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The nodal expansion of the potential of average force is worked out systematically by iterating all the
nonconvolution compact graphs from the order at which they appear first to infinity. For this purpose, we

perform an exhaustive study of the asymptotic behavior of the bridge (without articulation points) graphs, and

show that they decrease as Pe '/r, with a & 1 and r in units of the Debye length A,o. We demonstrate that the
asymptotic w, (r) expansion is obtained from the resummation of the longest convolution chains [1) 2(n —1)]
with n —1 two-bubbles and 0 & c & n Debye lines, which allow for a systematic improvement of the usual

hypernetted-chain (HNC) approximation with the replacement of one, two, or more two-bubbles by bridge

graphs. Substantial simplification of the final expression is achieved with the aid of the n-bubble sum which

decreases asymptotically faster than the Debye line. The onset of short-range order is shown to arise at the
critical value A, = 4.247 of the plasma parameter A = e'/k~TXD in excellent agreement with the Del Rio-
DeWitt calculations.

I. INTRODUC. 'TION

The optical diagnostics of hot and dense plasmas
considered in the laser fusion program has re-
cently prompted the need for an accurate knowledge
of the asymptotic behavior of the pair-correlation
function g, (r) of the classical one-component and
three-dimensional Coulomb gas. Actually, in such
plasmas, the strongly degenerate electrons provide
the negative background neutralizing the positive
and classical ionic charges. For instance, the as-
ymptotic values of g, (r) for the ion-ion correlation
function are needed in the calculation of the elec-
tric microfield experienced by a partially stripped
heavy ion, Ar XVIII for instance. ' The corre-
sponding hydrogenic transitions in the uv domain
may then be considered as a spectroscopic tool
for the determination of the ion number density.

Recently, many authors' 4 have devoted them-
selves to the study of the structure of the expan-
sion, with respect to the plasma parameter A

=e'/keTAc (XD=keT/ape' with p=N, /V), of the.
potential of average force w, (r) for the one-com-
ponent Coulomb gas in two' and three dimensions"'
defined by

g (r) — wee(r2) g —(k T)-&

with r in units of AD. It is already known' ' that
the longest convolution chains built from
c (= 0, ..., n) Debye chains and n-1 simple two-
bubbles (iwo Debye chains curved together) pro-
vide the most important contribution to the asymp-
totic behavior of g, (r) as far as the nonconvolution
graphs of order n in A are considered. Also, sev-
eral authors' have been able to reproduce the
Monte Carlo data" for g, (r) with the aid of the
hypernetted-chain (HNC) equation with an amazing

accuracy for nearly all values of A. These re-
sults appear very comforting if one remembers
that the sum of the Fourier transforms of the con-
volution chains with simple two-bubbles for all n

(i.e. , the second-order diagrams iterated to in-
finity) reproduces the content of the HNC equa-
tion. ' More precisely, the HNC numerical pro-
cedure is based upon the set of relations

ze, (r) = —e "/r+S(r),

g, (r) —1= T(r)+S(r),

T(r) = G(r) —e "/r,
k'G(k)/(k2+ 1)

1+ 1/k' —G(k)/A

(1.3)

(1.4)

(1.5)

solved by iteration' with the initial guess S(r) = 0.
S(k) denotes the Fourier transform of S(r) In this.
approach the nodal function S(r) is only derived
numerically with the hope that the second-order
form (1.5) provides its dominant contribution in
the asymptotic range. However, if one wishes to
improve the agreement between HNC and the re-
cent Monte Carlo results, ' one has to work out the
complete A expansion of S (K) and take also into ac-
count the nonconvolution (bridge) diagrams.

It has been conjectured recently, ' ' from a com-
parison between the new Monte Carlo data for g, (r)
and the results of HNC for A values up to 7000,
that the nonconvolution contribution should behave
as Ax ' when r- ~. If this result could be trusted,
it would lead one to suspect that the longest con-
volution chains do not provide the dominant con-
tribution to lim„„g,(r). Obviously, this crucial
point deserves a deeper study. Therefore, we pay
considerable attention to the asymptotic behavior of
the bridge (without articulation point) diagrams,
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with

4 I/2 1/2
&i2= ~ 1+ 1—

1~2

(1.6)

and we find that the given conjecture is not true.
Our analysis is based upon the Mayer-Salpeter'
expansion of zv, (r) recently used in two-dimensional
cases. 4

In order to handle easily the asymptotic behavior
of high-order graphs (n&2) without spurious dif-
ficulties associated with the short-range behavior,
we replace, whenever necessary, the classical
Coulomb interaction r ' with an effective one, tak-
ing into account the diffraction corrections" (k 0 0),
i.e., r '(1 —e c") with C- (thermal de Broglie wave-
length} '. This simple generalization allows us to
avoid the introduction from the beginning of the
sophisticated resummation' of the Meeron graphs,
and also to handle finite diagrams to all order n in
A. However, the complete A expansion for so, (r )
will be simplified through resummations of topo-
logically equivalent diagrams with the replacement
of a Debye line by the sum of n-bubble (I = n, k = 0)
diagrams, i.e. , an Iwata-Meeron line. The first
order in A, i.e. , the Debye chain including the
long-range resummation of the effective interac-
tion, is

ponent Coulomb gas leads to a A expansion of w, (r)
already discussed at length in Ref. 4. Therefore
we may skip over the corresponding fundamentals
providing one remembers that a given nodal graph
(I,k) is a connected structure made of I Debye
chains [Eq. (1.6)] and k nodal (field) points, where
at least three Debye lines merge and fulfill the
condition / —k = n, n being the order of the A ex-
pansion. The root points 1 and 2 correspond to the
reference ones arising fromg, (~r, -r, ~). It is a
well-known fact that the first nonconvolution graphs
appear with the third order. " It must also be em-
phasized that we focus our attention on the nodal
12 irreducible graphs" because the 12 reducible
graphs of order n are easily calculated in the con-
figuration space as products": (Debye chains)
&& (convolution chains) or (Debye chains) && [12 irre-
ducible bridge (n 1) -nodal]. "Bridge (n)" denotes
a bridge graph of order n. The third- and fourth-
order nodal bridge diagrams are displayed in Fig.
1.

The 12 reducible graphs given as the products
(Debye chains) && [convolution chains (n —1)] are not
included in the A expansion (nodal) of w, (r). How-
ever, they still belong to the A expansion of g, (r)
Moreover they are also used to build up convolu-
tion chains of importance in the asymptotic range
of w, (r) Some. of these are given in Fig. 2. They
are easily evaluated from the (n 1)-convolution-
chains, so we did not need to pay much attention"
to their calculation, and we may concentrate our

2

limni '(r) = —e ". 3a ~ p
= 0.3750 cx =1.8371

For the sake of simplicity we shall limit ourselves
to the iluasiclassical limit with n, » a, - 1 and ur ', (r)

e2~ 1e r

The paper is organized as follows: In Sec. II, we
review briefly the nodal expansion and give a pre-
scription for the determination of the bridge
graphs. Section III is devoted to a thorough study
of the asymptotic behavior of the fourth-order
bridge graphs and the characteristic Ae s"/r, 8 & 1,
behavior is established. This result is extended
to all orders in Sec. IV with the aid of an argument
due to Uhlenbeck. Section V outlines the short-
range resummation procedure for the sum of n-
bubble diagrams. The nodal expansion of w, (r) is
detailed in Sec. VI where a generalization of Eq.
(1.5) based upon the bridge diagram is presented.
The onset of short-range order is also determined.
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4g

4h
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4k
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0
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p =4,7152xlQ
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p
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= 0.04381,
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c =1.4435

0( = 1.7471

0t = 1.6239

(x =1.7780

(x =1.5955

0t = 1.5947

of = 20760

II. CONSTRUCTION OF BRIDGE DIAGRAMS

The well-known Salpeter"' version of the Mayer
theory for the equilibrium properties of a one-com-

FIG. 1. Third- and fourth-order nodal bridge graphs.
The first one is third order while the remaining ones
are fourth order. The asymptotic decrease CPe ~"/r,
with C = (-1)'(47r)" /(2m) ~, is parametrized byP and
n&1.
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efforts on the 12 irreducible nodal bridge dia-
gl ams.

First, we have to construct these graphs to all
orders with the simple recipe: Join two points
(root or nodal), a line and a point or two lines in
a 12 irreducible bridge (n 1-), so that they are all
generated from the single bridge (S). The counting
problem is a much more difficult task, because the
above process could lead to several topologically
(numerically) e(luivalent graphs. Hopefully, it does
not prevent us from getting the relative number of
bridge diagrams and convolution chains. More
precisely, in view of controlbng order by order
the asymptotic behavior of the expansion, we need
to know both the number and the asymptotic be-
havior of each n-order graph. A Herculean taskt
However, we shall see that it is possible to pre-
dict the asymptotic behavior of each class of
graphs: convolution, mixed, bridge. This result,
combined with the possibility of comparing the re-
lative number of graphs with given k, gives access
to an asymptotic behavior uniform with respect to
n. The Fourier- transform convolution methods
make it clear that, at infinity, the graphs contain-
ing at least one articulation point decrease slower
than the P-bubbles (l =P, k = 0) or the bridge graphs
building them. Moreover, the dominant graph at
infinity with given l —2(n- 1) and k is the longest
convolution chain made of n- 1 two-bubbles and
c(= 0, 1, ... , n) Debye lines in between. On the other
hand, it may be easily shown that the graphs with
n l » 2(—n —1) mostly contribute to the r = 0 range,
while their asymptotic behavior is monitored by
the P-bubbles with P —2. Their topological struc-
ture is already present at order n- 1, and differs
only from the corresponding graphs by one more
line between any points, so their asymptotic be-
havior gets faster. As a provisional conclusion,
we may state that the Fourier-transform convolu-
tion methods allow for an order-by-order deter-
mination of the dominant asymptotic contribution
provided one knows how to handle the nonconvolu-
tion contributions arising from the 12 irreducible
bridge graphs.

1 2 1 2

FIG. 2. Third-order 12 reducible diagrams arising in
the g2(x) A expansion, and contributing to the chains
building up the u»(~) asymptotic expansion.

+43 e 32 e 42

43 32 42
(S.1)

with x and r, , in units of A.D. Let us introduce

wf "dk e'"'~)
=(2v') ' (S.2)

y, , „1+k2

III. FOURTHARDER BRIDGE DIAGRAMS

The purpose of the present section is to deter-
mine the asymptotic behavior of the third- and
fourth-order bridge graphs displayed in Fig. 1.
This study is a necessary prerequisite for further
examination of the zo, (r) A expansion. Our ap
proach is based on a clever treatment due to Mitch-
ell and ¹inham for the third-order graph (3a)
that we follow quite closely and extend, whenever
necessary, to the fourth-order graphs with the aid
of new relations made explicit in Appendix A.
These methods differ in many respects from the
standard Fourier-transform convolution methods
used for the convolution graphs. ' ' This explains
the rather technical character of this section, al-
though we try to remain as concise as possible
without being obscure.

In order to lay down our technical basis we ana-
lyze in some detail the asymptotic behavior of the
simplest nodal 12 irreducible bridge diagram (Sa)
appearing with the third order. Labeling the nodal
points in an obvious way, the corresponding Mayer-
Salpeter integral is (r= (r, —r, ), r, ~= )r,.—r,

~

with

i,j~1,2)

l(~)=(-() *)Vff & .& .
31 41

s)'(r)= ( dr dr ~ TT ' exp[ f(k, +k)'r, + (ki~ k+)'4r, i+(k, -k 3k, )~ r, +i(k, —k4 —k, ) ~ r4]
(2v2)~ J ' 4~ Pi (1+k')

(=1 t

P&2Pp2 i &((fq+l(2) r

(2&2)5 „' ' (1+0',)(1+k2~)(1+0',)[1+(k, + k, —k~) ][1+(k, —k,)']
' (S.S)

The last line obtained with k, + k, = k, +k, makes it convenient to introduce the Fourier transform

A'(4v)' f'

(2") J
" 'Q(1+&')[1+(p+k)'][1+(&-Q)'][1+(0+k)'](1+0')'

where Q = -k, —k~- -k, and P = -k, . Now, the relation (see Appendix A)

(S.4)
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dQ, ' dx
(Q'+ n')[(Q+ k)'+ P'][(Q+ P)'+ y ] „6[(P—xk)'+ (y+ 6)']

6' = x(1 —x)k'+ xP'+ (1 —x)n'

is useful. Using this twice with ~ = P = 1, we have

'dx 'dy 1

6, 6' k'(x-y)'+(1+6+6')' '

(3.5)

(3.6)

with 6'=x(1 —x)k'+1 and 6"=y(1—y)k'+ l. Equation {3.6) is the Mitchell-Ninham result. ' It is a very con-
venient form to work out the asymptotic expansion of w, (k), which can be obtained through its small-k lim
it,

[1—x(1 —x)k'/2 —y (1 —y)k'/2]
o k'(x —y)'+ 9[1+x(l —x)k'/6+ y(l —y)k'/6]'

mA' 8k' 3m A'

9 27 8 k2+27 (3.7)

which shows the characteristic faster-than-Debye
decrease at infinity,

u'(r)3 4r as g (3.8)

4me
3
12

as t'
12

with the convolution product of two two-bubbles

These last relations together with Eq. (3.5) ex-
hibit the main features of our techniques applied
to the fourth-order graphs. First, we eliminate
angular averages as much as possible with the aid
of Eq. (3.5) and its extended version considered in

Appendix A. Second, we look for lim4, zo, {k) in the
form C(A, —Bk'), corresponding to the asymptotic
decrease CPe '"/I' with P =A'/B and cI = (A/B)'~'
As will be shown below, one recovers again a &1,
this making clear that the 12 irreducible bridge
graphs decrease faster than e "/4. for r- ~. With
no further specification in the sequel, 6 is given
by the 6' = x(l —x)k'+ 1 definition.

At this point a certain amount of warning has to
be injected. The present analysis could be appre-
ciated as truly quantitative only when the full as-
ymptotic expansion a —bk'+ ck'-dk'+ ... is ob-
tained. " However, we are mostly interested in
demonstrating the e "/r asymptotic decrease with

II &1, i.e. , ab&0 and b/a&1, so the a- bk' approx-
imation appears sufficient for this purpose. In or-
der to convince oneself that Eq. (3.8) provides only
an approximate upper bound to the true asymptotic
behavior, let us contemplate the Cauchy-Schwartz
inequality

e-2"13 e"2"32
I

e-"
s(+i2) I

'l dr3 2 + I
du

III Q

explained in Appendix B. This new upper bound
decreases much faster than (3.8). Nevertheless,
the a —bk2 analysis of the fourth-order bridge
graphs remains of interest to demonstrate their.
faster-than-Debye asymptotic decrease. In a fu-
ture work. we will explain the tedious O(k'") con-
tributions with n —2.

%e now consider the fourth-order irreducible
bridge graphs in order of increasing complexity.
The simplest one is

1

1+ (Q- k)

p'(pe')' II2 'dx " -tan '(Q/2)
u 4(r) (2,),-2 — dQ

1

(Q —xk)'+ (1+6)' (3.9)

Here the following two relations are in order

1

[1+ (Q k)'][(Q—xk)'+(1+6)'], [(Q-Ak)'+B']'

tan" —=
~

—e " singt,
2 go t (3.10)

with A = 1 —y(1 —x) and B' = 1+ [(1+6)' —1]y
+k'y(l —y)(I —x)'. We then obtain

A.k
f84(k) —IIA

A k
tan

0 0 +
(3.11)

The corresponding asymptotic behavior is given by

u', (k) = IIA'(0. 191V9- 0.038109k'), k' « I,
u'4(r)-0. 965 22A4e "434"/4r, as r- ~. (3.12)

The same techniques apply to (4k). Longer
graphs are treated in a similar way with repeated
use of Eq. (3.5). For instance, 4644(k) reads
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vA~ "dx ' dy, 'dz 1
2 0 6, 6', 6" (x- zy)2k'+ (1+6y6~)~ ' (3.13)

= 1+k y(1 —y) and 6 =~(1—~)y & +&(1+6 ) + 1 —&. In the k +& 1 limit, the above integral is evalu-
ated as

g(k)
vA 4 2192
36 9

from which follows

1 1901A' e"'4"'"
u/,'(r) -—

8 (3.14)

The I, quadrature (A6) allows us to evaluate [r)'=1+k'x(1 —x)& '6 =1+k y{1—y)j

vA' 'dx 'dy
2 a, q, q', '(1+k', )[1+(k - k,)'j[{k,—xk)'+ (1+q)'][(k,-yk)'+ (1+8')']

in a straightforward way:

u/, (k)=+3.6813x10(p, , k'(~1

u/,'(r) ', v A' —x—3.6813 x e-"""/y

Ne~, we consider th«our graphs (4e), (4f), (4g), and (4h) obtained from (3a) upon repiacmg one Debye
line by a second-ox'der convolution chain. They are easily evaluated in the asymptotic limit with the aid
of Eq. (A6), and we do not need to detail their derivation. We are thus left with the compact topologies
(4i), (4j), and (4k). As an example, let us consider

(2v)' J ' ' ' 1+ (k- k, -k, )2 1+(k-k, —k, —k,)' 1+ (k- k, —k,)' (1+k',)(1+k,'){1+k',)

1 1

1+ (k, + k,)'1+ (k„+k,)' (3.17)

Performing the k, and k, quadratures with Eq. (A6), and introducing Q= k, + k„one gets

~(k) =— — d d dQ
1

(1+@')[1+(Q- k)2]f [(1—y —u)Q- (x- y)k]'+ (6+6'+r))']2 '

where 6'2= 1+ (Q —k)'y(1 —y) and rP = 1+@'u(l —u).
The usual k «1 limit is given by the involved ex-
pression

u,'(k) = 2A'(1. 14VV && 10 ' —4.5131 && 10-'k'),

k' « 1 . (3.19)

The corresponding triple integral has been worked
out through a Monte Carlo calculation. Analogous
manipulations are used for the graphs (4i) and (4k).
All the fourth-order results are summarized with
appropriate n and P values given in Fig. 1.

'The simpler 12 x educible gx'aph ar ising fx'om these
compact structures is obtained with the product

e "/r x (3a) = 0 375 x e 2'8""/4r "We have thus
completed the proof that all fourth-order bridge
graphs decrease faster than the Debye potential
at infinity. Analogous results may be obtained in
a much easlex' %'ay for the 12 reducible graphs
which are px'oducts of Debye lines and convolution
chains. ' As an example, the third-order 12 re-
ducible contribution (three-bubble excepted) de-
picted in Fig. 2 may be written as

1 ln3 2 2 2
8 2+ 0'/6 9 ~ 19k'/l2 9 ~ 0'/9 3 0'/9)

ln3 2+2 2 +9 2, 0 &&1. 320
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In the asymptotic domain, Eq. (3.20) confirms
again the now familiar (a- bk') and e "~" "/r
(with a/b & 1}behavior.

IV. EXTENSION TO ALL n

A. Bridge graphs with single bonds

The above I'esults make clear the fastex'-than-
Debye decrease of all the nonconvolution graphs up
to the fourth ordex. The corresponding preemi-
nence of the convolution chains in the asymptotic
region will be established later. The same tech-
niques apply fox n= 5, but it seems very difficult
to proceed on further, for n —6, along the same
way. Therefore we need another argument to ex-
tend our previous findings irrespective of n. Ac-
tuRlly w'e foUnd lt possible to work oUt, the asymp-
totic behavior of bridge (n) graphs by means of
selected sharp upper bounds retaining the crucial
RsyIQptotlc decx'eRse. Our argument ls based Upon

an ancient xemark'~ used by Uhlenbeck for the case
of a uniform gas of particles interacting through a
repulsive short-range potential which states thus:
The graphs entering the Mayer-Salpeter expan-
sions are = (-1)' positivequadrature. If one com-
pares the graphs (l, k) and (I+ 1,!t) and restricts
oneself to single-bonded gxaphs, the respective
measures 4vr'„dr, , and .4vr2, (e "w/r;, ) dr; J for the
relative volume associated vrith a given pai. r of
points (nodal+ roots) show that the graph with one
more (ij) bond is the smaller one provided r, ,&r,
=0.5671, vghere e "0=so. More generally, a given
bridge graph is smaller than the fictitious graph
(Fig. 3)with the same k and some transversal bonds
removed from inside the longest cycle, provided all
r, , & r, Thus, we .obtain (r = r»)

volution chains stax'ting from and ending at the root
points remaining in the fictitious graph. Otherwise
stated, I is the fictitious-graph connection de-
gree. " The upper bound considered may be laxger
than the true value of the fictitious graph when a
convolution chain includes some bubbles [cf. Fig.
3(b)] or other compact graphs decreasing faster
Rt 1DflDlty thRQ the cox'x'espoDdlDg chRln built fx'om

Debye uncs only R d t e same I& value. It re-
mains to pay attention to the mox e gener'al situa-
tion with m, lines r, ~ r, and—m, (~ 2 in the asymp-
totic range) lines r, , &r, such that (see Fig. 4)

&& IimC(m„k' ~ )t),

m, +m, =f, (4.2)

where C(m„k') is a compact graph, and m~2.
With Eq. (4.2) we introduce the concept of compact
gx'aph defined by a line connection degree P ~ 2.
The line connection degx'ee of R gx'Rph ls the mini-
mum number of lines that must be removed in or-
dex' to disconnect the x'oot polDts. This heading Rl-
lows us to consider altogether bridge graphs, con-
volution products of P-bubbles with P ~ 2, and also
mixed convolution products of P-bubbles and
bx"idges. The important point to notice is that the
compact graphs obtained through the pinching pro-
cess disp»yed in Eq. (4.2)»«ree from convolu-
tion products with Debye lines. Therefore, as ex-
plained ln Appendix B, thell RsyIQptotlc equivalent
behaves at least as r e I", with I'~2. Equation

3
3

1.38 & & '138 x r
5

lim ~ff (I, 0}
~

—(4K) ~ TT

(&/2)lrK-2lz-Ir

(4K)'g' (m,.—I)! '

all x,,&t'„Rs x

where 8(l, k) ls a bridge graph with k field points
and I lines; 2, , m, =E&E and I is the number of con- 35 I3

dr3dr& e —e—e —X
r„&r0 r 3& r~g r3,
r3I gr0

rss, rs3 +r0.

r33 res
dr3dr e —e

r3~ r„r„
53» 3f, + ro

—1.38~ dr, dr, e e e
r3s r~s

/' rs3&r0

I rg gr0

FIG. 3. Some bridge gl Qphs Rnd thelx' fief itious coUntex'-

pRNs.
FIG. 4. Associated bridge graphs eonsidex'ed in Eg.

(4.2).
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FIG. 5. Longest bridge graph with I = 2 (hcrizontal
ladder).

(4.1) and analogous expressions for compact graphs
obtained in Appendix B provide the upper bound

~C(m„k' —k) ~~~ e ""/(4v)", (4.3)

The upper bound (4.1) has been introduced in-
to (4.3) through noting that the line connection
degree of a bridge graph is equal to its point
connection degree, i.e. , I=I'. The same prop-
erty holds also for the associated fictitious
graph. As a consequence, the right-hand side of
Eq. (4.2) becomes

38$g

(4v)» +»)eI'r
, (4w)»' (4.4)

This result combined with the inequality (4.1) fi-
nally yields

1(1.38 ' »

~a(f, k)~&
( ', ~"e-'", r-- (4.5)

with m~2 for aQ n and l/(4v)»«1 when n ~. At
the moment, we restrict ourselves to single-bond-
ed graphs, so that k- 2n amd I- 3n when n- ~.
Looking back at the Cauchy-Schwarz upper bound
obtained for ~w,'(r) ~, one sees that the pinching
process leading to (4.2) is actually producing upper
bounds to the asymptotic estimates.

Finally, the inequality (4.5) extends to all n the
previous results obtained for n = 3 and m = 4. Now,
we may compare order by order the rapid decay-
ing-at-infinity bridge graphs with the longest con-
volution chains - r~'e "as x- ~. Although the pre-
sent proof extends the previous findings to any n,
it complements rather than supplements the calcu-
lations of Sec. III which are used to obtain Eq.
(4.5). Mors'over, another extension of these latter
methods is needed to derive accurate estimates for
higher-order bridge graphs involved in the asymp-
totic expansion of u), (r) considered in Sec. IV B.
A more deductive derivation of these results will
be given elsewhere. "

FIG. 6. Hesummation to all orders of n-bubble bonds
in a nodal bridge graph.

B. Bridge graphs with multiple bonds

%e could have obtained results similar to the
previous ones for the case of double bonds through
the introduction of 4vf,"'dxx'(e "/x)' =4.91 in Eq.
(4.2). However, we must face the general situa-
tion of an n-multiple bond with n &2 and circumvent
the difficulties associated with the nonsummability
at the origin of any power of the classical Debye
potential. Obviously, we could work with the ef-
fective interaction (1.6) fulfilling

der'~»(),'(r)
~

"&+, all (4.6)

Although this trick is qualitatively and conceptually
sufficient to secure a well-defined A expansion for
ce, (r), the increasing absolute value of the estimate
(4.6) makes it improper to yield a quantitative de-
termination of the asymptotic behavior of bridge
graphs. As a consequence, we have to cope with
the familiar resummation to all orders of the most
diverging graphs in the x 0 limit, as is depicted
in Fig. 6 for the simplest 12 irreducible bridge
graph.

This difficulty has already been encountered by
many authors, ' ' and was solved with various de-
grees of sophistication. To our knowledge, how-
ever, there exists no exhaustive study of the n-
bubble sum in A space together with its asymp-
totic behavior necessary for the purpose of com-
parison with the single-bonded bridge graphs con-
sidered so far. This shortage explains why we
performed elsewhere" a comprehensive investiga-
tion of the Fourier transform

A "" . he or A@ex'
f(k) =, dr r sinkr exp — —1+

27T 0 0

(4.7)
for the n-bubble sum Z, ([-AN),'(r)] "/nf). Here,
we limit ourselves to stress the main results of in-
terest for the present work. Expression (4.V) may
be written as

f(&)=2,)Q~ ( ) ( g [
In

g ) —('( -()-(( ~ () s' [( —2)&]

+ S„cos[(n 2)&„]+ — coss„sin[(n —3)t]„]
n —2

&'(n)
[I)(n)

(4.8)
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where tan6„=b/an, a= a(A and b =kA, and (j)(n) is the di-gamma function. As was conjectured previously, '
f (k) is a, double power series in A and lnA, equivalent to Eq. (19) of Ref. 2, as may be seen by setting
n —ik=(n~+k2)'i'e '~n with tan&„=k/n in their result. We are mostly interested in the small-k expression
(the subscript n = 1 is deleted hereafter)

f(k)(+Q(1)g1(k)+k(+1)k(k)2))tan '(k/2) l(kA)"" (An)" "' n —2l —3

lW ))W

and its asymptotic expression

f(k) =(A'/2v~) tA(A) B(-A)k' j, k'«1
where

A(A) = —,'+A P ln(An)+ —P(n+ 1)—(t(n —2
(An)kk 3- n-3

nM

(4.9)

(4.10)

(4.11)

and

1 1 A A' ~ (An)"' n —5
B(A) = ————+—+A' g6 8 54 96 „~,I'(n+ 1)I'(n —4)

)k(k )k k( ~ () -k-( -4))n

are positive and monotonically decreasing func-
tions of A, so that f(r) displays the Debye-like
asymptotic decrease

f(r) - A'pe '/r for r ~, o = (A/B)k~',

P =A /B. (4.12)

Extensive numerical analyses of A(A) and B(A)
have been carried out. " We give in Table I their
values for 0.1 ~ A ~ 10 in order to show the reader
the slowly decreasing behavior of f(r) at infinity,
which is so important in extending the previous re-
sults to multiple-bonded bridge graphs. B(A) is
about one order of magnitude smaller than A(A).
Then P &1 ensures a faster-than-Debye asymptotic
decrease with respect to h. This point is funda-

TABLE I. Values of A (A) andB(A) for Eq. (4.11).

fp Ae Ae
Chh' exP— -1+

L h h
(4.13)

whose value is given numerically in Table II. As
before r, is defined by exp(Ae o/r, ) -1+Ac o/r,
=h, . It then remains to note the faster-than-
Debye decrease at infinity of all the bridge graphs
with the exception of the horizontal ladder single-
connected graphs (longest bridge graphs) decaying
faster than the corresponding chain of n —1 two-
bubbles.

mental in that it will allow us below to neglect
most of the multiple-bonded bridge graphs when
compared to the single-bonded ones. However,
our main concern is to extend the estimate (4.5)
to a bridge graph with a f(r) bond, as is shown in
Fig. 6. Again the previous lines of reasoning ap-
ply in the present situation, provided one replaces
the Debye quadrature for short bonds with

A A (A) B (A)

0.1
0.2
0.3
0.4
0.5
1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0

10.0

0.213 97
0.195 59
0.182 26
0.17172
0.162 98
0.135 56
0.102 92
0.085 724
0.074 267
0.065 929
0.059 520
0.054 403
0.050 201
0.046 678
0.043 672

0.020 539
0.020 268
0.020 015
0.019777
0.019551
0.018 570
0.017 070
0.015 925
0.015007
0.014 096
0.013 575
0.012 918
0.012 488
0.012 031
0.011619

A

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0 ~ 9
1.0

ro

0.23
0.31
0.366
0.411
0.449
0.482
0.511
0.537
0.561
0.583

6.22x10 4

2.75x10 3

6.24x10 3

1.13x10 3

1.77 x 10-2
2.50 x 10-2
3.77 x 10 2

4.37x10 2

5.40x10 2

6.54x10 2

TABLE lI. Short bond for multiple-bonded bridge
graphs.
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V. ASYMPTOTIC BEHAVIOR OF THE PAIR-CORRELATION
FUNCTION

A. Asymptotic structure of the w2(r) nodal e::pansion

to all orders in A

l=s, I(=1 l=6, k=2

P P . A

The above results enable us to make quantitative
the program outlined in Sec. III for a systema-
tic comparison of the different classes of graphs in
the asymptotic range. For the sake of clarity, we
display in Figs. 7 and 8 all the numerically dis-
tinct third- and fourth-order nodal graphs. The
corresponding graphs (not simple according
to Ref. 9) appearing in the A expansion of g, (r)
are obtained by factorizing the nodal graphs
of order n —1 with a Debye line joining the root
points. The graphs are given following their in-
creasing l and k values to visualize easily the
basic processes generating all the nodal graphs up
to an arbitrary order n. The first striking fea-
ture displayed by this comparison is that no new

topological structure for k(2(n —2) appear, within
the convolu'&ion subclass. The new graphs are only
low-order graphs decorated with one more (ij)
Debye bond. It then appears feasible to resum
them from the order where they appear first to in-
finity through the n-bubble sum previously inves-
tigated. The resummation of these compact struc-
tures could open the way to an accurate determina-
tion of lim, w, (r), which will be reserved for a
future work.

On the other band, new convolution structures
appear with l~ 2(n —1) which get longer and more
important in the r - ~ limit. The longest chain
[3n —2, 2n —2] with n —1 two-bubbles and n Debye
lines is the dominant graph in the asymptotic
range. However, once the detailed zu, (r) A expan-
sion is known, it is no longer g priori convincing
to restrict lim „w,(r) to this graph iterated to all
orders. Actually, the number of bridge graphs

l=7, k=3

2

1 $ I ~ 1

Cl .
t=8, k=4

P

l =10, I(=6

FIG. 8. Numerically distinct nodal fourth-order graphs
given according to their [l,kJ values.

and their associated mixed structures (bridges
with adjacent convolution chains) increases much
more rapidly than the number of convolution chains
built from n-bubbles (n ~ 2). Nevertheless, it is
still noticeable that the convolution chain built
from n —1 two-bubbles and 0 —c ~n Debye lines
should provide the dominant asymptotic contribu-
tion

»m
~

&'(I, k)
~

2 ! dye 'npr ta '0/21)" '
vr (n —c)!c!, (p'+ 1)' 2p

l =a k=i k=z

=2 nt yC 2

vr (n c)!c!(c 1)!22&" ~&+~
(5.1)

c ~ o

l= 6 f8 =3

f 2

FIG. 7. Numerically distinct nodal third-order graphs
given according to their [l,k] values.

[C'(l, k) is a convolution graph], within each (I, k)
subclass with l& 2(n —1). In order to establish on
firmer grounds the expected asymptotic preemi-
nence of the longest convolution chains, we need
an argument powerful and simple enough to cir-
cumvent the very difficult task of evaluating the
number of graphs within each class: convolution,
bridge, and mixed. The remark which will prove
instrumental toward that goal is afforded by ob-
serving the way a given topological structure
travels through the nodal expansion. A new com-
pact (12 irreducible or 12 reducible bridge) graph
without adjacent Debye chains is first translated to
order n+ 1 with the addition of a Debye line be-
tween the already existing points (nodal+ roots)
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with (l, k)- (l+ 1,k). It further propagates to the
higher subclasses (l+ 2, k+1) and (l+ 3, k+ 2)
through convolution with one and two Debye lines
respectively. It is a process efficient enough to
provide all the mixed structures with I & 2(n —1),
i.e., those competing seriously with the corres-
ponding (l, k) convolution chains in the asymptotic
range. Putting aside the special case of the hori-
zontal ladder immediately compared to the (n —1,0)
convolution chain, we learned from Sec. IV that
any compact graph may be given the asymptotic
estimate a+ bk', with k' «1 and a/b & 1. Therefore
the above considered triplet of graphs with zero,
one, and two Debye lines, respectively, is asymp-
totically equivalent to

2 1 2b 1+b/a
+I (k +I)2 2 I b/a

k' «1 (5.2)

vanishing in the a/b-~limit. The smaller esti-
mate is obtained for the steeper asymptotic de-
crease, so that the most numerous compact struc-
tures eliminate themselves in the asymptotic
range provided one considers not only a bridge
graph alone but also its descendent within the
same order. As expected the estimate (5.2) allows
us to deduce lim, w2(r) from the much-less-nu-
merous longest graphs within each order. Before
leaving this section, it remains to comment a lit-
tle bit more on the situation where the ascendent
graph is not simple, and therefore missing in the
nodal w, (r) expansion. In this case, (5.2) has to be
restricted to the last two terms on the left-hand
side, which leaves unchanged the present state-
ment because the corresponding a/b ratio is surely
»1. Another way to reach the same conclusion is
to consider the g2(r) nodal expansion itself where
the nodal class is enlarged to include the w, (r) 12

reducible graphs, ' so that the estimate (5.2) re-
mains unchanged.

Ae-(1+4/8+1 /16)r
(5.3)

through a geometric series (n —1-n) summable as
long as ~Atan '(y/2)/2g(z'+1)~(1, i.e., A&4.
Actually, we shall consider the left-hand side of
Eq. (5.3) and its extensions considered below, for
much larger A values, without paying further at-
tention to the validity of such a procedure, which
seems to work in such different areas of physics
as equilibrium statistical mechanics and quantum
electrodynamics" provided the resummation of a
given class of terms is performed to infinity.
Equation (5.3) is nothing but the sum of the longest
convolution chains -(-A)"r 'e "as r-~. It dis-
plays a nearly Debye-like asymptotic decrease
while each term exhibits a smoother decrease when
n -~. This feature illustrates the power of the
previous treatment and allows us to trust the nodal
expansion to every n.

A more complete result may be obtained by re-
taining all the leading chains with c=0, 1, ... , n,
with

B. A expansion of lim„„w2(r)

Now, we are a.llowed to build a w, (r) A expan-
sion in the asymptotic range from systematic re-
summations to infinity of the longest convolution
chains. '"' First, let us consider with Mitchell
and Ninham' the chains with c= n Debye lines and
b=n —1 two-bubbles (b+c=k+1) in order to set up
a simple example of the resummation procedure.
So, we get the sum

2~ „"2 2'2 22 '(/2))

2 dK K sinKr
mr, 1+x '-+ (A/2 x) tan '(x/2)

l( )=EE(-2)'( ) -2) (
—

) f * (-, ( 2 )
——t 2 '

2 '( /2), (5.4)

where the non-nodal 12 reducible two-bubbles have been subtracted out to secure the K -~ summability. Per-
forming first the binomial summation within each order yields

2A" A ' "" . K' " tan'K2
dK K smKr

mr 2 Jo K'+1 K
(5.5)

for the first term on the right-hand side of Eq. (5.4), and summing up as before the geometric series

tan '(K/2) "'" A' tan 2(x/2)
w, (r) =r ' de vsinKr-

'tl' 2 K + 1 K 2 K

2A' "
. v' tan '(x/2) 1

mr, v2+ 1 2z I+ I/(22 —(A/2z) tan )(x/2)
tan '(x/2)

2K
(5.6)
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with

A K' tan '(K/2)
2 K' + 1 2'

makes appear the well-known resummation supporting the hypernetted-chain (HNC) approximation (1.5) with
the bubble function G conveniently restricted to its first term A'tan '(k/2)/2k. Adding the first-order Debye
line allows us to write the last line in the compact form'

2A '" . 1 [-1/K'+Atan '(K/2)/2K]' (5.7)

The main interest of the present derivation lies in the transparent way the second-order graphs are re-
summed to infinity, thus making obvious the extensions to higher orders required to improve Eq. (1.5).
The next approximation is expected to arise from analogous chains with one two-bubble replaced by a third-
order nonconvolution graph either 12 irreducible as (3a) from Fig. 1 or 12 reducible as those depicted in

Fig. 2. We do not need to worry about the reductibility character of a given structure. The quantity of in-
terest is the sum of all the n-order nonconvolution graphs (with their multiplicity if any), which has to be
iterated from order n to infinity. However, when further short-range resummations are considered as be-
low, it proves useful to keep the reductibility character which allows us to remove most of the 12 reducible
graphs. At the moment, let us introduce p„(K), the above-defined sum of bridge graphs. For n =3, we get

,
( )

2 E( z), E( &) ( A) '( —
1) J dK s K t,() (m '(a/2))''

1f=3 0

dK K sinKr P, (K)
]TED p +1 K

2A' "
tc 1dKKsinKr, p,(K), , A, , „,}

—[12 reducible part of p, (K)]
7Tf p

(5.8)

where the subtracted reducible part has been written in the last line only to save space. The usual geomet-
ric series is recovered with n- 3-n in the second line. The same process works for all n with

G(K)+Z„~ A"P„'(K)

K + 1 1+1/K' —(A/2K) tan '(K/2)

Ae~
G K + A" 12 reducible part of P„K

tf=3

(5.8)

where p„'(K) = p„(K) —(n-bubble) and G(K) =2K'f(K) denotes the n-bubble sum investigated in Sec. IV.
A remarkable feature of these long-range resummations is the systematic appearance of G(k) introduced

previously in the second-order sum (5.7}on heuristic arguments. The only bridge graphs to remove in
order to secure the large-k summability are the 12 reducible ones, in accord with their short-range be-
havior, while the 12 irreducible ones were also subtracted out in Ref. 2. The resummation procedure may
be pursued further with the replacement of two two-bubbles within the longest convolution chains. Special-
izing first to third-order bridge graphs, we have

2 "'tan'K 2
cu,"(r)=—g (-A)" dK K sinKr Pg(K) p, (K)

lf& 0

2A5 K2 2 p~(K) p3(K)

vr K'+ 1 1+1/K' —(A/2K} tan '(K/2) ' (5.10)

with no spurious 12 reducible product to remove. This last step is again extendable to all n, with a number

p of two-bubbles replaced by n-order bridge graphs. Thus

wr ~ „I K +1 1+1/K' —(A/2K) tan '(K/2)9' 4 P &yeQyf ~ ~ ~ tt M

(5.11)
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where the 2 in A is A =Z,~s, +1 —p, represents the maximal extension of the iteration to infinity of .he
longest convolution chains built from every possible combination of noneonvolution graphs vrith tv'-bubMes
and Debye lines. The n, sum is restricted to count every ]3„,(K) ~ p„(]])product only once. Collecting alto-
gether Eqs. (5.9) and (5.11), the complete asymptotic expansion of u]2(r) is written as

lim s],(r) =n],"(r)+n), ""(r)

Ag"" 2 K
40 CO

+— dc*sinrs, G(x)++A"P„'(x)+g, g A" P„(s) '0„(]])

A1+—,——tan ' — —G(z)
K 2K 2

-gA" [1R reducible part of P„(s]]I, (5.12)

which is completely determined once we know the P„(z) asymptotic behavior. At first sight, it should be
tempting to approximate P,(x) and P,(x) with their asymptotic estimates obtained in Sec. ID. As an example,
Eqs. (3.V) and (329) provide

3v 'I ln3 2 1 1 1
27+«' 9 2+~'/5+9+~'/9 4 9+19~'/12 3+~'/9 ' (5.13)

However, lt proves much more interesting to
eliminate most of the 12 x'educible gx'aphs thx'ough
further short-range resummations. P„'(x) and P„(]]:)
are then restricted to their 12 irreducible parts.
For instance

These short-range resummations are easily
monitored by the n-bubble sum G(]]:), as explained
in Flg. 9 for the thll'd-oldex' 12 irreducible bridge
graph, through iteration to infinity of the same
topological structure (k fixed) with increasing
multiplicity of a given bond. A first striking by-
product of these simple manipulations is to enhance
the relative asymptoti. e pxeeminence of the 12 ir-
reducible graphs arith single bonds only, in accor-
dance vrith the faster-than-Debye decrease of the
short-range x'esummation and the reduction of the
order in A of the resummed multiple-bonded
gl'Rphs, The last argument Rpplies fox' + ~ 1 ~

These remarks prove the above-mentioned negU-
gibility of the p„'(x) and p„(x) reducible parts, while
the subtracted sum in Eq. (5.12) starts from n =4

~ith the first 12 reducible single-bonded graph. So
far, we have only taken into aeeo nt, the eonvolutlon
chains built from m - 1 two-bubbles or bridge graphs
with I &2(N —1). It then remains to pay attention to
the faster decreasing chains with I &2(n —1). They
ax'8 of lInportance fox' RQ Rccux'Rte determination of
the r value where the g,(r) short-range oscillations
set in. The cox'I'espondlng sex'les do not exist %1th-
ln 8Rch ol-dex. Fox lnstRQce, the thixd-oxder coxn-
pact graphs reappear evex'y toro orders only in
longer chains vrith three-bubMes and Debye lines.

3chematically, a chain built from three-bubbles
only cannot be xesummed the way a taro-bubble
series is (geometric series). The corresponding
sex"les Rre lacunary Rnd more involved than the
Px'evlous ones, Nevertheless

y Rn RPPx'oPx'lRte RP-
proximate, on may be obtained by retaining the n-
bubbles (I~ 3) and the 12 irreducible bridge graphs
in the way they appear in the numerator of Eq.
(5.12), i.e., the dominant contributions in the
small-t' 11Inlty to every ordery Rnd 1'eplace oQeq
two n-bubbles by a bridge graph as above. As a
consequence the only change in Eq. (5.12) is the ex-
tension of the two-bubble (A/2e) tan '(tc/2) in the
denominator to the sum G'(a)/A. where

OO

KR P1
G'(lf) =G(K)+/A'p„*(K)+p g g A" p~(s) ~ p*(/f)

yf~ P~ ff1s +s044 ~ ff



thusmakingexplicit, through the neglect of the p~'s, the extrapolation used in Ref. 2. As a conclusion, the
above discussion is summarized in the final asymptotic expression

~e' 2 ~2 P 1

llm W&(f') =— +— dK K 8111K' G(K) ++A p„(&)+g
0 ) x2+]. " /c'+ I

n='3 p n&&n»o», n&=4

A"p (K) p' (x)

1 G'(x)
X ].+——-

A

with P„*(x) the 12 irreducible single-bonded part of
/I„(x) and p~(x) the 12 reducible single-bonded part
of P„(x). The numerical results obtained in Sec.
III allow a reasonable approximation of Eg. (5.14)
arith

p, (x) —(0.34907 —0.10343 x ') as x —0,

p,*(x)--(0.14912—0.04019 «') as x-o, (5.15)

P~~(K) 2(0.13594-0.0089544 x2) as x-0,
and 3 —n, e„n„... , n~=4 for A~1. It must be
stressed out that the above w quadrature should be

accurate for all x. Then we need a good estimate
for the bridge graphs even in the short-range limit
~-~, which is outside the scope of the present
work. This explains why we refrain from giving
extensive numerical estimates for the n and P sums
in Eq. (5.14). However, we have shown previously
that the thi. rd-order j.2 irreducible bridge graph is
well approximated by its asymptotic value over a
very large domain.

It allows for the first straightforward, although
nontrivial, correction to the usual (second-order)
HNC approximation-"'

lime,'(r) =- +— dkksinkr —,
1

G~ k) —
7 3-~++, A'~ '

y-+ cg& X Ff Q ()

2(0.135 94)'
0.13594+0.008 954 A'

The fourth-order extension of Eg. (5.6) is ob-
tained by replacing the third-order bracket with

Finally, extrapolating the decreasing behavior
p„(k) -0 as n-~, for k « I, from the third- and
fourth-order asymptotic calculations performed in
Sec. HI, one is tempted to conjecture that the com-
plete expression (5.14) may be written in the gen-
eral form

=A'+ah'++2/+2++ 2 ++—,+ —,

~h" Q =hQ+++-
n=5 h

1+1 O' G'kgA FIG. 9. Short-range resummation of third-order non-
convolution graphs (A —1). An ordinary line represents
a Debye line, while a heavy line represents an n-bubble
SuID.
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with

G, (k) -G, (k}= G'(k). (5.19)

The latter estimation constitutes the bulk of our
statement. It seems to be supported by Eq. (5.1),
where the p sum is alternating and decreasing with

P -~ for fixed A. This plausibility argument could
explain the success of the usual numerical proce-
dure based on Eqs. (1.2)-(1.5), while it allows for
a systematic improvement of G, —G', with the aid
of a complete calculation of the bridge graphs con-
sidered in a future work.

1.0—

C. Onset of short-range order

1+—— =0.1 G(k)
k' A

(5.20)

To solve this these authors have approximated
(4.10) with its first term and have obtained a criti-
cal A value which is A, =4.225.

With a view towards elaborating their calcula-
tion, we first use the asymptotic expression (4.11)
for G(k) which retains the corresponding n-bubble
contribution to all n and neglect the bridge terms.
The coalescence of the two roots occurs for
[1 —AA(A)]'=4AB(A) at A, =7.307, or I', =e2/keTa
=2.611 with a=(4';/3) '~', to which corresponds
the critical k value, k, =1.807i.

Although this result is apparently in good agree-
ment with Hansen's recent Monte Carlo calcu-
lations, ' the fact that

~
k,

~

&1 invalidates our small-
k expansion of G(k). To remedy this drawback, we
then have been led to solve (5.20) with the full ex-
pression (4.9}for G(k). The critical A value is
found to be A, =4.247 and k, =iv, =1.498i.

This is in excellent agreement with Del Rio-De
Witt's result. ' Then the corresponding potential of
average force zv, (r) can be obtained by the inverse
Fourier transform

2A p" [-1/k'+G(k)/A ]'
w (r)= —r'+ „r Jl

dkksmkr 1+1/k2 —G(k)/A, '

(5.21)

an expression equivalent to (5.18) when G, (k) =G, (k)
=G(k). Assuming that the integral exists, we ob-
tain

w, (r) = —(A,/r) [v(3 —v, r) e "~"],
where

(5.22)

In their important work, ' Del Rio and De Witt
have shown that the onset of short-range order may
be observed through the development of small-
amplitude oscillations of g, (r) around unity, arising
from the coalescence on the positive imaginary k
axis of the two roots of the equation

I

3

FIG. 10. g&(r) at A =A„=4.247; x in number of
3

4 v', cP kv=2v', 1+—'
2

—G(k)
2 dk2

= 1.374.
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The behavior of g, (r) (=e"2'"') at A, is shown in

Fig. 10. We observe in this figure no small-ampli-
tude oscillation of g, (r), but only a damping. The
onset of short-range order would take place when
A &A, . The discrepancies between this last &, val-
ue and the Monte Carlo ones' may well be account-
ed for by our present neglect of the bridge graphs.
Unfortunately, the required computations would
need accurate P„(k) for all k, which are very far
from us at the moment. On the other hand, if G(k)
is restricted to its first two-bubble term, Eq.
(5.20) yields I',-1, in accord with a self-consis-
tent approximation worked out by Choquard and
Sari." This last value means that the onset of
short-range order would then be expected to take
place when the mean kinetic energy approaches the
mean interparticular potential energy. Indeed,
without any explicit evaluations of the bridge con-
tributions, it is not possible to guess the right A,
value among the above three proposals. Possibly,
numerical inversion of Monte Carlo data performed
by De Witt" would overcome that difficulty.
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APPENDIX A

Here we give the derivation of the Mitchell-
Ninham relation (3.5) and its extensions. Let us
start from the relations (the first is Goursat-Feyn-
mann)

Al
1 ' dxab, [ax+ b(1 —x))' '

f dQ 2m' 1
g2+a2) [Q+k}2+BI]2 B [k'+(a+B)'] '

(A2)

which give

t dQ' J (@2+a )[(Q+~)'+B ][(Q+P}+y'j

dQ

[(Q+ P)'+y'] [(Q+xi)'+ 6']'

dx

. 6[(P-xk)'+(y+6) ]' (AS)

where 6'=x(1 x)k'+—xB'+(1 —x) a', i.e., the re-
quired result (3.5). Further extensions to the
fourth-order bridge graphs necessitate the evalu-
ation of the integral

dQ

(Q +a ) [(Q+k) +B ] [(Q+P, ) +y ] [(Q+P2) +o' ]

JD [(Q+ P, )'+ y'] [(Q+ P,)'+ a'] [(Q+xk )'+ 6']'

j. dQ
(q'+a') [(Q+P —P }'+o'][(Q+xk- P )2+62]' (A4)

The last line is obtained with Q+ P, -Q. The dif-
ferentiation of Eq. (A3) with respect toy yields

J dQ

(Q + &') [(Q+ k )'+ O ][(Q+ P )'+y'] '
dx @+6

y &o 6 [(P —xk) +(y+6) ]

Setting now e =y, k P2 Py P O' P xk Py,
and y =6, we obtain

'dx
0

dy 5+ 5'

o 6 ([xk —P, —y (P, —P,)]'+ (6+ 6')2}'

(A6}

with 6' =y(1 —y) (P, —P,)'+a y+y (1 —y). Identical
methods may be used for

I'=2, and restrict ourselves to the simplest third-
order graph in this series. The corresponding
pinched graph is the convolution product of two
two-bubbles, which we now consider. It reads
(with obvious notations)

(4v}' " . tan '(k/2) -'

2 " e2" " e
dx dyy, x, y

"dk
x —sin kr sinkx sinky

o k

"dk—sinkx [cosk (r —y)k

1
(Q'+ ') [(Q+k)'+P']+ = [(Q+P„)'+y,']

(A7)

APPENDIX B

obtained through the substitution

—cosk (r+y)],

(a2)

We intend to demonstrate that the pinched com-
pact subgraphs appearing on the right-hand side of
Eq. (4.2) decrease as r e '" or faster, in the as-
ymptotic range. First, let us pay attention to the
subgraphs depicted in Fig. 4, which are the com-
pact graphs with the smallest line connection degree

The relationship
x/2, a&b —0

makes appear
0, b &a-0

l sinax cos bx j4 b 0)
0 x



ASYMPTOTIC BEHAVIOR OF EQUII IBRIUM PAIR. . .

()6 w9 tg

gE'"(1)=—,dx [Ei(-2x - 2r) —Ei(-2 ~1 x-~ )]2g )0 x
~-I~t'I

dx
) )

Ei(-fx[}
I oo

df I ~ [—e'"'Et(-2~(&+ ~))-6 '"'E'(2~(t- I}}+ "E'(-»(~ —I)}-6'"E(-2~(t+ I))N

OO

— [e'"E'(-net} —e"E'(-net)]e ) [e "E'(Eet}+E((-net)]).

The last line is obtained with the aid of

Ei(-x}=- x Jt df Inf 6 '*

6 '", |'" Ei(-2r I & I)f (&)

t&Q

f(&)= 6'"', 0«t«2

l e *E'(ee) e'*E'(-ee)
)x —b x+5

0, ah &0

,m'e ', ab &0

Thus me get the asymptotic estimate~

Equation (84) may then be given the compact form

@2~ t)c}
dg e~t'f e~2t'

gEE"(r) - 4',
( I) =4, , as 1"-~, (B8)

thus making clear that the given convolution pro-
duct does not decay slower than the basic two-
bubble, a behavior contrasting with that of the con-
volutloll chRllls (I = I), 1 8., colltallllllg Debye lllles
Indeed in the latter situation, the asymptotic de-
crease is monitored by the 0 = i pole, which is not
the case presently. The asymptotic equivalent (88}
allows us to replace in a chain (of Fig. 5}a con-
volution product of tm'o two-bubbles vrith one two-
bubble in the asymptotic range. Going further in
the same vray, one obtains~

g2eE ~„,~ E(I.) «6&E/~E

for all n ~3, andfor P 2's. Thesameproceduremay
be extended to a chain with three-bubbles, if the
mod1f led Debye 111tel'Rc't1011 (1.8) ls ]ised Rs R kllld

of Tauberian trick to separate the diverging short-
range z~ behavior from its asymptotic behavior
8 /t . MGI'8 p1'eclsely, the corresponding Foll-.

rier transform"

3solyh 4w
g' ' ' 8(I 4/c']')'&'u

4m'

8(Z —4/c']1', )'~'u

dk k sinks

3+~ tan —3 2A~+ Q2 tan + 3 Q +2& tan

—3n, tan " +—(In(k E+ 9&E) —3 In[0'+ (2n, + a,)E]
30'o 2,

~ n)n[e*+(e, ~ n, )'] —tn(e' ~ 9 ',)]I

is considered in the classical limit" (~,» ~, -I) with the diffraction corrections taken as a kind of Tauberian
parameter. In the asymptotic domain, Eq. (810}reduces to

g ' (][I) —tRIl — k 04m

3

Then results may be extended to a P-bubble with"

4gg1'"(k)-—tan ' — k-0.
3

Therefore, the asymptotic estimates of convolution products of two-bubbles and three-bubbles, etc., may
be vrorked out as above. For instance, me obtain
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e 3X 'n 2y

g,"'(r) =— dx dg
e

go X
""dk

x —sinkr sinks sinky
o k

1 e-]3~3r I

Ei( 2~x~)

~3 F I
[e'"'Ei(-3rt) —e'"Ei(-3rt)]

-e~" Ei 3rt + Ei -3rt
g ~t+1

(B13)
with the corresponding asymptotic estimate (r- ~)

o;"(r) ,' f -"—z(a~)= ', f
dt

6r 2(3 t &s/3 t

e3r 3ewr
= —4, [-Ei(-2r) e "+Ei(-5r) ]™—

(B14)

As previously, this asymptotic equivalent may be
transferred to a chain with an arbitrary number of
two-bubbles and three-bubbles. The same argu-
ments apply to a chain built from three-bubbles,
so that

g'„""""(r)&e'"/r', r-~, n&3. (B15)

Finally, the faster-than-e '"/r' decrease may be
transferred to any convolution product of p, -bubbles

-r" 'e ~" as r —. (B16)

The explicit calculations performed in Sec. III
give us 1&&&2.5. However, these results could
only be trusted to establish the crucial n &1 be-
havior. The real n values for a given bridge graph
may be obtained in the following way: First, let
us start from the estimate e~"/r' obtained for the
first third-order bridge graph. Then, working
again the asymptotic behavior of the fourth-order
bridge graphs along the scheme displayed by Eqs.
(4.1)-(4.5) and using the above estimates, we see
immediately that a ~ 2 to any n ~ 5. There-
fore, we may state that any bridge graph decays at
least as r e '" for r-~. More generally, Eqs.
(4.1)-(4.5) show that a =I' =I. Thus, we have com-
pleted the proof that the compact graphs introduced
in Eq. (4.2) are asymptotically equivalent to
rme Pr

with P, &2.
So it remains to us to pay due attention to mixed

convolution products of p-bubbles with genuine
bridge graphs decaying as e i/i/r with u &1. The
asymptotic estimates obtained above for the p-
bubbles allow us to consider at once the convolu-
tion product of n bridge graphs with m p-bubbles
in the form

i dkksinkr ta 'k//
)r (ka+ a2)n

d" ' ke' ' ta '(i,'//))"
r dk" ' (k+in)" pk
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