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Liquid Rb+Br has been investigated by molecular dynamics for comparison with neutron inelastic scattering
results. The properties of Rb+ and Br on the one hand and those of the nuclei of Rb and Sr on the other offer
rather special features for such a parallel investigation. The results reported here use the Born-Mayer type of
interaction between nonpolarizable ions. Based on a molecular dynamics study of a rather small, 122-ion

system, our conclusion is that such a force model is probably inadequate for a satisfactory explanation of the

neutron scattering data; we also conclude that allowing for ion polarization will impove the situation. Thus
detailed studies of the equation of state have to be complemented with dynamical studies of molten salts

before one can draw conclusions about the dependability of the Hamiltonian used for the system. Our results

for g++ and g show a shoulder to the right of the first maximum. This feature has also been observed in

neutron experiments on NaCl and in Monte Carlo calculations on "hard sphere" molten salts. As has already

been reported, the calculated and observed static structure factors are in fair agreement. However, a detailed

comparison shows more marked features in the calculated results than have been found experimentally. From
the density fluctuations a velocity of sound has been deduced which is considerably larger than the only

available experimental value. A comparison of the frequency characteristics of the density fluctuations at
various wavelengths with neutron scattering data shows that at certain wavelengths there are large

discrepancies which are, at least in part, related to the inadequacy of the rigid-ion model Hamiltonian used

for these calculations.

I. INTRODUCTION

~ this paper we report a computer-simulation
study of a RbBr-like system using the technique
known as molecular dynamics (MD}. This work
was done in parallel with neutron inelastic scat-
tering (NIS) investigation of molten rubidium bro-
mide (Ref. l, hereafter referred to as l). RbBr
was chosen for the NIS study because naturally
occurring Rb and Br nuclei have (to within ex-
perimental error) the same scattering amplitudes
for low-energy neutrons; moreover, the neutron
cross section is almost entirely coherent. Thus
the neutron scattering cross section for this liquid
depends almost entirely on the dynamical behavior
of the fluctuations in the number density, regard-
less of the type of ion; the term "indiscriminate
scattering function" is therefore appropriate to
this situation. The dynamical behavior of RbBr
has additional special features in that the masses
of the two types of ion differ by about 7% and the
ionic radii by the same amount. We therefore
expect the (++ }- and (——}-type two-particle
correlations to be very similar. Thus in the de-
velopment of our understanding of ionic liquids
RbBr can play an important role, firstly because
NIS experiments provide unambiguous information
about the number fluctuations, and secondly be-
cause the (++)- and (- —)-type correlations in this

binary system can be assumed to be identical, re-
ducing the number of unknown two-particle cor-
relations from three to two.

Several computer simulation studies of systems
of charged particles have already been published. '
Extensive Monte Carlo (MC) studies" of the one-
component plasma (QCP} have been reported, and
the dynamical behavior of this system has been
investigated using MD. ' The OCP, which com-
prises a set of identical particles with charge Ze,
interacting through the repulsive Coulomb poten-
tial, and immersed in a uniform background of
opposite charge, is characterized by the dimen-
sionless parameter

I' = (Ze}'/(ksTa),

where T is the temperature and a = (3/4vp}' ' is
the ion-sphere radius; here p is the number den-
sity of particles. For future reference we note
that the equivalent F for the RbBr system des-
cribed in this paper is 60.2.

Larsen' has made MC computations on systems
of charged hard spheres of equal size, which are
characterized not only by a F but also by a packing
fraction q= (&)vpc', where a is the hard-sphere
diameter. A simplif ied potential, which includes
the long-range Coulomb contribution and a short-
range repulsive interaction, and which retains the
advantage that it is completely specified by a
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single parameter, has been used in computer-
simulation studies of both static' and dynamic'
properties. The potential takes the form

e2 (1- 5~s)hhs +~ Zgjg ) 9 y A B~

mhere Z„ is the charge on ion 8 in units of e.
Hansen and McDonald' left out the factor (1-5„e)
in the repulsive tex m, but the effect of this
omission is small. ' They studied a system mith
I' =51.3, which is fairly close to the value
(f =60.2) appropriate 'to the RbBr system dis-
cussed in the present paper. (Note that Hansen
and McDonald's definition of I' involves the total
number density, whereas our definition involves
the number density of positively charged particles.
The two def initions give I"s which differ by a
factor of 2'i').

A number of workers have computer simulated
specific alkali halides by the MC" " and MC"
teclmiques, using the Born-Mayer-Huggins (BMH)
pair potential to describe the interactions. This
potential may be written in dimensionless form as

where the first term is the Coulomb interaction,
the second term is the Huggins-Mayer form for
the short-range repulsive interaction, " and the
third and fourth terms represent dipole-dipole
and dipole-quadrupole attractive interactions:
c (=e'/r, ) and t, are units of energy and distance,
x'espeetively. Romano and McDonald" and Adams
and McDonald" tried instead using the Pauling
form for the short-range repulsive interaction, "
but they concluded that the Huggins-Mayer choice
is superior in virtually all respects.

The effects of allowing for ionic polarizability
have been investigated by Dixon and Sangster '

and by Jacucci et cE.2' The effects are visible in
some properties, such as the pair distribution
functions and the diffusion coefficients, whereas
the electrical conductivity is virtually unaltered.
The influence of ionic polarization on the spectra
of density fluctuations" is of particular interest
in the present context, and me shaQ discuss this
matter further in a later section.

%e have undertaken a molecular-dynamics study
of liquid RbBr because of the existence of neutron-
inelastic-scattering data for this material. The
purpose has been to investigate the extent to which
a rigid-ion model. of the BMH type can account for
the dynamical correlations in molten salts. In-
dications are that this model needs considerable

improvement mainly by including the effects of
ion polarization. The results of other MD in-
vestigations"'" with polarizable iona (but on
molten salts for which neutron experiments are
not available} substantiate this statement.

In Sec. II we describe the model system and the
calculation of its time evolution using the MD
method. The time-dependent one-particle cor-
relations are described in Sec. III, and in See. IV
me present our results for the pair correlation
functions and their Fourier transforms, the static
structure factoxs. In Sec. V me describe our xe-
sults for the time-dependent correlation functions
and their Fourier transform. Section VI contains
a discussion of the implications of this work with
particular regard to NIS experiments.

II. MOLECULAR-DYNAMICS CALCULATION

In the MD program distance mas expressed in
units of t'0 =3.43 A and energy in units of
e =e'/r, =6,7255 x 10 "erg. For the pair poten-
tials we used the BMH model. The parameters of
the potentials are given in Table I. The constants
in the exponential repulsive term were taken from
Tosi and Fumi, "whereas the coefficients of the
last two terms are given by Mayer. " The po-
tentials are displayed in Fig. 1 of I.

The system consisted of 61 Rb' ions and 61 Br
ions, with masses 141.92 x 10 "and 132.68 x 10 "
g, respectively, situated in a cubic box of side
I =5.360ro =18.385 A. The density mas therefox'e
2.696 g em ', fox' comparison, molten Rb8r at
atmospheric pressure and at 986 K (the tempera-
tux"e of the NIS experiment} has a density of
2.682 g cm ' (see 1). The unit of mass was taken
to be the reduced mass of an ion pair, M =68.570
X10 '4 g. The unit of time mas then given by
&=-(~&/&)' '=1.0952X10 "sec. The time evolu-
tion of the system mas obtained by numerically
integrating the equations of motion of the ions over
a time step AI;=0.05m=5. 476x10 "see, using a
predictor-corrector technique (see, e.g. , Gear" ).
Once the system was in equilibrium it mas allowed
to evolve for 7100 time steps (8.888&&10 " sec},
and the positions and the first two time dex ivatives
of the positions of each particle after each time
step were written on magnetic tape.

The potential energy and the force on each ion
contain short-range contributions which mere
assumed to vanish beyond a distance —'L =2.68m .
Periodic boundary conditions were applied to
their calculation in the normal way. However,
the long-range nature of the Coulomb interaction
makes it necessary to perform Ewald summations
in order to get the Coulomb contributions to the
potential ener gy and the force acting on an ion.
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For example, the Coulomb energy is given by

f'06 ~ ~ erfc(Q'Ykk ) 2'
+ I

k &k +kk

TABLE I. Parameters of the Born-Mayer-Huggins
potential used in the present calculations. The sub-
scripts i and 2 refer to the cation and anion, respective-
ly.

mean potential energy, -0.7474m, contained the
following contributions: -0.8181m (Coulomb},
0.1090@ (repulsive), -0.0336' (r ' attractive),
and —0.0046@ (r ' attractive). The mean kinetic
energy, 0.0295', corresponded to a mean tempera-
ture of 958 K. In fact, the melting point of real
RbBr is reported to be in the range 953-965 K,
whereas the INS experiment reported in I was
performed at 986 +10 K.

The pressure, computed from the mean virial,
was 2218 atm. In an independent Monte Carlo
calculation on RbBr, at the same density and
temperature and using exactly the same inter-
atomic potential, McDonald and Adams" found a
pressure of 2254 atm and a mean potential energy
of -0.7466m, in good agreement with the present
MD results.

with

+g [ Y~(r~„.) —1'-„(0)]
11&0

erfc(o. (r —Ln[)
Ir —f,n

f

exp(-w'n'/o. 'J.') 2v-
+— eos —n i~I.n'

III. MOTION OF A SINGLE ION

Let R„;(f)and V„,(t} denote the position and

velocity, respectively, of the ith ion of typed at
time t. The mean square displacement (8'„(t)& is
defined by

(&'.(&)&
-=(fR.;(f.+&) —R, (&.)l'&,

where the average ( ~ ~ ) is performed over all
ions of type A and over all time origins I, Simi-
larly the velocity autocorrelation function

Here Zke is the charge on ion k, r» is the mini-
mum image vector joining ions A and k', and n is
a vector with integer components. The parameter
n is arbitrary, but since the sums over n must be
truncated, a is chosen to optimize the convergence
of the whole expression. The corresponding ex-
pression for the forces converges considerably
more slowly. In the present study we chose
aL, =2.25, we summed over all pairs of ions in the
box, and we summed over all vectors n such that
(s; [

~ 2 (f =x, y, or e).
The inverse of the Ewald sum for the potential

and the thxee first derivatives of this inverse
were ealcul3ted as above, and tabulated on a mesh
of 2926 points (x, y, z) in the "irreducible, "of
the cube, defined by 0 &x -y ~z & ~I.. This table,
with suitable interpolation, was then used during
the MD run to obtain the Coulomb potential and
the consequent forces between all pairs of ions in
the system.

As is usual in MD calculations, the constancy of
the total energy was used to minitor the "goodness"
of the numerical solution of the equations of
motion and the adequacy of the approximations in-
troduced in evaluating the Ewald summations. In
the present calculation the total energy displayed
a smaB secular increase from -0.7187 at the
start of the run to -0.7171m at the conclusion. The

&&~(0) V~(f)) =(V~)(f.).V~;(to+&)).

The self-diffusion constants D~ may be obtained"
eithex from the mean square displacements

D„=iim &R„'(T)&/6T,

or from the velocity autocorrelation function,

1 r
D& =lim — (V„(0) - V„(t)) 1-—dt.

1'~~ 3 0 T

Using these formulas, with T&500ht, we find
that (R'„(T))/6T is still far from convergence,
whereas the integral in Eq. (3) yields values of
3.4+0.1x 10 ' and 3.3+0.1x 10 ' em'sec ' for
the cation (Rb') and the anion (Br ), respectively.
Furthermore, the expression

1 d(R'„(T})

which converges faster than (2) but more slowly
than (3), gives values which are consistent with
those we have quoted. The MD results for Dg

are the same for both types of ion. %e know of
no experimental data on self-diffusion in Rbsr,
but our computed values are not inconsistent with
experimental results for other alkali halides. "
On the other hand, the MD calculations of Hansen
and McDonald' yield D=8.5X 10 ' cm'sec ' for
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potential, in a MC calculation for 216 ions (108 of
each type} at the same density and temperature as
the present calculations. The two sets of data are
compared in Fig. 2. A well-resolved peak has also
been observed' in the function g, for a charged
hard-sphere system with F = 39.7, q=0. 175.
Furthermore Edwards et al."have observed
shoulders in g„and g» (and in g» also) in a recent
neutron experiment on NaCl.

Finally, we note that the oscillations in g, and g„
are almost exactly out of phase, and the mean
function g„„=—,'(g, +g„) is quickly damped out;
thus departures from a. uniform density distribution
of particles persist only up to about 6 A; charge
ordering, however, persists to much larger dis-
tances. The numbers of neighbors within certain
distances from a reference ion suggest that the
short-range order reflects to some extent the
NaCl-type structure (cf. Ref. 28). To gain further
insight into these structural questions, it would be
interesting to analyze the angular correlations be-
tween a reference ion and its near neighbors in the
liquid state.

In an alkali halide such as RbBr, there are three
distinct structure factors S„R(v) defined (see I) by

S„~(z)= 5»+ — dr e '" ' g»(r) —1

where p is the total number density of ions.
An alternative expression (disregarding a

Kronecker-6 singularity at K =0) is (see I)

where

A

Q (x t} At-1/2 Q exx ~ RA((t)

and where N„ is the number of atoms of typeA.
Since to within the errors of our calculation

g» =g» =g, , it follows that S»(R) =S»(R) =S, (R),
and we define S„(x)=S„(K). We may then introduce
two new functions (cf. I),

S„„(z)= S, (x) +S„(x} and Sqq(K) =S, (K) —S„(K),

which represent the intensities of density fluctua-
tions and charge fluctuations, respectively. (In
this approximation the cross term SRq(K) vanishes. )

In order to calculate structure factors from
g»(r), it is necessary to extend the real-space
functions to large r. Hansen and McDonald' dis-
cuss this problem as it applies to the molten-salt
situation. They conclude that a self-consistent
extrapolation can be very time-consuming. Given
the present data for RbBr, we do not believe such
a procedure is warranted. Instead, we have used
a much simpler and much more approximate

method. Since the indiscriminate function g»(r)
converges rapidly, no extrapolation of g» is
necessary. In order to extend g, (r), we interpo-
lated the OCP results of Brush, Sahlin, and Teller'
to I'=60, the value appropriate to our system. "
The MD data were joined smoothly to the OCP
results, which were used as far as the node at
-0.7L. It is certain that beyond this point there
still are regular non-negligible fluctuations of
order 5% around the asymptotic value.

The method of calculating S»(z) from the func-
tions Q„(T&, t) is summarized in Sec. V. The re-
sults are given in Table II. In Fig. 3 we show the
functions S»(x} and Sqq(R), obtained using the
two techniques described above. The function
shown in Fig. 7 of I is the Fourier transform of
gR„(r }, except for the first six points, which were
obtained directly from the Butocorrelation of
Q, (x, t) + Q, (», t)

On the whole, the directly calculated values of
S„R(x) and Sqq(x) are more reliable at small K.
Since gqq(r) was truncated at about 13 A, the
Fourier transform obtained for it is certainly less
sharp than it would otherwise be. Thus, for ex-
ample, the height of the main peak in S&z(~) is
probably nearer 4.0 than 3.15, which is the value
obtained from the transform of gqq(r). Our results
for S„„(x}have already been compared with the
NIS results for liquid RbBr in Fig. 7 of I. The
agreement is generally good, except at large z,
where the neutron results are imperfectly normal-
ized. The small peak in the MD results at about
2.6A ' (KL/2s=7. 6) is probably exaggerated. How-

ever, this peak does appear to correlate fairly
well with the shoulder which is observed in the
NIS results.

It is interesting to compare the present results
with those obtained by Hansen and McDonald. ' The
latter results are appropriate (see Sec. III) to
RbBr at 2.04 g cm ' and 1014 K. The first peak in

g„(r) is at the same distance in both calculations,
whereas the first peak in g, (r) is about 4/q closer
in the present calculation than in the calculation
of Hansen and McDonald. On the other hand, the
peaks in S„„(R}and Sqq(x) lie, very roughly, 10%%uq

closer and about 7% further out, respectively, in
the present calculation. These results lead us to
conclude that the nearest-neighbor distance is
dominated by the position of the minimum in the
anion-cation potential, whereas more-distant-
neighbor distances reflect the overall density of
the system. Furthermore, gqq(r), which con-
tinues to oscillate to large distances, produces a
strong peak in S~~(~) whose position reflects the
density of the system.

Our results for S»(a) at small ~ indicate that
S„„(x)and Sqq(x) tend to -0.08 and -0.0, re-
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TABLE II. Wave vectors K employed in the MD calculations. For each value of K~ we list
a representative vector, the number of equivalent wave vectors (N, ), the magnitude of ~ in
A ', and the values of S„&(~).

(ft L/2 n)~ K(A ) Qp (K)

1

2

3
4
5

6
9

11
13
14
16
18
20
21
22
24
25
29
32
36
41
49
64
81

100
144
196
256
324
400

1,0, 0}
1, 1, O}
1, i, i}
2, 0, 0}
2, 1,0}
2, F 1}
S, 0, 0}
s, i, i}
S, 2, O}

S, 2, i}
4, o, o}
4, 1, i}
4, 2, 0}
4, 2, i}
S, S, 2}
4, 2, 2}
8, 0, 0}
8, 2, 0}
4, 4, o}
8, 0, 0}
4, 4, s}
7, 0, 0}
8, 0, 0}
s, o, o}
10,0, 0&

12, 0, 0}
14, O, O}
18, 0, 0}
18, 0, 0}
20, 0, 0}

6
12

8

6
24
24

6
24
24
48

6
24
24
48
24
24

6
24
12

6
24

6
6
6
6
6
6
6
6
6

0.342
0.483
0.592
0 ~ 684
0.764
0.837
1.025
1.134
1.232
1 ~ 279
1.367
1.450
1.528
1.566
1.603
1.674
1.709
1.841
1.933
2.051
2.188
2.392
2.734
3.076
3.418
4.101
4.785
5.468
6.152
6.836

0.043
0.059
0.064
0.071
0.082
0.093
0.205
0.285
0.522
0.688
1.797
2.574
1 ~ 680
1.553
1.310
1.072
0.945
0.864
1.075
1.093
0.962
0.700
1.092
1.046
0.915
1.070
0.978
0.961
0.998
1.004

0.040
0.051
0.053
0.052
0.053
0.053
0.071

-0.001
-0.144
—0.290
-1.248
-1.912
-1.009
—0.745
-0.375
-0.117
-0.150

0.213
0.473
0.552
0.424
0.103
0.197

-0.'1 31
-0.138

0.107
-0.004
—0.034

0.003
—0.026

0.043
0.058
0.066
0.071
0.084
0.101
0.199
0.294
0.527
0.676
1.757
2.585
1.677
1.539
1.252
1.074
0.929
0 ~ 876
1.060
1.086
0.955
0.726
1.172
1.087
0.944
1.006
1.027
0.974
0.962
0.987

spectively, as K tends to zero. The latter number
is as expected, "whereas the former number may
be compared with the well-known result

»m SNN(~) Pt BTX T
K~0

where p is the total number density of particles and

X~ is the isothermal compressibility. Using publi-
shed results for the sound velocity" and the den-
sity" of RbBr at elevated temperatures, we obtain
g~=4.5x10 " cm' dyn ' at 958 K, and hence
S(0) =0.12. This is a factor of 1.5 larger than the
value obtained in the MD calculations.

V. TIME-DEPENDENT DENSITY AND CURRENT

CORRELATIONS

The number densities Q„(7&, t) (defined in Sec.
1V), and the longitudinal and transverse current
densities L„(Tc, t), T„'(K, t), and T„(~, t), defined
below, were computed for the wave vectors K

listed in Table II. With the definition

A

C„(~„~„t) =N ' 'g V„,(t) ~ z, e'"i "&&"1

we have

L„(K, t) =C„(K, v, t), T„'(K, t) =C„(g, a', t),

and

T„"(K, t) = C„(K, K", t),

where 2, z' and i" are mutually orthogonal unit
vectors, with 2 parallel to z.

The autocorrelations of these quantities were
then computed:

&~s(&i t) = ( Q~(~, t.)Q&(-~, t, + t)),

J„s(K, t)=(L„(K, to)Ls( K& to+t)), -
cf gs(&, t)= 2(++(», t, )Ts( ~, t, +t)

+ T„"(T&,t, )Te ( Tr, t, + t )), -
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write

X»(», t) =-,'[X»(», t)+2X»(», t)+X»(», t)]

0—0 Ill0 I 5 e

x«(», t) = —,'[x„(»,t) —2x„(», t) +x„(», t)],
where X signifies, I', J, or J . In general, R

thixd function,

FIG. 3. Static structure factors Szz(&) and 8~(&),
computed from Q&(&, t) (closed circles) and by Fourier
transforming gzz(x) or g@@(r) (continuous curves).
Note the change in scale at & = 3.5 A"~.

where the averages ( ~ ~ ~ } are over time origins to.
The autocorrelations mere then averaged over all
wave vectors x having the same magnitude.

The function F»(», 0), i.e. , S»(»), is discussed
in Sec. lV. The corresponding functions derived
from the current densities are given by

Z„a(», 0) =Z„e(», 0) = 5„~@ATM„' .
Using the definition

T~a(») = J~a(», 0)(M„M )'~'ek', »

we have computed temperatures T~»(») which
Rre shown 1Q Flg. 4. Similar I'esults wel 8 obtain
ed using Z„*»(»,0) to define "temperatures" T ~r»(»).
The fluctuations indicate that the statistical
Rver'aging px'ocesses Used to obtain the Rutocor-
relation functions are good to better than 5%.

Anothex measure of the computational uncer-
tRlntles ls obtained by examining the lmRglQRr'y

parts of F»(», t), etc. In an exact calculation
these functions have no imaginary part (since the
system is classical). On the other hand, the
computed functions hRve Rn imaginary part Which
decreases as the statistics of the run are improved.
In the present study me found that the imaginary
part of F»(», t) was typically less than 0.07 in ab-
solute value.

We shall examine functions such as F»(~, t) and

Fez(», t) rather than the functions F»(», t). We

x„,(», t) = ,'[x„(»—,t) x„(»,—t)],
exists, but in the present case this function is
small and me shall not discuss it.

We have also computed the Four'ier transforms
of the function X»(», t) and X«(», t), denoted by
X„„(»,cu) and X«(», ur). The transforms F(», ur)

a e ldentlcal to the appropriate scattering
functions S (», &u) introduced in Sec. II of L Indeed
F„„(»,a&) is essentially the function measured in
the neutron scattering investigation which was
reported in I. Furthermore, the functions Z (», a&)

are given by

8 (», &o) =(&uf»)'F(», v) .
The functions F{»,t), for representative values

of », are shown in Fig. 5. As» increases, F»(», t)
becomes more short lived. Due to the tendency of
the system to maintain charge neutrality, the
charge density fluctuations show marked oscil-
lations in time (Fig. 5). The period decreases
with increasing», and for»L/2&+ 3 (I.e.y» +I A )
oscillations are no longer found. The transforms
(Fig. 5) are strongly peaked for small values of »,
the peak frequency decreasing with increasing a.
At large values of x the functions F» and F+ be-
come moxe and more alike, reflecting the nature
of the single-particle motions.

The longltudlnal cux'I'ent density fluctuRtlons
4„„(»,t) and Z«(», t) must have an oscillatory be-
havior in time and, in addition, the Fouriex trans-
forms Z (», &u) must vanish at &v =0, showing a
peak at finite (A) for any value of a. In all cases
8 {»,&u =0) was found to be negligibly small. The
positions of the peaks in these functions will be
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FIG. 5. Functions Fzz(K, t)/S&~(K) (solid line) and

F+(&, t)/Sq(&) (dashed line) for KL/2m=1, 2, and v41,
i.e., K=0.34, 0.68, and 2.19 A ~, respectively.

FIG. 6. Function F+ (K, ~)/S+ (K) for KL /2n = 1, 2,
andu41, i.e. , &=0.34, 0.68, and 2.19 A respectively.

discussed below.
The transverse current density fluctuations in

number and in charge, even for the smallest ~
available (-0.34 A '), show oscillatory behavior,
i.e., the tendency of the system to propagate such
fluctuations. Obviously for much larger systems
the small-K behavior of J„z(K, f) will show non-

propagating behavior.
The positions of the peaks in the transforms

J (~, u) and J (g, (d) are plotted in Fig. 7. Also
shown as open circles in Fig. 7(a) are the positions
of the peaks in Fqz(v, &u). Finally, the two closed
circles, at zL/2v =1 and v 2, were obtained from
the functions ur 'J~»(g, u&), which would be pro-
portional to F»(a, u&), given sufficiently good
statistics. The curves plotted in Fig. 7 show a

number of interesting features. At small z the
curves are reminiscent of the dispersion curves in
a solid alkali halide. The slopes of the "acoustic"
curves, derived from J„„and J», are 1.0x10'
and 2.04 && 10' cm sec ', respectively, whereas
the slope derived from v 'J» is roughly
1.5@10' cmsec '. On the other hand, the ob-
served ' adiabatic sound velocity in molten RbBr at
958 K, 1.1 x 10' cm sec ', is much lower than our
calculated value (1.5 & 10' cm sec '). If we extra-
polate the "optic" curves (derived from J~ and

Jzz) to K =0, we obtain frequencies of roughly
2.6X 10" and 1.4& 10" sec ', respectively. For
comparison, we note that the corresponding fre-
quencies in solid RbBr at 80 K are 2.44@ 10" and
1.77 x 10" sec ', respectively. " The inclusion of
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FIG. 7. (a) Solid and dashed lines show the positions
of the peaks in J~~&(K, +) and J~++(fI', u), respectively, for
different values of x. The solid circles are peak posi-
tions derived from v "2J~~+(x,v) for the two small, est
values of K, whereas the open circles represent peak
positions derived directly from E~(x,m). The solid line
from the origin represents the velocity of sound measur-
ed by Sternberg and Vasilescu (Ref. 31). @) Solid and
dashed lines show the positions of the peaks in J&~& (w, au)

and J~~~ (K, w), respectively, for different values of f(:.

VI. DISCUSSION

We have already described in Sec. IV the compar-
ison of our calculated S»(a) with the NIS results.
We shall now make fux ther comparisons with the
neutron data.

In Figs. 8 and 9 we show respectively the full
width at half-maximum (FWHM) height of E„„(a,&u),

and the value of this function for u =0, for the MD
and the NIS experiments. The neutron scattering
xesults have been corrected for instxumental
resolution, but this correction was always small;
the maximum correction occurs at x=1.95 A '
and shifts F„„(~,(o = 0) from 0.288 to 0.292, which
in this context is negligible. The neutron results
for F»(x, s& =0) may well be too high, since SNN(~)
was -4% too high, at least at large z (see l).

For x&1.8A ' the MD and NIS results fox F»
(g, &u =0) are in fair agreement, the MD results
being systematically higher than the NIS data. For
~ = 2 A ' the MD results are roughly a factor of
1.5 larger than the NIS results, whereas fox'

2.4& ~ & 3.0 A ' the MD data show a big oscillation
which is not apparent in the neutron work (Fig. 9).
At larger values of x the two sets of results are in
good agreement. The behavior of the FWHM of
F»(K, e) refiects the same trends as F»(x, cu = 0).
However, it is interesting to note that no de Gennes
narrowing is observed at a =2 A ' in either set of
data.

Since

ionic polarizability in the present calculations
would no doubt have effects similar to those ob-
served by Jacucci et a/. " in their study of molten
KI. Thus we might expect the LQ and TG fx'e-
quencies in the liquid to decrease -10% and in-
crease -5/0, respectively, on including ionic
polar izability.

The differences in the dispersion curves for
E~g(IC, 4D) and for elgN(K, (d) occur because these
functions have considerable width in v. However,
the small differences in the peak positions for
Ez+(x, co) and for J~z(a, au), for small I(., reflect
the fact that these collective motions have long
lifetimes. At larger values of a the dispersion
curves for number fluctuations and charge fluctua-
tions come close together. This ties in with the
idea, recently expressed by Abramo et al. '4 that
at small wave vectors one should wox'k with func-
tions of the type X», X„, and X++, whereas at
large wave vectors the "natural" variables become
X„p X,2y and X~»

40-

0
0 4

«(k-')

FIG. 8. PKHM of the function Ez&(K, u) from the MD
calculations and the NIS mcperiments. The experiments
numbered 1 and 2 employed incident neutron energies
of 4.96 and 32.9 meV, respectively (see I).

and since F»(x, f) is a nonoscillatory function for
the a's considered here, we expect that a finite
cutoff in the above integral will produce values of
F»(», e =0) which are too small. This is a parti-
cularly important consideration at x-2 A ', where
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F„„(z,t ) is a more slowly decaying function than
elsewhere. Thus we believe that a more accurate
MD calculation would increase the discrepancy
between the MD and NIS results. We estimate
that for z =2 k ' this increase may be as much as
15%. Turning our attention now to the region
K 2.7 A ', we note a distinct correlation between
the behavior of S»(x) (Fig. 3, and Fig. 7 of I)
and the behavior of F„„(x,e = 0) (Fig. 9). In both
cases the MD results show considerably more
structure than the neutron results.

In Fig. 10 we show the position of the peak in
the quantity &u'F»(», u&) as derived from NIS ex-
periment, and the position of the peak in Z„„(»,&u)

from the MD calculation. This latter curve is
identical to the solid curve in Fig. 7(a}. No re-
sults for &u'F„„(x, u&} from the neutron experiment
are shown for z& 1.6 A ', because for these values
of a the measurements did not extend far enough
in e to allow the peak position to be determined
(see also the discussion in Sec. IV of I). On the
whole the agreement demonstrated in Fig. 10 is
satisf actory.

The comparisons described above, and in pre-
vious sections, lead us to the following con-
clusions:

(a) For x & 1.5 A ', the major discrepancy be-
tween MD and experiment is in the velocity of
sound [Fig. 7(a)]. Further MD computations on a
much larger system will be required in order to
obtain the sound velocity with good accuracy. It
would also be worthwhile to perform further NIS
measurements on RbBr at small x, in order to
examine F»(e, u&) in more detail and to larger
values of v.

(b) In the region «=2 Ji ', the indications are
that an extended MD calculation using the same
potential would not lead to significantly improved
results (Fig. 9}. The same remark probably ap-

FIG. 10. Position of the peak in ao J NN(&, ~), from
the NIS experiments, and in J'zN (&,~), from the MD
calculations. See caption to Fig. 8.

plies in the region x = 2.7 A '.
Of the alkali halides RbBr provides a unique

combination of characteristics for NIS experi-
ments (see Sec. I). Thus we believe that a more
extended calculation on RbBr, not only for a big-
ger system, but also using a different form of
potential (e.g. , including effects of polarizability),
is desirable.

On the other hand, it is clear, both from this
work and from that of Gosling et aL."that the be-
havior of the charge-density fluctuations in molten
alkali halides is worthy of experimental study. In
order to measure Fqq(e, &u) with neutrons it is
necessary to find a system where the scattering
lengths b, and b, of the two ions are very different,
since the scattering cross section is proportional
to (see I)

(b, +b~) F„„(x,(u)+2(b, b~)F„q(K, (a))—

+ (b, —b, ) Fqq(K, ra } .
The best candidate for such an experiment would
be 'Li'Cl, for which b, = -b„but in this case
there is an additional complication. Owing to the
light mass of the 'Li ion, the frequencies in the
system will be of order 3-4 times higher than in
RbBr. In order to do a neutron experiment at
small z, the region of particular interest, very
high incident energies and small scattering angles
would be required. For example, in order to
achieve x=0.5 A ' and m=75~ 10" sec ', an in-
cident neutron energy of at least 1 eV (wave-
length& 0.29A} is required. Using 1-eV incident
neutrons, with ~ =75 X10"sec ', ~ changes from
0.54 to 1.28 A ' as the scattering angle is changed
from 0' to 3'. An added complication is that Sqq(x),
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which measures the total intensity for a given ~,
vanishes as z tends to zero.

Clearly, a compromise is necessary. A first
attempt to measure Foo(a, ur) at small x has in
fact been made" at the Institut Laue-Langevin,
using a sample of KBr. In order to obtain the re-
quired resolution, a fairly low incident energy
( 80 meV) was employed. In this experiment no
definite evidence of collective charge-density
fluctuations was obtained.
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