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A covariant formulation of classical electrodynamics is given for nonviscous, compressible, nondispersive,
polarizable, and magnetizable fluids. The part of the Lagrangian density accounting for the various
interactions to be existent in such fluids under the influence of the electromagnetic fields is constructed rather
intuitively by introducing two four-vector variables, one to describe the states of polarization and the other to
describe those of magnetization. The energy-momentum conservation law can be derived separately for the
material and the field subsystems. The energy-momentum tensor of the total system cannot be split in a
unique way into the material and the field parts. However, physically reasonable ways of splitting can be
found so as to give one and the same result as to the electromagnetic radiation pressure in electromagnetic
fluids. This pressure is shown to be (D X E)/4m(uv)'”?, in agreement with experiment. This indicates that the
pressure observed in experiment consists almost entirely of the “true’” electromagnetic radiation pressure. For
the sake of consistency, the mechanical pressure arising both from the electro- and magnetostrictive forces and
the forced motions of the fluid particles under the influence of the electromagnetic radiation fields is also

estimated and found, in fact, to be negligible in ordinary experimental conditions.

I. INTRODUCTION

There has been a long-standing controversy as
to the proper identification of the electromagnetic
momentum density in polarizable and magnetizable
media. The question is whether this momentum
density has the form (D xB)/4nc, as suggested by
Minkowski,! or (E xH)/4nc, as suggested by Abra-
ham.? The problem has been discussed on numer-
ous occasions, but here only a few examples of
such discussions are referred to. Laue® and Mdl-
ler* support the Minkowski form, while Landau
and Lifshitz® adopt the Abraham expression for the
reason that this conforms to a symmetric energy-
momentum tensor. Pauli appears to have support-
ed Minkowski in his latest publication on relativ-
ity.®

In more recent times, most authors are inclined
to adopt Abraham’s form. However, Jones and
Richards’s observation’ of the light pressure on
objects immersed in refractive liquids was in ex-
cellent agreement with the prediction based on
Minkowski’s momentum density. More recent ex-
periments of Ashkin and Dziedzic® on the radiation
pressure exerted on a free liquid surface also pro-
vided a result in support of Minkowski’s assump-
tion. Haus® and Gordon,'® who accept Abraham’s
electromagnetic momentum density, argue that the
mechanical momentum supported by the material
may have appreciable contribution to the light
forces in liquids through material-material con-
tacts. Burt and Peierls," who accept Abraham’s
assumption but reject the possible existence of
measurable contributions from the atomic motions
in liquids in the case of Jones and Richards’s ex-

13

periments, leave the discrepancy between theory
and experiment unsolved.

In order to settle these issues, an exact formu-
lation of electrodynamics of moving media is in-
dispensable. The first part of this paper will be
devoted to the establishment of the theory of non-
viscous, compressible, nondispersive, polariz-
able, and magnetizable fluids. Application of
Hamilton’s principle proves to be the best way of
tackling this kind of subject, in view of consis-
tency and freedom from errors. The only disad-
vantage of this method is the difficulty in finding
a logical means for setting up the Lagrangian den-
sity. Therefore the Lagrangian density, which is
proposed and used in this paper, had to be found
rather intuitively. For the system under consid-
eration, however, the situation is not very fatal,
because some of the basic equations here are
known beforehand and can be utilized a posteriori
for the justification of the postulated Lagrangian
density.

The main results obtained from the basic equa-
tions thus derived in this paper are as follows:
The energy-momentum conservation law can be
derived independently for the material and the
field subsystem. This enables one to define the
energy-momentum tensors for the respective sub-
systems, although not uniquely. The tensor for
the total system is obtained as the sum of those
for subsystems. In spite of some sort of indef-
initeness of individual subsystem tensors, the
density of the electromagnetic momentum flux
and therefore the radiation pressure on opaque
bodies immersed in material media can be found
to equal Minkowski’s momentum density multiplied
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by the velocity of light in media, in accordance
with experiment. Abraham’s energy-momentum
tensor can be accepted as well and can predict the
same radiation pressure as Minkowski’s tensor,
although Abraham’s field momentum density dif-
fers from Minkowski’s. This is because the same
density of the electromagnetic momentum flux as
Minkowski’s can be found to result if Abraham’s
tensor is assumed and because the radiation pres-
sure is determined by the density of the flux, not
by the density of the momentum.

II. LAGRANGIAN DENSITY

The Lagrangian density in this problem consists
formally of three parts: the material part L™,
the field part L, and the part owing to interac-
tions, L‘?’, Interactions between dipole moments
induced under the influence of the fields are in-
cluded in the last part, together with the interac-
tions between the material and the fields.

First, the material part is considered. The mo-
tion of the particle (infinitesimal part) of the fluid
can be described in a four-dimensional space by
introducing a position four-vector x, = (X, icf).
Greek subscripts are used throughout this paper
to indicate four-vector components or four-tensor
elements, and Latin subscripts indicate three-
vector components. The velocity of the particle
¥(x,) multiplied by the mass density p(x,), to-
gether with the fourth component ipc, forms a
four-vector of mass flow density,

J,. = (pV, ipc). 1)

Let p, be the density in the local rest frame; then
p is related to this by

p=7vpy, ¥=[1-(/c)?]*/2 ()
The Lagrangian density L‘*’ then takes the form
L(M)=_(‘Ji)1/2" €{(pm s)’ (3)

where ¢;(p,, s) is the specific internal energy of
nonelectromagnetic nature and is assumed to be

a function of p, and the specific elastic entropy s.
The specific entropy is assumed to be a four-sca-
lar function of x,. On the right-hand side of (3)
the summation over u is implied for J%. Repeti-
tion of a Greek index will always imply the sum-
mation from 1 to 4.

Next, the form of the field part L will be es-
tablished. In a relativistically covariant formula-
tion, the most convenient field variables are those
of the potential four-vector

Au = (K’ id))’

where A and ¢ are the usual vector and scalar
potentials. The field intensities E and B are ex-

pressed in terms of potentials in the form

F-_124 -V¢, B=curlA. 4)

The first pair of Maxwell’s equations,

-~ 1B L=
curlE = ~S 50 divB=0, (5)
then follows automatically. With the help of the
four-tensor defined by

0A 9A
[ttt "kt Y
Fu.v axu 3 xv I (6)
Maxwell’s equations (5) can be cast into a single
tensor equation,

It is obvious from (4) that

0 B, -B, -iE,

Foo| -Ba 0 B -iE,

uv . )
B, -B, 0 ik,

iE, iE, iE; 0

As is well known, the field part of the Lagrangian
density is now written in the form?!?

L¥ = (1/167)F2;. (8)

The final and most important task in this section
is to find the form of the contributions from inter-
actions. The following is a rather intuitively de-
rived expression of this part of the Lagrangian:

If the material is polarizable and magnetizable,
then it is necessary to introduce the variables
which are capable of describing the states of po-
larization and magnetization. Here, a four-vector
Py is introduced to describe polarization, and an-
other four-vector m, to describe magnetization.
The Lagrangian density L% is now assumed to be
given in the following form:

0Py,

, 1
LO=Auju+ G0 sy Pl ~An—i

da(pg,s)”

1 oM,
— 2t e _ By
4B(PO,S)M"" Au Xy ’ (9)

where the first term indicates the interaction be-
tween free charges and the fields, the second and
third the electric dipole-dipole and dipole-field
interactions, and the fourth and fifth the magnetic
dipole-dipole and dipole-field interactions, re-
spectively. The charge-current four-vector for
free charges is denoted by j, =(pzV,ipzc), Where
pg is the charge density and the ratio pz/p is as-
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sumed to be a constant. There have been intro-
duced two new tensors Py, and M,, which are
defined by the equations

Py, = (1/c) (pr’u -vau) )

My, =(1/ic)(dymy —dymy) . (10)

Both are antisymmetric tensors, and M, appear-
ing in (9) is the pseudotensor dual to M, i.e.,

M:vzéeuvyéMyé' (11)

Here, the four-dimensional permutation symbol
Cuvys equals +1 or -1, depending on whether pvybd
is an even or odd permutation of 1, 2, 3, and 4,
and O if any of the subscripts are equal. Note that

*2 _
M= M35

The tensor Py, may be called the polarization
tensor and M, the magnetization tensor. The
parameters o and 8, which are assumed to be a
function of p, and s, characterize the linear con-
stitutive law to be expected for the material un-
der consideration, and later will be related, re-
spectively, to the electric and magnetic rest-
frame permeabilities.

The total Lagrangian density is given by the sum

L=L™+1@ 4+, (12)

Absence of any explicit dependence of L on x, is
evident and implies that the system under consid-
eration is closed.

III. EQUATIONS OF “MOTION”

Hamilton’s principle will be now applied to de-
rive equations of “motion” with due consideration
for a number of constraints. If Herivel-Lin’s
constraints are taken into account by introducing
a necessary number of Lagrange multipliers, then
all 17 variables, i.e., 16 four-vector components
Jy, pu, My, and A, and one four-scalar, s, can be
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cedures of variational calculus with the proper
boundary conditions taken into consideration en-
able one to obtain all of the basic equations of the
system. Details of variational principles applied
to fluid mechanics can be found in Refs. 13-15.
Herivel’s constraints can be written in the form

oy

il (13)
s
Jy Py 0. (14)

The first equation states the law of conservation
of mass (the continuity law) and the second the
condition for the adiabatic flow. In order to write
Lin’s constraint explicitly, it is necessary to in-
troduce a four-vector X, =(X, icT) as a label of
the fluid particles. The three-vector X indicates
the position of a particle at some particular time
T. Here, T may be chosen differently for different
particles. Conservation of the identity of particles
requires

ax
hniad "8
Jy 8%, 0. (15)

This is the covariant expression of Lin’s constraint
first introduced by Penfield.*
Hamilton’s principle now reads

6[Ld9—6f¢

g -5 [ 1,25
o d2 =0 | 6,5 a0

ax
—afx,, g ax';d9=0,

A =dx, doy dyd, (16)

where ¢, £, and ), are Lagrange multipliers in-

troduced to account for the constraints (13), (14),
and (15), respectively. Separate variations with

respect to all independent variables now yield the
following equations:

varied without restrictions. The standard pro- For 6J,,
J
de 1/8(1/a) 1/ a(1/B) 1 1
ooty + €5 potty + ( 8p: )s oy~ 4 (T spiépo“#"‘ 1 W)sMsépouu“" ;Puupopu - 'ﬁMuvpomu
14 ] 8s X
=Fuypoby - TFﬂvpomu +po'&%'gpo 8%, =X Po ax: +pgo Au=0; (17)
r
for 0s, for 68X,
de 1 /a(1/a) 2
-Po < 3 ) + — ( P75 aA
3s /o, 4 as Po pouu__ﬂ_axu =0; (19)
1 (8(1/8) ) 2 3 AL
4 < 85 Joo ¥ ox, (pot) =0;  (18) for 6p,,
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[Fuu - (1/0‘)Puv] u,=0; (20) paper the variable J, is replaced by p,cu, for ease
of understanding, u, being the dimensionless four-
for omy, velocity ¢~ '(yV,iyc). In the application of varia-
[F;v +(1/B)My,]u, =0; (21) tional principles J, has been a more pertinent
variable than u, when p, and m, are used as com-

and for A, panion variables.
9 N The next task is to eliminate the Lagrange multi-
—B_x—,,_(F“” +4n B,y +41M ) = 4Tpgo uy = 0. (22) pliers from the equations of motion (17). As the
first step, differentiate (17) with respect to x, and
In the derivation of (17), use is made of the rela- subtract from the result the same equation with
tions i and v interchanged. Multiply then p,u, from the

left-hand side, so that Lagrange multipliers ¢ and
A, can be removed by the help of (13), (15), and
Here and throughout the remaining part of this (19). Use is also made of the following identities:

pozc"(—(Iﬁ)‘/z, 6po==(poc?)"'J,8J,.

9 1 9 9 1 9 1
Polt uax ( u-yp >_p0u“3;c_u(Fﬂ7p7)=—§:(EPMYPVY_FHYP”7>—m[(\Fuy—EPN7>p0u7‘b”jl’ (23)

9 1 2 1 0 1 °] 1
2 (= 2 (= =2 (= * - |ilF* +=
Pty ox, (iﬂ M“me) + Py ax,,(i F:y’”y> = ox, <3 M M, +FMMU7> ax"[z(Fw + 3 M“Y>p0u7m,;l y

(24)
9 (1 KB
pouva_xu(a U'yp ) Pollty = xu (Fuypy)
_ 1 8aFuy 1 8 (1 2) 1 /), 1 3py
T2 ax, vyt g 8x, Pys)* T “ox " P =Fuy = P )pou,, ax, @5)
9 *
Py — ox ( My,m >+p°u,, ( F )
1 oF} 1 9 /(1 1 a(1/p) . 1 am
- YY M = oAr2 = _ * = Y
2 ox, T o, <l3 M75>+ 7 ox, M3 z<vF,,7+ 3 Mw)pou,, ox, (26)

As a result one obtains

o | 9¢€; p, (8(1/a) a(1/p) 1 1
- 2 2 —i) - 20 (L") p2 2 — P P, -F -
BX.I{%C +p°e‘+p°<apo>s 4 < ap, )i 787 4( ap, SM"J“““”a wy Puy = Fuy Puy BM”M”'

1 . 1
_.F?I‘yML,7 - <Fu7 - ;Pw>pou7py +1 <Fjy +§ Muy>pou7m,,}

) d€; p, (8(1/a) p (a(l/ﬁ) 1 1
-0 (A7 2 o A /77 2 __~ p2 —_— 2
*ox ["°<apo> 4 ( 90, )SPY“ 2 \"op, ). MYeT ag st 43M76]

o€ d€;\ 8p, 1 a(1/a) 1 a(1/B) 1 oF 1 aF}
LTI = z , - OU/B) 2 vy = Ofvy
*Poax, ~Po (apo >s ox, T4 " ox, Pys+3 ox, 78" Tax, Puy+3 ax,, My

1 3py Y- 1 amy 9L 8s 9z 9s
+<F,,7—- :Pv7>pouu axu - L<Fvy+§Muy>pouv ax = Polhy 9x, ox +PoUy 3x” E'Fuup};o“u=0-

The remaining Lagrange multiplier { can be removed by making use of the relation

3L 8s_ 3k 8s _ 3€; 1/3(1/a) . . 1/73(1/B) . ].9s
Pty ox, ox, P ax, ax,,_[p°< ds )‘,0 4 ( as ),,0 v8 73\ "as ;»OMYB] ax, ’
which follows from (14) and (18). As a result of compensation of a number of terms, the equations of
motion can be written in the following form:
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Xy

- % My, M,y -iM%s8,)~F, P, , ~F; M, - (
where

SUEE

Here, from thermodynamic considerations, m,
can be interpreted as the hydrostatic pressure in
the fluid. Equation (28) is obviously the relativis-
tic generalization of Euler’s equation of hydrody-
namics for simple electromagnetic fluids.

The other three basic equations, (20)-(22), will
be now subjected to discussion. It is evident that
Egs. (20) and (21) state the constitutive laws for
the material and Eq. (22) is the second pair of
Maxwell’s equations. Physical implications of
these equations can be seen more easily if they
are put into the three-dimensional form. In this
connection the three-vectors P and M are defined
by

Py =p(p; +ip,v,/c), (29)
M, =p(m,; +im,v,/c), (30)
where the subscript ¢ stands for 1, 2, or 3. The

polarization and magnetization tensors can then be
written in the form

P,=(1/c)v,P,-v,P,),
M,,=Q1/ic)v,M,-v, M,),
in terms of the three-vectors v, ﬁ, and M. In the
above equations the identities v, =ic, P,=0, and
M, =0 are implied. Note that v,, P,, and M, here
are not four-vectors, in spite of their four-di-

mensional notation. Now Egs. (20)-(22) can be
transformed into a more familiar form,

D+ (F/c)xH=(1 +4ma)[E + (¥/c)xB],

(31)
B - (¥/c)xE =(1 - 4np)Y[H - (¥/c)xD],
and
-~ 1 9D 4r . Lo
curlH = — —o + =~ pg¥, divD =4mpg . (32)

Here, a pair of three-vectors D and H are de-
fined by

. 1
[(poc +Po€q) Uty + (T, = 4Kasza +%K3M";5)(uuu,,+6“,,)+?(Pp P

1
vy "?szséuu)

1 1
a Puy>po ypv+"<Fuy 3 Ml"/)pouymv]

1 3, 1 am
y6 +<Fvy— '&— ,,y)pouy ax (F* + — B Myy)po y axu ’
(28)
D=E X
E E+47rP +4n[(¥/c) x M] (33)
H=B- 47M +4n[(¥/c x P].

It is obvious that (32) is the second pair of Max-
well’s equations and (31) the relativistic general-
1zat1on of the simple constitutive law D=¢E and
B= uH assumed for stationary media. The rest-
frame dielectric and magnetic permeabilities, €
and u, should be related to the parameters a and
B introduced in this paper by

€e=1+4ra, p=(1-4nB)""

Looking at Egs. (31)-(33), one is naturally invited
to interpret D as the electric displacement and H
as the magnetic field intensity in polarizable and
magnetizable media. Equation (31) 1s a well-known
relation first derived by Minkowski.'® It should
be remarked that the Lorentz invariance of Max-
well’s equations in such media depends on the as-
sumption that the variables p, and m,, as well

as the potentials A and i¢, behave together as a
four-vector. Another point to be noted in this
connection is the fact that the { four-vector p, pro-
vides the same three-vector P if transformed in
such a way that p, -p, +wux/c, where x is an ar-
bitrary real, invariant function of space and time.
As for m,, the situation is similar.

It has thus been shown that the postulated La-
grangian density, especially the interaction term
(9), can reproduce the well-established electro-
magnetic properties of linearly polarizable and
magnetizable fluids. This fact can be regarded as
giving credibility to the proposed form of the La-
grangian density and, in consequence, to the hy-
drodynamic equations of motion derived therefrom.
Thus it is concluded that Eq. (28), as well as Egs.
(20)-(22), has the proper form of the basic equa-
tions useful for the discussion of both mechanical
and electromagnetic properties of nonviscous,
compressible, and nondispersive perfect fluids
when linear constitutive laws are assumed.

IV. ENERGY-MOMENTUM TENSOR

In Sec. III three sets of basic equations for simple
electromagnetic fluids have been derived in a co-
variant way at every stage. They are the hydro-
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dynamic equations of motion for the material,
(28), the constitutive relations (20) and (21), and
the field equations (22). These three sets of equa-
tions are clearly independent of each other in the
sense that they have been obtained by making vari-
ations of the different groups of variables for the
respective sets. Thus the energy-momentum con-
servation law for the material subsystem, which
is derivable from the hydrodynamic equations of
motion, and the corresponding law for the field
subsystem, which is derivable from the field equa-
tions, can be established independently. The con-
servation of energy and momentum for the total
system will be found to result as a logical con-
sequence of these two laws for subsystems.

Owing to the constitutive laws (20) and (21)
the last two terms on both sides of Eq. (28) can be
dropped. It then turns out that

18F,, 18F;

8Ty _
_F“"pE"u”_E ox, 7T 276x,

7 M,,.  (34)

Here, the left-hand side of (28) is written as a
four-dimensional divergence of a tensor which is
defined by

T“";"z(pocz+po€i)uuuv+rr(uuu,,+5w)
+(1/Q)(P,, P, - iP}5,,)
- (/BN M, M,, ~ iM}3,,)
_FLLYPW_F:YMW’ (35)

where the total pressure with electro- and mag-
netostrictive effects involved is denoted by

1 2 1 2
T=1y— 5Ky Pys+3Kg M,5.

T{™ may be interpreted as the material part of
the energy-momentum tensor and Eq. (34) as the
relation expressing the energy-momentum con-
servation law for the material subsystem. The
right-hand side may be taken as the force exerted
on the material by the field. Later, however, a
more reasonable way of defining the material ten-
sor will be proposed, based upon physical consid-
erations.

As the next step, the conservation law for the
field subsystem will be worked out. This is ac-
complished by starting with the field equations
(22). First, change the subscripts u, v into v, 6 in
this equation, and then multiply the result by
(1/4n) F,,. After some transformations, taking
advantage of the defining equation for F,,, Eq. (6),
one obtains

aTY) 19F 1sF
—+2 =~ F 0o, bl 4 P+ —re

ax,, 2%, 2%8x, 7O (36)

where TY) is a tensor defined by

TY)=(1/4n)(F,,F,, - iF%5,,) +F,, P, +F, M.

(37
Equation (36) expresses the energy-momentum
conservation law for the field subsystem, and Tﬂ,’
may be interpreted as the field part of the energy-
momentum tensor. Note that the first term on the
right-hand side of (37) is the well-known electro-
magnetic energy-momentum tensor in free space.
If one defines the tensor for the total system by
the sum
=T+ TY) (38)

wo= Ly Uy,

T

then (34) and (36) can be summed to give

8T 1 8F% 1 8F.
= — = — X =
—-‘ﬂaxv 3 —lﬁ-axu vt 3 —-—ﬁaxu M¥ =0, (39)

where the second equation is evident. Conser-
vation of the total energy and momentum has thus
been established.

There is another important theorem in which the
total tensor is required to be symmetric in order
that the total angular momentum conserve. The
only quantity which has a nonsymmetric form in
the sum (38) is the one expressed in the form
-F¥ M, +F,M¥,. Each constituent term here is
nonsymmetric, but symmetry of the total expres-
sion can be seen from a trivial identity -F} M,
=F,, M¥, validated for u#v. Thus the tensor
T,, defined by (38) is well qualified as the energy-
momentum tensor for the total system.

The proper identification of the energy-momen-
tum tensor for the material or the field subsystem
has been a controversial issue for years. Those
defined by (35) and (37) will be found indeed to be
not qualified for physical reasons to be discussed
shortly. The total tensor, in fact, may be split
into two parts in any other way if the corresponding
formal modifications are made in the equations
expressing the conservation laws for subsystems.
Such alteration in the definition of subsystem ten-
sors brings forth nothing new mathematically, but
brings about changes in physical interpretations
of mathematical expressions. This is because the
elements of the energy-momentum tensor should
be given the same physical interpretations no mat-
ter how they are explicitly defined. The contro-
versy over the identification of the field part of
the momentum density reflects this situation.
Upon these considerations one is led to the idea
that introduction of some physical criteria is
necessary to make a reasonable choice out of all
possible ways of splitting the total tensor into
the material and the field parts. The total tensor
can obviously be expressed by a sum in which
each constituent term is a four-tensor. To clas-
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sify these terms the following criteria are pro-
posed: (i) The part which has the same form as
the pure material tensor is assigned to the mater-
ial part; (ii) the part which has the same form as
the field tensor for free space is assigned to the
field part; and (iii) of the ternis that cannot be
classified by (i) and (ii), those which have non-
vanishing space-space or time-space elements in
the case of the material velocity V set equal to
zero must be assigned to the field part. Accord-
ing to (i) the term involving the pressure m should
be assigned to the material part. No further ex-
planation will be necessary as to the first two
criteria. The third criterion has been introduced
to take account of the following situation: The
space-space elements of the energy-momentum
tensor can be interpreted as either the stresses
or the momentum flux densities in the system.
Since the only mechanical stress extant in non-
viscous fluids is a pressure and the pressure-de-
pendent part has already been attributed to the
material part, the space-space elements of the
terms to be classified by (iii) should be under-
stood to be some kind of momentum flux density.
Now, the flow of the momentum supperted by the
material is possible only when the fluid particles
are in motion. Thus in the criterion (iii) terms
having nonvanishing space-space elements for

¥ =0 are assigned to the field part. Similar argu-
ments are applied to the energy flow and terms
having nonvanishing time-space elements for

¥ =0 should also be assigned to the field part.

An attempt will now be made to define the mate-
rial and field parts of the energy-momentum ten-
sor with the help of the above criteria. For this
purpose it will be convenient to rewrite the total
tensor in the following form:

T, =t t D+ tD+ 0 +D,,+D,,, (40)
where
E™ = (poc? + po€ Ju u,, + (e u, + 8,,,), (41)
t) = (/4n)F , F, - 3F350,,), (42)
£ =(1/a)P,,P,, - iP8,,), (43)
B =A/B)M, M, , — 3M55,,), (44)
D,,=-Q1/BM,M,,-F,M,, (45)
D,,=~ (/M M, +F ,, M}, +(1/28)M3e,,
(46)

Here, tfﬂ) should be assigned to the material part
according to criterion (i) and t{/) to the field part
according to (ii). The next two terms, ¢’ and
t*), both have nonvanishing space-space and time-
space elements for ¥ =0 and therefore should be

assigned to the field part. As may easily be found,

the tensor D, has vanishing space-space and
time-space elements and D, has vanishing space-
space but nonvanishing time-space elements, for
¥=0. Thus D, , may be assigned to either the ma-
terial or the field part, but D,, must be assigned
to the field part. Upon these considerations, one
possible way of dividing the total tensor in two
parts is obtained by defining

TEA =1, (4n)
THA=tD+t P+t D, +D,,. (48)

Here, the superscript A is used to suggest that
the field part T¥)4 is the generalization of the
field tensor assumed by Abraham for stationary
media, as will be shown in Sec. V. The conser-
vation laws for individual subsystems are now
expressed in the form

2Ty aTipH
ax, o 9x,
aC aD 19F

=F DProld, — by e _ _ 16P
wvF E0%y axv axv 2 axu 76
1 8 /1 ,\ 198F 10 (1
= — =Xk = — (A2

+ 4 axu<ap'r&> 2 3x“ MrG 4 axu (BM'/G):

(49)

where C,,, is the electric counterpart of D, de-
fined by

Cuvz(l/a)Pwar"FwPur . (50)

Note that the C,, have vanishing space-space and
time-space elements for ¥=0 (see Sec. V).

An alternative way of defining the tensors for
subsystems, conforming to the criteria, is the
following:

TI(J’:)M=tI(-'-mV)+CMV+DuV’ (51)
T =19+ 184100 C,, 4D, (52)

Here, the superscript M is used to suggest that
TY)M is the generalization of the field tensor as-
sumed by Minkowski (see Sec. V). The conserva-
tion laws are
DT a7
9x x

v 14

19F 1 3 /1
=prEou,,— Ea_x:ip'”*- Zm(gf’,%)

19F 1 8 /1
Iinit 7.3 ) R el
2 ox, M3 4 8xu(BM$5>°
(53)
These two alternative ways of decomposing the
total tensor into subsystem parts are cited here

on account of their historical importance and their
usefulness in the discussion of the radiation pres-
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sure problem, which willbe the subject of Sec. V.
There are, of course, many other methods of de-
composition conforming to the above-mentioned
three criteria. It is noted that all of them, includ-
ing Abraham’s and Minkowski’s forms, have the
same space-space and time-space elements of
subsystem tensors for V=0 and therefore predict
the same density of the electromagnetic energy-
momentum flux in nonrelativistic limits. The
subsystem tensors labeled A are characterized
by their symmetry, but this property by no
means endorses their privileged legitimacy. This
is because what is required from fundamental
principles is the symmetry of the total tensor,

not the symmetry of subsystem tensors.

V. DISCUSSION ON RADIATION PRESSURE IN MEDIA

The topic discussed in this section can be in-
vestigated on the basis of nonrelativistic theory,
since the velocity of the fluid particles can be
assumed to be well below the speed of light in all
feasible experiments on radiation pressures. For
the sake of clarity, the three-dimensional descrip-
tion will be employed throughout this section.

It is easy to show that the tensors C,,, D,,, and
D,, all have a remarkably simple form in non-
relativistic limits,

pvv+nl ipcv—i (PXB)~i(ExM)
(m)M _ N
Tis —< ipev —pc? - pe; ’

1
M _
)" = P

where T stands for the three-dimensional unit
dyadic. It is evident that the right-hand side of
(56) is identical to Minkowski’s field tensor, as
suggested before. The conservation laws (53) now

reduce to

)M M
OTPN __aT{)
ax, 9x,

1, - =
=pgE;+ 2 (pgvxB);

13(1/a) 5, 123(1/B) =,
T4 ax Py ax; M, (57)
ATPM _aTHM
8x, ox,
w431/ a) =, i 3(1/B) =,
StV Er T P e T M

(58)

(0 0 0 —i(BxH),

000 -i(BxB),
€= 10 0 0 —iBxB),|"

000 0

ﬁ) 0 0 —i(ExM),
. 000 -i(ExM), (54)
B= 10 0 0 —i(ExXM),|’

000

—

o 0 0o 0
B 0 0 0 o0
Dy = 0 0 0 0

:i(ﬁxﬁ), —i(ExM), -i(ExM), 0

In the first place, the problem will be discussed
on the basis of the generalized Minkowski con-
cept. The material and field tensors are con-
siderably simplified in the limit v/c—~0. Thus
from (51) and (52) one obtains

(55)

+ﬁ'§)>’ (56)

For the discussion of radiation pressure we can
assume that free charges are absent and the effect
of space-time dependence of @ and 8 can be ig-
nored. This remarkably simplifies the basic equa-
tions (57) and (58) and enables one to write them

in the form

(m)M
aT™

o =0, (59)

v

)M
2T o (60)

ax,

It should be noted that they are not tensor equa-
tions, in spite of their appearance. They are
correct only in the rest frame. According to (59)
and (60), in the generalized Minkowski version
energy and momentum conserve within the ma-
terial and the field subsystems separately. This
leads to a natural conclusion that the radiation
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pressure on opaque bodies immersed in electro-
magnetic fluids is given by Minkowski’s field mo-
mentum density multiplied by the velocity of light
in matter, i.e., (DxB)/4n(€x)”?. This is the

result well confirmed by the experiments on re-
J

as easily derived from (47) and (48). The con-
servation laws are then

aT{mA 1 5 L = . . gT(mA
—ir - = (PX XM),  —4L . -

Y - 37 PXB+EXM),, v 0, (63)
OTYA 1 8 = o+ = = aTU)A

—_—y X X —4v__ _

ox, - 37 (PXB+EXM), vy =0. (64)

Note that momentum here does not conserve sep-
arately within the respective subsystems, as in
the case of Minkowski. This obviously means
that the density of the electromagnetic momentum
flux cannot be given by the product of the density
of the momentum, (EXH)/47TC and the velocity

of light, ¢’ -C/(Ep.)"/z. Comparison of (62) with
(56) shows clearly that 7¢/)4 has the same space-
space and time-space elements as T)¥ differing
only as to the space-time elements. Thus the
expression for the density of the electromagnetic
momentum flux can be expected to be the same
for both versions, although the density of the
momentum is not. Similar situations are true

for any other versions in which subsystem tensors
are taken so as to conform the three criteria
discussed before. This means that agreement
between theory and experiment on the radiation
pressure of the type under discussion can be ob-
tained if one adopts any form of subsystem ten-
sors conforming to the above criteria. It does
not seem necessary to answer definitely the ques-
tion as to what is the proper form of the field
momentum density. What is essential is the den-
sity of the momentum flux rather than the mo-
mentum density.

In this connection, the total momentum carried
by a wave packet of light seems worth investiga-
tion. The impulse G imparted to an opaque body
embedded in a fluid when the packet impinges on
its surface is just given by this total momentum.
As it equals the density of the electromagnetic
momentum integrated over the whole volume of
the packet, it might be thought to be different
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fractive liquids.”

Next, the same problem will be considered in
the second alternative version originally proposed
by Abraham. The material and field tensors now
have the form

(61)

-ﬁ>>’ (€2

r
for differently assumed momentum densities.
However, it will be shown that the packet mo-
mentum is determined by the density of the mo-
mentum flux, as in the case already discussed,
rather than the density of the momentum. For
simplicity, imagine a wave packet of cylindrical
shape of cross-sectional area S and length L
traveling along the direction of the cylinder axis.
The time required for the packet to pass a par-
ticular plane perpendicular to the direction of
propagation is denoted by 7=L/c’. The total
momentum carried by the packet can be mea-
sured by the total amount of momentum which
passes the plane for this time duration. If one
denotes the density of the electromagnetic mo-
mentum flux by I', then the impulse under con-
sideration is given by

G=IST=TSL/c. (65)

The average radiation force exerted on the body is
obviously given by I'S, and is thus determined

by the density of the momentum flux rather than
by the density of the momentum. This is the same
conclusion as derived before.

Some authors®''® argue that the pressure ob-
served in Jones and Richards’s experiments on
refractive liquids is not entirely the true electro-
magnetic radiation pressure. According to them,
it must consist of two parts namely, the true
radiation pressure (E ><H)/4rr(eu)1/2 and the me-
chanical pressure (DXB - E xH)/4n(ew)Y2. The
preceding analyses in this paper, however, have
revggled that the true radiation pressure is given
by (ng)/4n(eu)‘/2, thus suggesting no need for
such a mechanical pressure to be taken into ac-
count in interpreting observed data. A brief ac-
count of theoretical estimation of the mechanical
contribution will be given below in further justi-
fication of this statement. There are apparently
two possible types of mechanical contribution de-
serving of investigation. One is the electro- and
magnetostrictive excess pressures, iazKaEz
and — §8%K,B? in the nonrelativistic case, and
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the other is the acoustic radiation pressure of

the density waves arising from the forced oscil-
lations of fluid particles under the influence of the
light fields.

First, consider the electro- and magnetostrict-
ive excess pressures. For ordinary liquids they
cannot be regarded as small in comparison with
the excess radiation pressures actually observed
in such liquids.!” In the case of steady-beam ex-
periments, however, the time-average effect of
the electro- and magnetostrictive excess pres-
sures will be cancelled by the elastic hydrostatic
pressure and will not affect the radiation pressure
measurements, while it may be important in
transient phenomena. The two existing experi-
ments’*® are concerned with pulsed beams, and
whether they are steady-state or transient ex-
periments depends on the width ¢ and the dura-
tion 7 of the pulse employed. Let the velocity
of sound in liquids be denoted by v,; then a steady-
state situation can be assumed when the con-
dition a<<v, 7 is satisfied. Robinson,'? in his re-
cent review article, has fully discussed this issue
and has concluded that the steady-state conditions
are applicable in both existing experiments. Thus
it will be justified to confine the arguments in
this section to steady-state phenomena, so that
the direct contribution from the electro- and
magnetostrictive forces may be ignored.

The other type of mechanical contribution will
now be studied. Imagine a monochromatic plane
wave of light traveling along the z axis with the
direction of polarization of the electric field paral-
lel to the x axis. Then, the only nonvanishing
field components are

E =E,cos[k(z - c't)],

Hy=(e/p)”E,cos [k(z - c't)], (66)

where £k is the wave number. From (63) one ob-
tains for the electromagnetic force density in the
present case the following expression:

2 202
aKa _a_EZ U'B Kﬁ_?_z{Z

[ 2 _ BB
..C(a+B)at(ExHy) 3 2zEit 3 Py

where the second and third terms are the electro-
strictive and magnetostrictive forces, respective-
ly. If the fluid is electrically nonpolar and magnet-
ically nonpermeable (i = 1), then the third term
vanishes and the second term can be shown, by
applying the Clausius-Mossotti relation, to be
considerably smaller than the first term. It is
tempting then to assume that the electro- and
magnetostrictive forces play no important role in
the phenomena under discussion for most common
liquids. Thus the influence of these forces will be
discarded in the following treatment.

The force exerted by the fields is clearly paral-
lel to the z direction. This indicates that the
forced motion of the fluid particles caused by
these fields is also restricted to this direction.
Obviously, it is sufficient for the present purpose
to study the case in which only this type of motion
exists, and therefore v, and v, can be set equal
to zero. The equations of motion in (59) or (63)
then read

9 o
—_ —k
27 (pv)+

__K 2
Py il (oz+,8)8t (EH,), (67)

where v is used for v, and 7 is replaced by 7,. If
the equilibrium values of p and 7, are denoted by
p and 7 and the acoustic radiation pressure by p,
then

p=p(l+kp), m=T+p, (68)

where « is the compressibility of the fluid. Here,
p, @, k, and the specific entropy s are all assumed
to be constant. Let the displacement of the fluid
particles be denoted by 7; then v=2n/8¢. Since

the displacement occurs only in the z direction,
from the second equation in (68) one obtains

»__lom (69)
9z K0z

Now, differentiation of (67) with respect to z and
substitution of (66), (68), and (69) into the result
yields
9 2,
P —22 - 8—2 =— (o +p)RE:sin [2k(z - c't)],
ot 0z (70)

x| -

where p is replaced approximately by p in the
first term on the left hand side. The displacement
associated with the acoustic waves excited by the
fields can be given by the following particular
solution of (70):

(a +B)E: .
=—= /e —c'
n Woe” - 1/70) sin[2k(z - c¢'?)].

This represents a sound wave traveling along the
same direction and with the same velocity as the
wave packet of light. The acoustic radiation pres-
sure can be evaluated from the equation

=0 ,_~ on
p=p ¢ —p(1+Kp)at c’.
This equation can be solved for p by means of
successive approximations to give
(p, =[(a+BEF]*/pvs,

where v, = (pk)~'/? is the velocity of sound in the
fluid. The result shows that such an acoustic
pressure is smaller than the electromagnetic
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radiation pressure by the factor (in orders of mag-
nitude) Ej/pv?. Note that this factor has an exceed-
ingly small value for the light intensities available
in practical experiments. Thus the mechanical
pressure associated with the propagation of light
waves cannot be expected to contribute a mea-
surable part of the observed radiation pressure.
Hitherto in this section the subject of discussion
has been the light forces exerted on objects im-
mersed in fluids. Now, consider a force exerted
on a free liquid surface by an impinging light pulse.
Recent experiments of Ashkin and Dziedzic® showed
that this force was a tension. It has been argued
theoretically on occasion that Abraham’s tensor
predicts a pressure and Minkowski’s tensor a ten-
sion. This conclusion has been obtained by com-
paring the momenta of the light packet before and
after the impact. As has already been shown, the
momentum in the liquid is given by I'SL/c’ [Eq.
(65)] and that in the air by I',SL,/c, where T, and
L, are the density of the field momentum flux
and the length of the packet, respectively, in the
air. Since the length of the packet and the veloci-
ty of light are both proportional to the reciprocal
refractive index n~! [n=(eu)'/?], the ratio is the
same in both media. With due account of the re-
flectivity R of the liquid surface, the total impulse
imparted to the unit area of the air-liquid inter-
face is given by

G=T,7(1+R)-T7(1-1R), (71)

where L,/c or L/c’ is replaced by 7, the time re-
quired for the packet to pass the air-liquid inter-
face. It has already been shown that T is given
by the product of Minkowski’s momentum density

and the velocity of light in media. Thus for the
same intensity of light one gets T =»I',. With the
use of this fact and the well-known relation R
=(n-1)%/(n+ 1)? one obtains for the average force
exerted on the air-liquid interface by the imping-
ing light pulse

f==2Ty(n-1)/(n+1).

This force is clearly a tension. It is remarked
that the result is the same for all alternative as-
sumptions on the field part of the energy-momen-
tum tensor conforming to the three criteria dis-
cussed before, since they all predict the same
expression for T.

Finally, it is worth referring to the argument,'®:2°
based on a hypothetical “experiment,” that only
Abraham’s symmetric form of the electromagnetic
energy-momentum tensor satisfies the momentum
conservation and center-of-mass theorems simul-
taneously. As such an experiment is concerned
with a wave packet, arguments similar to those
just given may apply also in the present case and
reveal that the ruling factor here is again the den-
sity of the momentum flux, not the density of the
momentum, and that in consequence any alterna-
tive form of the field tensor which is admissible
in the above sense can be consistent with both
theorems.

Summarizing this section, one may say that al-
though the exact form of the material and the field
part of the energy-momentum tensor cannot be
determined in a unique way, theory can provide a
definite and satisfactory answer to the problem of
the radiation pressure in matter.
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