FIG. 7. (a) Solid and dashed lines show the positions
of the peaks inJ%, (k,w) and J§q (k,w), respectively, for
different values of k. The solid circles are peak posi-
tions derived from w~2J%y (k,w) for the two smallest
values of k, whereas the open circles represent peak
positions derived directly from Fqq (k,w). The solid line
from the origin represents the velocity of sound measur-
ed by Sternberg and Vasilescu (Ref. 31). () Solid and
dashed lines show the positions of the peaks inJ ﬁ,, K,w)
and Jg'o (k,w), respectively, for different values of «.

ionic polarizability in the present calculations
would no doubt have effects similar to those ob-
served by Jacucci et al.?? in their study of molten
KI. Thus we might expect the LO and TO fre-
quencies in the liquid to decrease ~10% and in-
crease ~5%, respectively, on including ionic
polarizability.

The differences in the dispersion curves for
Fyy(k,w) and for J%,(x, w) occur because these
functions have considerable width in w. However,
the small differences in the peak positions for
Faqlk,w) and for J5o(k, w), for small «, reflect
the fact that these collective motions have long
lifetimes. At larger values of k the dispersion
curves for number fluctuations and charge fluctua-
tions come close together. This ties in with the
idea, recently expressed by Abramo et al.®* that
at small wave vectors one should work with func-
tions of the type Xyy, Xyq, and Xg,, whereas at
large wave vectors the “natural” variables become
X1, Xy and X,,.

VI. DISCUSSION

We have already described in Sec. IV the compar-
ison of our calculated Sy, (k) with the NIS results.
We shall now make further comparisons with the
neutron data.
In Figs. 8 and 9 we show respectively the full
width at half-maximum (FWHM) height of Fy(k, w),
and the value of this function for w =0, for the MD
and the NIS experiments. The neutron scattering
results have been corrected for instrumental
resolution, but this correction was always small;
the maximum correction occurs at k=1.95 A™!
and shifts Fyy(k, w =0) from 0.288 to 0.292, which
in this context is negligible. The neutron results
for Fyy(x, w =0) may well be too high, since Sy (k)
was ~4% too high, at least at large « (see I).
For k< 1.8 A™! the MD and NIS results for Fy,
(k, w =0) are in fair agreement, the MD results
being systematically higher than the NIS data. For
k=2 A”! the MD results are roughly a factor of
1.5 larger than the NIS results, whereas for
2.4<k<3.,0 A~! the MD data show a big oscillation
which is not apparent in the neutron work (Fig. 9).
At larger values of k the two sets of results are in
good agreement. The behavior of the FWHM of
Fyy(k,w) reflects the same trends as Fyy(x, w =0),
However, it is interesting to note that no de Gennes
narrowing is observed at k=2 A™'in either set of
data.

Since

TEn (i, 0 =0)= [~ Fyy(k, 1)dt
0

and since Fyy(k, t) is a nonoscillatory function for
the k’s considered here, we expect that a finite

cutoff in the above integral will produce values of
Fyy(k, w=0) which are too small. This is a parti-
cularly important consideration at « ~2 F\”, where

>
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FWHM of Fyy (x ) (10'% 57")
»
o

or

FIG. 8. FWHM of the function F yy(k,w) from the MD
calculations and the NIS experiments. The experiments
numbered 1 and 2 employed incident neutron energies
of 4.96 and 32.9 meV, respectively (see I).
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FIG. 9. Value of F yy(x,w) for w =0, from the MD cal-
culations and the NIS experiments. See caption to Fig.
8.

Fyy(k,t) is a more slowly decaying function than
elsewhere. Thus we believe that a more accurate
MD calculation would izcrease the discrepancy
between the MD and NIS results. We estimate
that for k=2 A~! this increase may be as much as
15%. Turning our attention now to the region
k~2.7 K", we note a distinct correlation between
the behavior of Syy(k) (Fig. 3, and Fig. 7 of I)
and the behavior of Fyy(k, w=0) (Fig. 9). In both
cases the MD results show considerably more
structure than the neutron results.

In Fig. 10 we show the position of the peak in
the quantity w?F, y(k, w) as derived from NIS ex-
periment, and the position of the peak in J§y(k, w)
from the MD calculation. This latter curve is
identical to the solid curve in Fig. 7(a). No re-
sults for w?F, y(k, w) from the neutron experiment
are shown for k< 1.6 A™, because for these values
of k the measurements did not extend far enough
in w to allow the peak position to be determined
(see also the discussion in Sec. IV of I). On the
whole the agreement demonstrated in Fig. 10 is
satisfactory.

The comparisons described above, and in pre-
vious sections, lead us to the following con-
clusions:

(a) For k<1.5 f\", the major discrepancy be-
tween MD and experiment is in the velocity of
sound [Fig. 7(a)]. Further MD computations on a
much larger system will be required in order to
obtain the sound velocity with good accuracy. It
would also be worthwhile to perform further NIS
measurements on RbBr at small «, in order to
examine Fyy(k, w) in more detail and to larger
values of w.

(b) In the region k=2 A~ the indications are
that an extended MD calculation using the same
potential would not lead to significantly improved
results (Fig. 9). The same remark probably ap-
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FIG. 10. Position of the peak in w?F yy(k,w), from
the NIS experiments, and inJ%y (k,w), from the MD
calculations. See caption to Fig. 8.

plies in the region k =2,7A7",

Of the alkali halides RbBr provides a unique
combination of characteristics for NIS experi-
ments (see Sec. I). Thus we believe that a more
extended calculation on RbBr, not only for a big-
ger system, but also using a different form of
potential (e.g., including effects of polarizability),
is desirable.

On the other hand, it is clear, both from this
work and from that of Gosling et al.®® that the be-
havior of the charge-density fluctuations in molten
alkali halides is worthy of experimental study. In
order to measure Fy,(k, w) with neutrons it is
necessary to find a system where the scattering
lengths b, and b, of the two ions are very different,
since the scattering cross section is proportional
to (see I)

(b, +b,)*Fyy(k, w) +2(b% = b2)Fyq(k, w)

+(b, =0, Foq(k, w) .

The best candidate for such an experiment would
be "Li*"Cl, for which b,=~ -b,, but in this case
there is an additional complication. Owing to the
light mass of the "Li ion, the frequencies in the
system will be of order 3-4 times higher than in
RbBr. In order to do a neutron experiment at
small k, the region of particular interest, very
high incident energies and small scattering angles
would be required. For example, in order to
achieve k=0.5 A™! and w =75 x 10" sec™’, an in-
cident neutron energy of at least 1 eV (wave-
length<0.29A) is required. Using 1-eV incident
neutrons, with w =75x10"2 sec™!, « changes from
0.54 to 1.28 A™! as the scattering angle is changed
from 0° to 3°. An added complication is that Sgq(k),
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which measures the total intensity for a given «,
vanishes as k tends to zero.

Clearly, a compromise is necessary. A first
attempt to measure Fyq(x, w) at small « has in
fact been made®® at the Institut Laue-Langevin,
using a sample of KBr. In order to obtain the re-
quired resolution, a fairly low incident energy
(~ 80 meV) was employed. In this experiment no
definite evidence of collective charge-density
fluctuations was obtained.
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