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The concept of a two-photon coherent state is introduced for applications in quantum optics. It is a simple

generalization of the well-known minimum-uncertainty wave packets. The detailed properties of two-photon

coherent states are developed and distinguished from ordinary coherent states. These two-photon coherent

states are mathematically generated from coherent states through unitary operators associated with quadratic
Hamiltonians. Physically they are the radiation states of ideal two-photon lasers operating far above threshold,

according to the self-consistent-field approximation. The mean-square quantum noise behavior of these states,
which is basically the same as those of minimum-uncertainty states, leads to applications not obtainable from

coherent states or one-photon lasers. The essential behavior of two-photon coherent states is unchanged by

small losses in the system. The counting rates or distributions these states generate in photocount experiments

also reveal their difference from coherent states.

I. INTRODUCTION

In a recent study' of quantum communication the-
ory it was found that if optical radiations can be
generated in a minimum-uncertainty state"' xather
than a coherent state, significant performance
improvement may result in an optical communica-
tion system. For a fixed radiation mode of fre-
quency v with photon annihilation operator u, the
coherent states ~a) (a ~o.) =a~ a)) have relatively
large quantum fluctuations when &u/2m ~ 10"Hz.
Writing a =a, + ia, for self-adjoint a„a„acoherent
state ~o) gives (AaP =(ha', ) = —,. A noise energy'
—,h~ is then obtained if either a, or a, is measured
in optical homodyne detection. This quantum noise
is frequently dominant over other noise sources in
optical communications; for example, an equiva-
lent noise temperature of —3400 K is obtained for
&Su at the YAlG laser frequency. However, states
with (ha', ) « —,

' and correspondingly larger (da', )
are permitted by the uncertainty principle
(M', ) (M2) ~

—,'„such as the minimum uncertainty
states with (4a,') (rhg22) =,—', . If one can generate
such small (4a', ) states by an explicit physical
process, it should not be surprising that they may
be profitably used in many applications.

Minimum-uncertainty states cannot be obtained,
however, from available optical sources, all of
which generate coherent states and their random
or classical superpositions. An investigation of
the possible ways to generate minimum-uncer-
tainty states leads to a broad class of radiation
states that we call "two-photon coherent states"
(TCS's). They include the minimum-uncertainty
states of which the coherent state is a special
case. A detailed study of these TCS's is x eported
in this article. A few of our results have been
briefly stated in Ref. 6.

In general, a two-photon coherent state differs
from a coherent state in several ways: they are
generated by different photon processes, they have
different quantum statistical properties, and they
have different coherence properties. Basically,
coherent states are generated from ideal one-
photon stimulated processes, whereas TCS's are
obtained from ideal stimulated two-photon process-
es for two photons of the same mode. The usual
multiphoton parametric processes' are one-photon
processes in the present sense, as they involve a
single photon from each separate mode. The
quantum noise properties of TCS's are basically
the same as those of minimum-uncertainty states.

Minimum-uncertainty states and cohexent states
can be easily confused. The above illustration in
terms of (M', ) and (M,') is a good indication of
their difference, if we note that they describe the
fluctuations of the field variables directly mea-
sured in a homodyne experiment. Further careful
discussions will be found in Sec. IIIE and else-
where in the paper.

Minimum-uncertainty states were studied at the
very early days of quantum mechanics; the Ken-
nard packets' are particularly familiar in the con-
text of electrons. It is therefore no surprise that
much previous work has touched on various as-
pects relating to the present two-photon coherent
states, including much work on quantum field the-
ory and interacting Bose fluids. It is impossible
for the present author to give an accurate histori-
cal survey of the literature pertaining to minimum-
uncertainty states and their generation by quadrat-
ic Hamiltonians. The particularly relevant papers
now known to the author include Refs. 9-13 in
quantum optics and Refs. 14-17 in quantum field
theory. Nevertheless, it appears that TCS's have
not been systematically studied before, at least in
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the context of quantum optics. These and other ad-
ditional papers will be mentioned in relation to
some of our results whenever appropriate.

This work is not at all a study of possible math-
ematical generalizations of coherent states. In
fact, the TCS's can be considered as "coherent
states" in a broad sense, as discussed later. How-

ever, they should be distinguished from the coher-
ent states of Glauber, ' because in quantum optics
the term coherent state is usually understood in
the Glauber sense which carries the implication
of equal fluctuations in the quadratures a, and a, .

In Sec. II we establish notations and briefly re-
capitulate the basic results in quantum optics used
in this paper. For a single degree of freedom, the
definition and properties of two-photon coherent
states are developed in Sec. III, together with a
discussion of the contrast between TCS's and ordi-
nary coherent states. The generation of TCS's
from quadratic Hamiltonians is presented in Sec.
IV, with illustrative examples. The general struc-
ture and properties of the corresponding unitary
transformation are fully determined. Physical
interpretation of quadratic Hamiltonians is devel-
oped in Sec. V in terms of stimulated two-photon
processes, which include two-photon lasers and
degenerate parametric amplifiers. We argue that
TCS's describe ideal two-photon lasing states in
analogy to the coherent-state description of one-
photon lasers. The approximation which leads to
this conclusion is formalized in the Appendix. We
also show that the mean-square noise behavior of
TCS's remains essentially the same when the ef-
fect of small damping and additive noise are in-
cluded. In Sec. VI we briefly discuss the coher-
ence properties and counting statistics of two-pho-
ton coherent states. The usefulness of TCS's in
certain applications is brought out in Sec. VII. The
detailed theory of multimode TCS's will be given
in a separate treatment.

II. COHERENT STATES AND OPERATOR

REPRESENTATION

For a single mode of the field with photon anni-
hilation operator a, a coherent state'@ &9

l
n) is an

eigenstate of a,

a -=a, +ia, ; a, =a„a,=a, .

We also write

Q=-Q, +iQ„. Q„Q, real,

(2.5)

(2.8)

and refer to (a„a,) or (n„n,) as the quadrature
components (quantum or classical) of the radiation
mode. These quadrature components are the nat-
ural variables in describing a TCS, even when the
mode has a single frequency. Defining the eigen-
states

l
n, ), of a„

l

o.,), of a„
9 Q =Q Q, Q~ Q ~=Q~ Q~ (2.7)

we have

, (o&, l
o.') = (2/v)'/' exp[-(n, —n')'+ & n'(n'- n'*)] .

(2.8)

From (2.6) it follows easily that

(2.9)

(2.10)

where (ttM') =—((M —(M))') for an operator M.
The angular bracket (M) represents the expected
value trpM of M with respect to a quantum state
p which may be either pure or mixed. The uncer-
tainty principle on (a„a,) is

(~', )(~', &
-

—,', . (2.11)

Thus ln) is a minimum-uncertainty state. From
the arithmetic-geometric mean inequality, (2.11)
implies

(Aa', ) +(4a', ) - —,', (2.i2)

so that
l
n) can be characterized as the states with

both minimum-uncertainty product and minimum-
uncer tainty sum.

The differential operator representation of
M(a, a) in the coherent-sta. te representation is" "

frequency v, we have the usual canonical variables
(q, p),

q —= (ff/2&d)'/'(a +a), P —= i( ,'fi—m)'/'(a —a) . (2.4)

In general, we can introduce two dimensionless
self-adjoint operators (a„a,),

(2.i)

le) =D(o)
l
0) . (2.2)

aQ =QQ

It can be obtained from the vacuum state l0) via
the unitary displacement operator D(o&)

—= e '
from which one can show

(n lM(a, a)
l p) =(ct

l

p)M&"'(ct*, p),
where

(2.S4)

From (2.2),

an(s ) )-&/ ae- I n& / 2 (2.3)

If the mode has a harmonic time variation with

M&"'(n*, a) = (n lMl n&- (2.i5)

is the normal-order form' of M. Note that it is
important to keep the separate dependence of M~"'
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on o(* and o( in (2.14)—M "' is a function of two
complex variables ((x*, a). Equation (2.14) explic-
itly shows the fact" that M'"'(o. *, n) un;quely de-
termines M. In terms of U("'(n*, a;t, t,), the
Schrodinger equation ik SU/St =H(a, a)U becomes"

(2.16)

These results are at least valid for bounded oper-
ators or unbounded operators which are polynomi-
als in a and a .

In a number of mathematical senses, ""any
density operator p can be expressed in the diago-
nal P representation, '"

x (n, n) = tr(pe"'-e " '), (2.18)

then P((x*, o() is the two-dimensional Fourier
trans for m of X„(n~, n), "'"

p( ', ( f *
=x(v"*n(&'n/, ' (2.19)

It has not been demonstrated that P(a', o() provides
a convenient tool in actual calculation when it is
not sufficiently well behaved.

Being the trace of the product of a bounded oper-
ator and a trace-class operator, the character-
istic functions X„(n*,n), X„(n*,n), and X(v(n*, n) are
always well defined,

X„(n+, n) = tr(pe " ' e"' ), (2.20)

x (n*, n)= tr(pe" "-"'). (2.21)

The Fourier transform of X~(n", n) is the Wigner
distribution and that of X„(n*,n) is p("'(n*, n), "'"
p'"'(~*, tt) -=(tt

I p I a&,

w( *,u( jx,(n n( =Prr/ ',*, " "'(2.22)

*(n', nl((fp' '( *("-""&*~/, (2 2((

The characteristic functions are related by

x~(n', n)=e " x~(n*, n)=e '" 'x~(n*, n),

(2.24)

which also implies relations between P(o(*, o.'),
p'"'(a*, a), and W(o(*, o()

The function p("'(a*, a) is always well behaved,
in contrast to P(a*, o(), and is also quite conve-
nient for moment calculations. Fur thermore, it
specifies p uniquely as in (2.14) and is the prob-

p= P Q*, Q Q Q d e, d G=—dReQ d Ima).

(2.17)

Let X„(n*,n) be the normally ordered character-
istic function

ability density function" describing the outcome
statistics of a simultaneous quantum measurement
of two noncommuting observables"'" (or a mea-
surement of the non-self-adjoint operator a, opti-
cal heterodyning). " We will use p("'(a*, a) or the
characteristic functions to represent a density
operator, particularly because P(c(*, n) for a TCS
is too singular. In terms of p'"', we have

p= e"~ ~" p'"'(n*, n)e "' e" 'd'ed'g m', 2.25)

trpM= y„" g*, g *g„' g*, g e'"' d'g g, (2.26)

if X„"(n*,n) = tr(Me " 'e"' ) exists.-n a na~

b= p.a+va'

for a pair of c numbers p, , v obeying

It follows from (3.2) that

[b, b ]=I

(3.1)

(3.2)

(3.3)

Any transformation b(a, a) which leaves the com-
mutator invariant as in (3.3) is called a canonical
transformation. The change of variables from
(a, a ) to (b, bt) according to (3.1)and(3. 2) is there-
fore a linear canonical transformation. A theorem
of Von Neumann"" asserts that every canonical
transformation can be represented as a unitary
transformation, i.e. ,

b(at, a) = UaU (3.4)

for a unitary operator U. The structure and physi-
cal realization of the U~ that leads to the linear
canonical transformation (3.1) are discussed in
Secs. IV and V;

U~aU~—= p.a+ va .t (3.S)

The commutator (3.3) or Eq. (3.4) provides b
with properties exactly similar to those of a. One
obtains the following in a way identical to the usual
derivation for N and a Let N, be the "quasiphoton"
number operator,

N =b b =UsNU (3.6)

Then N has discrete positive eigenvalues n, with
ground state I 0 ),

x, Im, &=m, Im, &, x, I0&=0,

Im, &
= U, Im&.

(3.7)

(3.8)

III. TWO-PHOTON COHERENT STATES

A. Definition

For a fixed radiation mode with photon annihila-
tion operator a, let



TWO-PHOTON COHERENT STATES OF THE RADIATION FIELD 2229

Similar to In&, the states Im~& can be expressed in
the form „.&~I&&&,=(——2- )&~I&&& (3.17)

I m, &
= (5')-( i )-'/ '

I
0,& . (3.9) The solution of (3.17) is of the form

P g P d'P n'=I,

,&PIP'&, =exp(P*P'-2 IPI'-~ IP'I').

(3.13)

(3.14)

If the notation IP; p, v) is not used, the same I/. , v

is understood to aPPly to all of the
I P&z in an equa-

tion.
From (3.13), any state vector

I g& can be ex-
panded in terms of IP) . Similarly, diagonal op-
erator representation can be developed,

M"'P*, P P„J3 d'I3 ~, (3.15)

for the antinormal order form M"(P*,P) of M. In
the IP) representation, we have [similar to (2.21)]

They are complete orthonormal. Furthermore, b

acts as the lowering operator for Im ). The quasi-
particle interpretation of b and In& ) is discussed
in Sec. IVA.

The TCS's IP) are defined to be the eigenstates
of b with eigenvalues P,

(3.10)

The p. , v dependence of a TCS has been suppressed
in the notation IP) . When necessary, we will use
the more complete notation IP; p, v). With v=0,
IP) become the ordinary coherent states. In our
later references to a TCS, it should be implicitly
understood that v+ 0.

From (3.4), there is an Uz independent of P
which gives

IP&, =U. IP& (3.11)

for each state IP). Therefore in parallel with IP)

IP&, =D,(P)
I
o)„D,(P) ""-='" (3»)

va~ 8
I/~+ + v—,&P ln&, (3.19)

so that the P-dependent part off in (3.18) is —z IP I'
+ v*P'/2 p. From the normalization

&o&
I P&~ is thus determined up to a (a*, a; P*, P)

independent phase in the form

&~ IP&, = I "exp[ ll ~ -I' lIP I-'-(v/2p)~*'

+(v*/2I/)P'+ (I/I/)&z*P+i6. ] (3 20)

for a real 8,. The normalization constant is cal-
culated from the normalization of Gaussian inte-
grals. " For &a=1, v=0, (3.20) reduces to the
usual form of &n

I P) for 8, = 0, a choice of phase
we will adopt for &a IP)z.

While we have

&n& IP) Pm(~1)-&/2e-1&&1 /2 (3.2&)

similar to (2.3), the function &m IP&z takes a more
complicated form which can be determined as
follows: As a function of the complex variables
z and t, e'" ' can be expanded in the Taylor
series

&o. IP), = exp[&z*p/p ——,
'

I

a I' —va+'/2 I&, +f(P*,P)].
(3.18)

The (a*, a)-independent f can be determined from
(3.16), (3.1), (2.13), and

,&&& I &
I
~& =(z ~ ».),&»

I
&

IM & &&&&&
= M&&('P,',

z
~

&,),&&&
I

&'&.
H„(z)t

(3.22)

Other properties associated with
I

o&& carry over
identically to IP),.

The results of this subsection on IP&z and In&~&

depends only on the relation (3.4), and not on the
more specific (3.5}. The specific characteristics
of (3.1) are developed below. Certain properties of
TCS's have been discussed by Stoler' in the con-
text of minimum-uncertainty states.

B. Wave functions

The general coherent-state wave function &a
I P&~

of a TCS is first determined as follows: From
(3.1), (3.10), and (2.13) we obtain

where H„(z} is the nth Hermite polynomial with
complex argumentz. Writing

and using (3.20) and (2.3), we find

&nlP)g = (n} p} "(v/2p)""H„[P(2 pv) ")
"exp[- z IP I'+(v*/2I )P']. (3.23)

For p = 1, v = 0, the asymptotic forms of H„(z) for
various";;rg;- all lead to.(2.3) as they must.
Equation (3.23) shows that the counting statistics
of a TCS is far from the Poisson (2.3).
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The wave fu notion, &n, I p) can be readily determined from (3.20) and (2.8}. Thus we find

(3.24}

From (3.20) we have

&P; /2, v
I P;, / ., v.) = (/ ./

*- v.v*} "'
Vo/2 —i(nV „2 (VpP —/2()V)*"exp —~ Ipl —~ Ipnl + . , „.p pn-2(„. „,.) p +2( „. „,.)p. (3.25)

Note the Gaussian form of (3.24) and (3.25). Var-
ious reduction of (3.24) and (3.25) to the previous
formulas can be easily observed. The relative
phases of (3.20), (3.21), (3.24), and (3.25) are
mutually consistent, as well as being consistent
with the above wave functions for the coherent
states.

From

&nIp&, = P&nI», &&», Ip&,

for the quasiphoton number states I»2& we obtain

(n Im, ) = (I))(/2, v; m, n),

m (n, m odd, n odd, (3.26a)

&a) =-,(PIaIP), =/ *P vP-'= P -P, +=-2P„

&a"a& =
I p I'+

I
v I'

&ga2& ~nv &~22 &m

(3.28)

(3.30)

&ha', &
= —,

'
I
i( v I', (3.31a)

&aa,') =-,' Ii(+vI', (3.31b)

&na(aa2& =—((a, —$,)(a2 —P,)) = ,'i(/(—'v —v*/2+1),

&na2na, &
=-,'2(/(*v —v*}2—1}.

(3.32a)

(3.32b)

Equation (3.32) is, of course, consistent with the
commutator

=q, (i(, ; v,m) nQ+, (p, , ; v,m),n
[a„a,] = [5„5,] = ,'2- (3.33)

m (n, m even, n even, (3.26b)
Compared to the case of a coherent state where

=(I)2(/(, v; m, n), &a I(aa}t(na} I((& =0, (3.34)

m)n, m even, n even, (3.26c)

= 0, otherwise; (3.26d)

Q, (p, , v;m, n)

-(men+))/2Vn/2vnm/2( 1)n2-(n+m)/2
(n/2}! (»//2) t

(3.26f)
Note that m and n must be both even or both odd in
order that (n Im ) be nonvanishing. Thus only an
even number of photons would be counted for the
state I0,) = I0),. Other wave functions of Im,) can
be obtained accordingly. These wave functions
provide the statistics of various measurements on
the radiation states IP), and Im,&.

C. Quantum Auctuations and characteristic functions

From (3.1) and (3.2 ),
a= p. *b —vb

so that for the TCS IP)„

(3.2 "/)

( 2)(m-n)/2(n) ))/2
q (/2 V. m n} —i(-(man+))/2V(n m)/2

[(n m)i2]t(»t)'/"
(3.26e}

a TCS IP&, ha. s added quantum noise energy

,(pI(~ )'(~)Ip), =
I

(3.35)

For self-adjoint b„b„and real p„p„ let

b =—b, +ib2y ~ =13i+ip, . (3.36)

The TCS IP&2 can be characterized as the states
which minimize both &nb', ) &hb22& ~

—,', and &nb2)&

+&/ib22& ) 2. On the other hand,
I p&2 minimizes the

uncertainty product only when

p, =5v, for 5 real. (3.37)

These minimum uncertainty states' include the
eigenstates of a„a, in the limit p, , v-~, such that
(3.2) holds. Specifically, the eigenstates Ia(&,
a.re obtained when 5- 1 and the eigenstates

I
o(2&2

are obtained when 5- —1. As with the minimum-
uncertainty states, the mean-square quantum fluc-
tuations in a, and a, can be exchanged in IP) from
(3.31). On the other hand, they are fixed at 2 for
coherent states.

Thus for a mode of frequency &d, a significant
noise energy" -;k(d is obtained if either of the qua-
drature components is measured in a coherent
state, while &na')& « -,'- with corresponding large &ha22&

can be obtained for measurement of a, in a TCS.
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A mathematical scaling of a will, of course, lead
to (ba', ) & —, even in an ordinary coherent state.
For example, (db', ) & —,

' is possible with b given by
(3.1). In actual applications such scaling cannot
affect the system performance. In Sec. VIIB we
will show how the noise in a coherent signal can
be reduced if l}3) is available, which is impossible
by scaling on IP). The fact is that (M', ) measures
the absolute amount of noise in a quadrature com-
ponent and a is a more fundamental variable than
b. See Secs. III E, IV A, and VII for further dis-
cussion and clarification.

From (3.20) one res.dily obtains

I(a IP) I' =
I

& I
'exp[-(1 —2C,)(a, —P,)'

—(1+2C,)(n, —P,)

( &~l)
S

( —,(4a,4a, + )ha, ha, )

A '=2 1 —2C, -2C,

2C2 1 + 2Cj

—,'(s, w, ,w,c,, &

)&~l)
(3.47)

(3.48)

through the transformation

(3.5O)

In terms of the variables (n*, a), (3.38) becomes

p,'"'( a*, a) = II I

' exp[-2(a. —tr.)'A '(a. —n. )]

(3.49)

where

+4C,(n, —P,)(tt, P,)], (3.38) (ba') (baha )
a 7

(4aM") (4a" )
(3.51)

C—:—v/2 p,
—= C, +iC„C„C,real, (3.39)

and P is given by (3.28). From (3.2), ICI'~ —,', so
that

where T denotes the transpose of a matrix.
The antinormally ordered characteristic func-

tion }(~ (rl*, t}) for

(3.40)

Thus (3.38) is indeed a Gaussian joint probability
density function in (n„n,), with mean (P„P,) and
variance

J( (n)
P (al, cq)

al=-E[(tt, —0,)']=-'(I+2C,)/(I —4 IC I'), (3 4»)

O', —= E[(n, —$,)'] = —'(1 —2C, )/(1 —4
I
C

I

') . (3.41b)

The notation E[R] indicates the probabilistic aver-
age of a random variable R with respect to its
density function. " The correlation coefficient is

y = E[(o!,—P,)(o.', —P,)]/o, o, = 2C, (1 —4C,) '~ ' .

(3.42)

This density function is illustrated in Fig. 1.
Equation (3.3S) is conveniently expressed in the

matrix form

=
I p

I

' exp[ ——,'(n, —o.,)rA '(a, —n, )],

where

(3.43)

QI

Q2

n =E[o. ]=P, ,

A:—A, +4I,

(3.44)

(3.45)

(3.46)
FIG. 1. Representation of a two-photon coherent

state by p" (~, , ~2) from (3.38), with o&&0", ; a coherent
state is obtained for 0&

——o2.
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)('„(1)„11,) = exp(ill, n, —,'0r A—l),), (3.53)

fRct ls ImportRQt ln some RppllcatloBs Rs MdicRted
in Sec. VII 8, because the original (na', ) and (ha,')
can be both larger than —,

' from (3.31) unless )1/v
is real.

212
'g =

»
'g —'g1+ l'g2»

g

(3.54)

P1+'EJ2 = e

8 =Pe

Then a', minimizes (Ab', ) when

(3.59)

@=» 'P()1*~- ~*I )/(2 ))1 ) (~l+ p*~+~*p)j

(3.60)

and the minimum fluctuation is

(3.61R)

The conjugate variable a', is the one which max-
imizes (&5', ), with

(An" ) =-'(file+ fv/)' (3.61

From (3.61), the TCS ~P) can be seen to mini-
mize the uncertainty product

(&a", ) (Ra", ) -
—,', , (3.62

for a' defined by (3.59) and (3.60). Thus ~P) are
the minimum-uncertainty-product states for a'
and can therefore be understood as generalized
or rotated minimum-uncertainty states. This

and the %eyl characteristic function is, from
(2.32),

x~~(ll„q, ) = exp(illrn, ——,'llrA, )I,) . (3.55)

Since A &0 (positive definite), "the Wigner distri-
bution is also a Gaussian density function. The
antinormally ordered characteristic function
x'N( 1„)1))ls

Xx(1)» 1).) =exp&i),'n, kl),'(A-- li )1),] (3 56)

The antinormal-, symmetrized-, and normal-
order moments of (a, a) can be calculated from
(3.53), (3.55), and (3.56), respectively. Note that
these Xg» Xg,» Xg» Rnd &» P
Gaussian. The above matrix forms are convenient
for generalization to the multimode situations.

The minimum noise (Ab', ) obtainable in a TCS
fol" R Self-ad]oint 51»

~l ~1 1+~2 2»

18 the minimum elgenvRlue of A» with the mini-
mizing VRlue of (yd) y2) given by tile corresponding
eigenvectox. " The result can be expressed in the
following form: Let

D. Diagonal operator representation for jp)g g

Let p, represent a density opex'ator which can be
wl"ltten as R random supex'posltlon of cohex'ent
8 tRtes» l.e. »

0, = &,(o.~ e e e d'e,
for a positive true probability density function

P,(n*, n). It follows that

f. d tdd', )=— fP.( d ,))a,„—,)* ,d, d-d-', ,

(3.64a)

I+ &1» CL2 C1dA1dQ2»

Equation (3.64) states the obvious physical fact
that the introduction of classical randomness
mex ely Increases the noise ln a, and a2.

A TCS with (3.31) therefore cannot be a mixture
of cohexent states. In fact, the density operator
p cannot be written in the diagonal form (2.17)
with P(n*, n) belonging to the class of tempered
distribution. This can be seen from the normally
ol'del'ed cllRz'Rctel'lstlc function )(1)('gd, x/1). Fol' R

TCS, A —~I cannot be positive definite. Thus
X~~ does Qot possess a Fourier transform. If we
insist on having a diagonal P representation for
p, we will need the Fourier transform of e"" for
a real variable x and y&0. It does not appear to
be useful to talk about the Fourier transfox'm of
such a quantity, which cex'tainly does not belong to
the class of tempered distribution. Further dis-
cussion of this divergence 18 given ln Ref. 27.

One may still consider the diagonal P repx esen-
tatlon of pg Rs belonging to the clRss of dlstrlbutlon
Z„or alternatively Rs the limit of a sequence
of %'611-behaved density functions. Since no use-
ful method of calculation has resulted from such
viewpoints and since p'"'(n*, n) is sufficient for
our purpose, we will say that the I' representation
of p does not exist and we will not employ it in the
folloW 1ng.

Note, however, that a generalized P represen-
tation of p does exist and can be useful. Thus

&, P*»P P„p d'P ~

may be used to represent ~P)„with
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(3.66)

Equation (3.66) a,iso describes random mixtures of

~P) in the same way as (3.63). In particular, it
remains useful with the introduction of an additive
noise. However, it is inconvenient if (p, , v) are
time varying. While it ean be used in moment
calculations by expressing M(a, a) in normal-
order form M "'(5,5) in terms of the variables
(5, 5), it is no longer particularly suited to be
calculations of (a, a) normal-order moments en-
countered in the description of most experimental
results. Therefore (3.65) will also not be em-
ployed in this paper.

E. Coherent states versus two-photon coherent states

As mentioned in See. I, two-photon coherent
states were encountered in many different stud-
ies, but they received little attention in quantum
optics. Obviously this is due largely to the fact
that these states are not generated from available
optical sources, but other factors may have also
contributed.

It is well known that the mathematical form of a.

minimum-uncertainty state at a frequency ru, is
identical to that of a coherent state at a different
frequency ~,. Therefore one may tend to view
minimum-uncertainty states as just coherent
states of a different frequency, particularly since
the frequency is often normalized away. This
viewpoint is erroneous, because in the state space
X(u,) SR(&o,) a minimum-uncertainty state at &u,

is given by ~P) 8 ~0), while a coherent state at &o,

is
~

0) Cgw
~
P). Physically, no photocounts would be

registered for a coherent state at u, in a counting
experiment employing detectors responding only
to fields at (d, . In this connection one may also
note that for a fixed mode the frequency is also
fixed by the dispersion relation. Changing the

frequency of a fixed mode by dielectric modulation
would not yield a minimum-uncertainty state at fre-
quency ( ~, from a coherent state at frequency ~,. A
coherent state at a different frequency (d, would be
obtained instead.

Alternatively, one may regard TCS's and ordi-
nary coherent states as (mathematically) equiva-
lent, since they are related through a unitary
transformation or some kind of sealing. The ques-
tion of scaling was already dealt with in Sec. IIIC
concerning the noise in quadrature components.
It is true that two-photon coherent states are co-
herent states in a broad sense: they are the co-
herent states with respect to b(vs 0) instead of a.
However, this abstract unitary equivalence means
little in describing actual experimental results.
Thus (n,

~
a), = (n

~

o.) but (n
~
o), has little resem-

blance to (n
~
n). In general, for an arbitrary uni-

tary transformation U we can define a set of states

IV. QUADRATIC HAMILTONIAN

AND STRUCTURE OF U,

From (3.11) and (3.20) we ean see that U~"'(n*, n)
is an exponentiation of a quadratic form in (n*, a).
Such a U~~"'(o. ~, n) ean be written a,s (o.'~ e ~

~
o,') for a

self-adjoint operator M quadratic in (at, a), from a
theorem of McCoy." Therefore U~ must be the
unitary operator generated by a quadratic Hamil-
tonian Ho. The mathematical solution Uo(t, t,) of
the Schrodinger equation

N o =HoUo, Uo(to, to) = 1,8Ug (4.1)

is investigated in some detail in this section, which
gives all of the U~.

A. Positive definite quadratic Hamiitonian

Consider the general quadratic Hamiltonian

Ho =g(f,ata+ f,*a'+f,at'+f
3 a+f,at), (4.2)

where the c numbers f, may be time dependent.
From Hermiticity f, has to be real. For a mode of
frequency co, we have f, = ro, and Sf,a~a represents
the free radiation energy of that mode. The f, and

f, terms then represent interaction energies. In
particular, the f, terms describe a two-photon
mechanism, whereas the f, terms describe the
usual one-photon or linear driving mechanism.

If a physical system with Hamiltonian given by
(4.2) is stable, Ho should not have a spectrum
ranging through the entire continuum from -~ to
~ in order for a ground state to be defined, i..e.„
the spectrum of H+ should be lower bounded. By a
shift of scale one may require that the Hamilton-
ian be positive definite. 3 If this condition is not
satisfied, (4.2) cannot be properly used to de-

(3.67)

The functions (x
~ ) cannot be obtained by simple

scaling on (x ~o.') and has to be computed anew via
(x~U~n). This paper develops such specific re-
sults for the Uz of (3.5).

With respect to a, whose zero eigenstate is the
radiation ground state occurring in nature, the
properties of ~n) are quite different from ~o.) in
many respects, as presented in this section. Since
the term coherent state is usually understood in
the original sense (2.1), a new terminology is re-
quired for finer distinction between coherent states
in the broad sense. The term two-photon coherent
states" is adopted because of the close connection
between these states and quadratic Hamiltonians
or two-photon lasing processes, discussed below.
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scribe a physical system of interest in our present
context. It has to be extended to include a more
complete description of other relevant i'actors of
importance.

Under the condition

(4.3)

Uz"'(a*, a; t, t,) = exp[A(t) +B(t)a'+ C(t)a*'

+ D(t)
I
a I'+&(t)a+ F(t)a~],

(4.8}

where

the Hamiltonian (4.2) can be changed, similar to
the Bogoliubov transformation, "to the following
form:

ffo =f.b'5+f0(I |If' —vf. I'+
I
vI'& (4 4&

dA = —2 (2f2 C +f2 F 2 +f,*F),

dB =- if,*(D+1)',

(4.9a)

(4.9b)

b —= pa+ vat+ pf,*—vf„
[2/f (f -f)]'"f-*e"

v -=[(f, f,)/f, P-"e",
f (f2 4IfI)t

(4.5)

(4.6a)

(4.6b)

(4.7)

—= —2(4f2C~+2f, C+f~),

—= —i(4f,*C+f,) (D+1),

i(2f,"F+f,*)(D+ 1),

(4.9c)

(4.9d)

(4.9e)
where Q is an arbitrary phase. The canonical
transformation (4.5) is an inhomogeneous linear
one, with (4.6) obeying (3.2). The Hamiltonian
(4.4) is manifestly positive definite, and (4.3) is
indeed the necessary and sufficient condition for a
classical Ho of the form (4.2) to be positive defin-
ite.

Similar to the situation of an interacting Bose
fluid, bt of (4.5) can be interpreted as the quasi-
boson creation operator with a quasiparticle spec-
trum f, . The quasiparticle ground state is the IO,)
of (3.7), whereas Im, ) are the excited states. It
seems highly unlikely, however, that the radiation
states

I m, ) may be generated optically.
The following observation should be made: A

linear canonical transformation from a to b can al-
ways produce f, terms in b from a free Hamilton-
ian h f,a~a. In fact, it is easily checked that an f,
term results if and only if the v term mixing bt is
present in the transformation. The transformed
Hamiltonian contains a constant term

I
v I', so that

the eigenstates of b have this added excitation ener-
gy compared to the true ground state

I
0}. Such a

Hamiltonian is clearly not physically equivalent to
(4.2). In this sense the operator a is more funda-
mental than b and further justifies the need for
viewing

I a&~ as a two-photon coherent state with
respect to a.

Our following results on Uz(t, t,) are actually
valid independent of the condition (4.3). Neverthe-
less, one should note the significance of the posi-
tive definiteness of (4.2).

B. Explicit solution for U& (l, tp)

—= —i [(4f,"C+f, )F + 2f,*C +f,], (4.9f)

with the initial condition

A(to} =B(to}=C(to} =D(to) =E(to}=F(to}= 0. (4.10)

From (4.8) and (2.14) we get

(a IUo(t t.) IP & = em(- 2
I
a I'- l IP I'+A(t)+fl(t)P'

+ C(t)a*'+ [D(t)+1]a~p

+ Z(t) p+ F(t}a*). (4.11)

Equation (4.11) can be written in the form of

(a I p+ g(t); p, (t)v(t)), apart from a phase factor.
Using (3.20), we find by comparison that

U, (t, t.) I p &
=

I
p+ &(t); l (t), (t)) ""',

4(t) = e(t)+ i[p &(t) —p&*(t)]

(4.12)

(4.13}

for a, real-valued (P, f) independent function e(t)
and

A(t) =--'h u(t)+ v*(t)l'(t)/2t (t)

--:
I ~(t) I'+ «),

D(t) = v'(t)/2 p (t),

(4.14a)

(4.14b)

C(t) = v(t)/2p(t), D(t}= I/p, (t) —I, (4.14c)

E(t) = v*(t)V (t)lr(t) —C*(t), F(t) = C(t)/P(t).

(4.14d)

If (4.14) is substituted into (4.9), the equations of
motion for p, , v, f, and care obtained,

The solution Uo(t, t,) can be obtained by normal-
ordering techniques, ' among many possible meth-
ods. With (4.2), the solution U~"'(a*, a;t, t, ) of
(2.16}is of the form

dt =if, i.( —2if~ v, —= —if, v+2if p,

—„, =t(f, v f,i), -df

(4.15)

(4.16)
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(4.1V)

Equations (4.15)-(4.17)are equivalent to (4.9). The
initial condition (4.10) becomes

which can take on both positive and negative values.
Under (4.26), one finds readily from (4.23), (4.24},
(4.9d), (4.14c), and (4.18) that

p, (t) =c' " 'o'cosh[2(R(f)], (4.2'la)

p(0) =1, v(0) =0,

t;(0) =0,

while

(4.18)

(4,19)

v(f) = fe "2 '*"'( ' sinh[2$(f)],

u)(~) =f 'u(r) uu,

(4.27b)

(4.28)

e{o)=0 (4.2o)

I —2gf e2i P(t, to)
2 (4.22)

the solution of the first-ordex' coupled differential
equation (4.15) under (4.18) is equivalent to the
solution of the following equation for a new vari-
able 8

—=f*8' f, ((l (0}= 0-, (4.23)

g —2C e23+(ty tO) (4.24)

Once C is obtained through (4.23) and (4.24), all of
the other variables A, 8, 0, E, and I can be
given in quadratures from (4.19). But Eq. (4.23),
a case of the well-studied Riccati equation, does
not admit a solution in quadrature in general, al-
though many methods and results on its solution
are available. "'"

The existence and uniqueness of a solution to
(4.23) imply that the solution of (4.9) and (4.10) al-
so exists and is unique. Thus (4.8) is indeed the
solution we seek. With U'"'((r*, a) given by (4.8),
the explicit operator expression of Uo(f, f,) is

U(g t l eA(t) eC(t)a +F(t)a e).nlD(t)+1]a~a ea(t)a2+E(t)a .
~ y O~

Equation (4.25) can also be written as

exp(y, a++ y,ata+ y,a '+ y,a~+ y, a)

fox' a set of c numbers p&.

Equation (4.23) can be integrated when f/f is
independent of t, i.e., when

f,(t) =r(f) exp[i&, —2i6:(t, f,)], (4.26)

(t), independent of f, for a real-valued function r(f)

is obtained from (4 J.2). The general solution (4.8)
or (4.12) can be given in quadrature once the solu-
tion for (4.15}is given in quadrature, since the
other equations can then be immediately integrated.

Defining

(() '(f =(f " f.u) &'- (4.29)
to

Equation (4.26) is especially interesting because
of the resonant factor e~'"" '()' obtained when f,

This factor is automatically present in our
later physical interpretation of (4.2). The noise
behavior in this case is of great interest. Thus
when (with also f, = (d, f, =0)

(4.30)

r = const independent of f, we have from (3.61) and
(4.2V)

(f) alp(f) ) —1e 4u') (gau2(f) ) —& e4tt (4.31)

p(f) =cos(Xf)+ (i(d/X) sin(Xf),

v(f}= f(212/X) stn(xt),
(4.32}

«»=-(&-4lf. l')'"=0 The q~nt m apoise is
purely oscillatory in this situation, without attenu-
ation in time.

Equation (4.15) or (4.23) may be integrated in
many other situations. A way of generating such
example is discussed below.

D. Properties of Ug (t, to)

A number of general features exhibited by U+(f,t,)
are now observed. From (4.15) we have

(4.33)

which is a complex equation. The real part of this
equation is implied by (3.2}, but the imaginary part

fox' a' =ae'"t. In this case the noise in one quadra-
ture component, apart from the optical oscillation,
decreases exponentially while the conjugate com-
ponent has exponentially increasing noise. The
quadrature components a, and @ are completely
symmetrical here. %e can choose the sign of x,
or equivalently the phase of r, to cause either
one of them to have decxeasing noise. For
$, =0, ~=const, we again have (4.31) with a'
=ge""t '~4). The nature of phase control in g' fx'om
the phase of f, should be clear in this exa,mple.

Equation (4.15) can be integrated for a constant

f, independent of time, with
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(~a'(t)) =-'e '"' («'(t)) =-'e'"' (4.35)

without any shift of phase to a'. Substitution of
(4.34) into (4.33) shows that &t&(t) obeys the differen-
tial equation

dQ 1
dt cosh'(yt)+sinh (yt) '

so that

&t&(t) = («&/y) tan [tanh(yt)].

The corresponding f,(t) is given by

f, = 2 tanh(2yt) —iy/2&».

Any arbitrary state
i &|&, ) will evolve into

(4.36)

(4.37)

is an additional constraint on the pair t«(t), v(t) ob-
tainable from an H. Thus not every pair of func-
tions t«, (t), v(t) obeying (3.2) can occur in a Uq(t, to).
Only those obeying (4.33) are permitted in the form
(4.12). However, this does not impose any con-
straint on the mean- square fluctuation behavior ob-
tainable in (3.61), since only it«i, ivy are involved
here. Moreover, (4.27) shows that any particular
pair of values (p, , v) obeying (3.2) can be obtained
at a specific t with a proper choice of f„even un-
der (4.3}with f, fixed.

Any desirable pair of functions I«,(t), v(t) obeying
(4.33) and (3.2) can be generated by an f~ through
(4.15). This corresponds to the solution of the
Riccati equation (4.23) for various f For .example,
we can assume (f, = &0, t, = 0)

p(t) =e'~'" cosh(yt), v(t) =e«~'" sinh(yt), (4.34)

and determine the phase P(t) so that (4.33) is sat-
isfied. Equation(4. 34) has the interesting charac-
teristic that

f2 =0, (4.44)

i.e., v(t}=0. In general, p(t} and v(t} are deter-
mined only by f,(t) independently of f,(t), as seen
from (4.15). This is in accordance with the fact
that the new quantum noise behavior is entirely a
consequence of f, 40. Such correlation between f,
and v is also observed in Sec. IVA.

On the other hand, the added value f(t) depends
on bothf, andf, but is always zero forf, =0,

Uq(t, t,) iP) = iP)„when f, =0. (4.45)
Therefore aEE of the Ui's are generated by H& with

f, =0. The addition of f, merely introduces a con-
stant shift to b, as in (4.5). The states (4.39) are
eigenstates of

b (t) = u(t) a(t,}+v(t) a'(t, ), (4.46)

where a(t, ) is the Schrodinger-picture fixed photon
annihilation operator. We have

b(t) = Uq(t, to) a(to) Uqt(t& to)+ f(t) = Ui aUii. (4.47)

Equation (4.47} also shows

Therefore, under an arbitrary Uq(t, t,) a. TCS
wH. l ~emain a TCS for all time, but with P, p, , and
v time va.rying. By solving p(t), v(t), and g(t) in
terms of p, , and vo and t«(t, to), v(t, t,), and 5(t, t,),
(4.39)-(4.42) and (4.27) show explicitly that any

iP;t«, v) can be obtained from any given iP, ; ««„v, )
by a Uq(t, to).

It also follows from (4.41) that if f, is turned off
at time t, then

t«(t) = t«(t )e«e&«' f & v(t) = v(t )e«e« ~ «t& (4 43)

Thus apart from the optical oscillation the values
p, and v are invariant in the absence of two-photon
interaction in H. Furthermore, such invariance
is obtained when and only when

(4.38)
t«(t) a„(t)+v(t) a„(.t) =a(t&&)+ g(t)

for the Heisenberg operator

(4.48)

under Uq. If
i &C&, ) =

i P, ; p,„v,), (4.38) can be read-
ily determined from (4.12),

q( 0) I po p'0 v&& )

=
i p, + g(t, t,); p(t, t,), v(t, t,) ) e'~ &«' «o &, (4.39)

ae(t) = U ~q(t
& t, ) a(t, ) Uq(t, to).

Equation (4.48) implies, by solving for ae(t),

a„(t)= p, *(t)a(t, ) —v(t) a (t,) —g'(t), (4.49)

~'( ) Iv(t) r. *(t=-) I *(t)~(—t) (4.50)

&t&(t, t,) -=8(t) + ~ i [p*r(t, t,) —pt: (t, t&&) ],
where

p, (t, t&&)
= pot«, (t) + v&&v*(t),

v(t, t,) = &«,v(t)+ v, p, ~(t),

5(t, t, ) = ««, t;(t)+ v, g*(t),

(4.40)

(4.41)

(4.42)

Equations (4.49) a,nd (4.39) give

U'q(t, t.) I P. ; u. , v. ) =
I P. + C,(t); t,(t), v,(t) )e""'",

(4.51)

4,( )=te(t)+ 4 i[P-*-L„(t) PL,*(t)], — (4.52)

i«„(t) = pi*«o(t) —v&&v"(t), v„(t) =
v&& p, (t) —p, o v(t),

and p, , v, g, and 8 in (4.40)-(4.42) are the solutions
to (4.15)-(4.20). K„(t)= yog'(t) + v&&f '"(t),

(4.53)

(4.54}
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where p, , v, g, and 8 are still the solution to
(4.15)-(4.20). The state Utq(t, f,) ~P), is obtained
from evolution of the system backwards in time
under the same f&(t) in Hq, and the operator b(t) is
similarly the ae(t) moving ba, ckwards, apart from
a constant.

Even though no solution of Uq(f, to) in quadrature
can be obtained in general, its structure and be-
havior have already been fully determined. These
behaviors are important in the applications of
TCS's.

V. STATE OF TWO-PHOTON LASING RADIATION

We suggest that the output radiation of an ideal
monochromatic two-photon laser is in a TCS. In
contrast, the output of an ideal one-photon laser is
in an ordinary coherent state. Thus TCS's are the
characteristic states of two-photon lasing pro-
cesses (two photons from the same mode}.

A. Two-photon laser

Two photons of the same frequency (d from the
same radiation mode can be absorbed in a single
atomic transition between two levels 2 and 1 via
an intermediate state, i.e., a transition second or-
der in p. A. Under the usual dipole approximation
the parities of levels 2 and 1 have to be identical.
First-order dipole transitions between the two lev-
els are forbidden in this circumstance. On the
other hand, higher-order multipole contributions
to second-order p ~ A transitions, which may con-
nect states of different parity, can be significant. 4'

First-order transitions between states of opposite
parity are also possible via the A' term in the
radiation interaction Hamiltonian. ~~4 This is pos-
sible because in the multipole expansion of the
vector potential A(r}, higher-order multipole terms
introduce atomic coordinates into the A' Hamilton-
ian. Two-photon absorption spectroscopy is an
important experimental technique by now, "and
many discussions of two-photon absorption pro-
cesses can be found in the literature.

The radiation-matter (to be referred to as atoms)
interaction responsible for the two-photon transi-
tion can be expressed in the form

to the standard quantum theory of parametric in-
teraction. "'" By methods widely used in nonlinear
optics, ' classical equations of motion for the field
and the active atomic variables can be obtained in
which the virtual intermediate states are accounted
for through P. Examples of such treatment for two-
photon systems can be found in many places."
'These classical equations of motion with a quan-
tum-mechanically computed susceptibility can be
directly quantized. The effective quantum Hamil-
tonian follows from the resulting quantum equa-
tions of motion.

In addition to absorption, two-photon emission
which provides a two-photon lasing mechanism is
also described by (5.1). In considering the condi-
tions for stimulated two-photon emission in either
the standing-wave or traveling-wave configuration
with loss included, it is easily found that stimulated
emission cannot be set up from spontaneous emis-
sion alone. A sufficiently strong field at the lasing
frequency ~ has to be present initially. "" There-
fore we consider the two-photon lasing configura-
tions depicted in Fig. 2. It is not the purpose of
this article to present the semiclassical theory of
two-photon laser operation, or to discuss the op-
erating consideration in a realistic material sys-
tem. But the following facts may be observed:

In the traveling-wave configuration, Fig. 2(a),
the gain is obtained from a large external pump
field which may have many frequencies but which
is still in a single temporal mode. Neglecting var-
ious loss mechanisms, this lasing process can be
described by the interaction Hamiltonian (5.1) with
an initial radiation state p, having a nonzero
amount of power, trp, a a WO. If a laser is used for
the external pump, p, = ~n)(o. ~, but intense ther-
mal light can also be used. The radiation state p,
as well as other dynamical variables, are spatial-
ly dependent in this case. In the standing-wave
case, Fig. 2(b), only a single standing-wave mode
is under consideration. The gain is initially ob-
tained from the usual one-photon lasing mechanism,
the host atoms for both lasing transitions being
contained in the same cavity. " The Hamiltonian is
now

H ~
= 5( p Ma~'+ p*Mt a') (5.1) Ep Ep

where p is a coupling coefficient and M is the
atomic polarization operator which flips the state
of the atom If the A' mechanism is under consid-
eration, Hl is a true Hamiltonian. " If virtual
transition through an intermediate state has been
suppressed through a nonlinear susceptibility, or
equivalently through the coupling coefficient p,
(5.1) is only an effective Hamiltonian. In this case
it can be derived by following a procedure similar

E2

Ei E(

(a ) E2- E
I

25~ (b) E2 El = 2%~

Ep —EI

FIG. 2. Two possible configurations for stimulated
two-photon emission.
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B. Effect of perturbations in the two-photon system

An additive Gaussian noise and a damping me-
chanism can be introduced to account for some un-
avoidable sources of noise similar to the one-pho-
ton case, while still preserving that distinguishing
feature of TCS's with(na, "& and (aa,"& smaller than
4. This can be illustrated as follows: The quan-
tum effect of loss is incorporated through the den-
sity operator relaxation equation

ep z 1—= ——[Ho p]+ —,y (2apa —a ap —pa a)et h

+ yn(a~pa+ apa~ —atap —paat), (5.3)

with Ho given by (4.2). The damping rate is y and
n represents the thermal noise contribution from
the reservoir that couples to the radiation field.
This quantum description of loss has been exten-
sively discussed in the literature. "" For an ini-
tial coherent state, (5.3) can be solved exactly.

H = a(&uata+p2M, a++p,*M2~a2+p, M,a~+p,*M [a),

(5 2)

with a vacuum initial state; the subscripts 2 and 1
for p and M refer to the two-photon and one-photon
lasing material. Population inversion is required
in both configurations. Other possible configura-
tions for two-photon lasers can be developed, but
these two seem to be the most important.

Spontaneous two-photon emission has been ex-
perimentally observed, "but not stimulated two-
photon emission. Two-photon stimulated emission
was first suggested for giant pulse generation. "

When such a two-photon laser operates far above
threshold with amplitude and phase stability, the
fluctuation in M should be relatively small, so that
M is approximately a c number. By ignoring the
quantum nature of M, (5.2) or (5.3) becomes an Ho
of the form (4.2). If the dissipative mechanisms
are also neglected, (4.12) shows that a TSC ~P&,
will be obtained. A similar argument was used by
Glauber" to suggest that a coherent state describes
one-photon laser radiation far above threshold. As
we show in the Appendix, this can be formalized in
the so-called self-consistent-field approximation
(SCFA), which has been used in one-photon laser
theory. ""~ Therefore a two-photon device of this
type operating well above threshold can be expected
to produce a state

~
P &, with further small classi-

cally random fluctuations in the variable P, in a
way exactly analogous to one-photon lasers where

~
n) is produced with small cia,ssical fluctuations

in a. This argument can be made for a standing-
wave, a traveling-wave, or an arbitrary spatial-
temporal mode.

Yn
(1 e-(y~r) t)

2(y+ 4r) (5.4)

with a' =ac'"'. It can be readily shown that (&a&'(f)&
&0 and that the uncertainty principle is obeyed for
all t. Note that even when n =0, the state is no
longer pure in the presence of y. Asymptotically
we have

(&aP (t) ) yn-/8r, (&a212(t) ) -~; t -~, 2r» y.

(5 5)

The condition 2r»y can be satisfied together with
the stability condition (4.3) for the usual values of
Y p

v &2Y»y. (5.6)

Thus for n ~ 1 the corresponding state approaches
an eigenstate of a, . In any case the quantum fluctu-
ation in a, vanishes as t-~.

From the results of Sec. IV B, it can be seen that
two-photon laser is a phase-sensitive device. If a
uniform random phase is assumed, i.e., if a'=ae~~
for P uniformly distributed in [-v, w] is the dy-
namical observable one has to deal with, then

«c"
&

= «o" ) = 2(«~'&+ «~'&). (5.7)

Equation (5.7) contributes a noise greater than —,
'

for both quadrature components and one distin-
guishing characteristic of a TCS is lost. The de-
tailed theories of one-photon lasers show that am-
plitude fluctuation is suppressed in a laser operat-
ing far above threshold, and the phase fluctuation
is also inversely proportional to the average pho-
ton numbers. Moreover, these amplitude stabili-
zation and phase stabilization properties are gen-
eral features of a wide class of self-sustained os-
cillators, quantum or classical. "'" If the two-
photon laser belongs to this class, the phase would
diffuse away from some initially measured value
only slowly for high-power operation similar to the
one-photon case. The phase can then be tracked
and the relative phase determined accurately. As
a result the field may be regarded to be in a true
TCS. Whether the perturbation introduced by the
atomic fluctuations may indeed be sufficiently
small so that

~ P&, does not become
~
P & can be de-

terrnined only by explicitly working out the detailed
quantum theory of two-photon lasers. The quantum
theory of one-photon lasers has been extensively
developed, "~' but the two-photon laser requires
more careful approximations because of the small

through the Fokker-Planck equations for p "(n*,a).
In particular, all of the characteristic functions
are still in Gaussian form, "and for y44r,

(na~' (t})=— + e '"'4"1 y
4 y+4z y+4r
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noise in one quadrature component and the more
delicate equations of motion involved. Hopefully,
the TCS picture can be checked experimentally, as
discussed in Sec. VI, by practically realizing a
two-photon laser. In any case,

~
P), serves as the

basic description to be averaged further by a
classical density function in the presence of other
random interference.

Recently, the quantum theory of multiphoton
lasers, including a quantum treatment of the atoms
and the loss mechanism, was discussed by McNeil
and Walls. " ' However, the nature of their ap-
proximations was not clarified and they produced
lasing results from models"'~ which cannot lase
because of the absence of an input field to provide
a nonzero gain. While some qualitative features
of their two-photon results are in agreement with
the TCS picture, such as large total fluctuation
from (3.35), they suggest that the photon statistics
are similar to the one-photon case. The Poisson-
like distribution they find in Ref. 59 is obtained for
an unrealistic loss model, in addition to the above
error. The lossless photon distribution they ob-
tain in Ref. 61 is neither Poisson nor of the form
(3.23). Since the atomic populations rather than
the atomic polarizations were treated as a con-
stant in the derivation of that distribution, it ap-
pears that it is valid near, instead of far above,
threshold. A complete and careful calculation of
the two-photon laser state remains to be carried
out.

C. Degenerate parametric amplifier

A degenerate parametric amplifier interpretation
can be given to (4.2) similar to the above two-pho-
ton laser interpretation. When the material sys-
tem is suppressed through a susceptibility and
when the pump field is treated classically, a two-
photon coherent state

~
P ), would be obtained from

a degenerate parametric amplifier such as the one
depicted in Fig. 3. An intense initial field at fre-
quency ~ has to be present in addition to the pump
field for degenerate parametric amplification. A

TCS is already present in the treatment of nonde-
generate parametric amplifiers by Mollow and
Glauber4' in the joint Wigner distribution for the
signal and idler modes, even though a coherent
state plus noise is obtained for each of these
modes. ' That a TCS can be generated in a single-
mode degenerate parametric amplifier was also
observed by Stoler" and by Lu."

The phase-sensitive behavior of a two-photon
laser is reminiscent of parametric processes, and
a degenerate parametric amplifier is a kind of two-
photon laser. A basic distinction, however, can
be made. In the parametric case the final and in-

itial states of the atoms are identical, but they are
different in the two-photon case. The question of
quantum statistics is similar in both cases. The
pump field of Fig. 3 should be treated as a quan-
tum degree of freedom. A fully quantum treatment
of degenerate parametric oscillators can be equal-
ly or more complex than a fully quantum treatment
of two-photon lasers, depending on whether the
atomic variables are included in the parametric
case and whether the important intermediate state
is included in the two-photon case when present.

No single-mode degenerate parametric oscilla-
tion above threshold has been observed. Careful
consideration has to be given to any possible com-
peting processes in the actual development of a
two-photon laser or degenerate parametric ampli-
fier, such as third-harmonic generation.

VI. COHERENCE AND PHOTON COUNTING

(6.1)

(a "a")=(N (N-1) (N —n+1)) (6.2)

(6.3)

With the Glauber model" of an n, -atom photodetec-
tor with quantum efficiency s and a sufficiently
small counting time T, the generating function for
the counting distribution p(n, T) of registering n

Two-photon coherent states are not coherent ac-
cording to Glauber's original definition. " That is,
they do not factorize the correlation functions
which describe photon counting experiments em-
ploying ordinary photodetectors. However, they
factorize a different set of correlation functions
obtained by transforming a to 5 in the field expan-
sion. This kind of transformed correlation func-
tion gives the joint counting rates for detectors
operating with an interaction mechanism different
from the usual dipole absorption, "in analogy with
detectors that function by stimulated emission
discussed by Mandel. " Thus a TCS is fully co-
herent in a sense closely related to the usual de-
finition of optical coherence. Further detailed dis-
cussion can be given only in the multimode treat-
ment of TCS.

Here let us consider photon counting experiments
associated with a single radiation mode whose
spatial dependence has been integrated through the
spatial response of a photoabsorption detector.
For any state p the distribution (n~ p~n) can be
generated by an ideal detector if the counting time
T is large enough. " Therefore we consider the
generating function
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counts in time T is merely a scaling of (6.1),

(-1)"8 "Q(sn, Tx} (6.4)

fluence of nonideal detectors and noise on these
photocount statistics should be worked out in de-
tail for actual comparison with experiments.

From (3.23) the function Q(X} for a TCS can be
evaluated in closed form using the summation for-
mula for Hermite polynomials, "
Q(&) = ~"' exp [(I—&) r —I] I p I'

+ [1—(1 —x)'r] —P '+ P*'
2p. 2p. +

(6.5a.}

r=-[ls I'-(I-~)'lvl']' (6.5b}

From (6.5) the coefficients g„=(at"a")/(ata&" for a
first-order coherent field" can be computed by
(6.3). In particular, (ata) =

I
vl'+ IPI', as given by

(3.29), and

&a""&=("a&'+2
I P I'(4I v I'+»

I
v I'

—(p*v*p'+ p vp*') (1+4
I
v I')+

I
v I'+ 2

I
v I'.

(6.6)

Any value g, &0 can be generated from (6.6) by
proper choice of (p, , v, p). In particular, g, &1 for
a TCS if and only if

2lvl'+
I
vl'+2(41vl'+»lvl'I pl'

& (p,*v* p2+ v, vp*~) (1+4 lvl'), (6.7}

and g, ~1 if the sign is reversed. For P =0, we
always have g, &1 from the noise

I
v I2, but g, &1 is

clearly possible for small v and large p, with non-
vanishing P. Recall that g, &1 is a characteristic
quantum effect without classical analog, and that
currently available sources all generate g, —1.
Stoler" and Lu" have previously observed that g,
&1 may be obtained from a state of this kind.

For most values of (p, , v), g2 can be tuned by
varying P hx a TCS from (6.7), exhibiting both anti-
correlation (g~ &1) and enhanced correlation (g,
&2} effects. This fact permits one to check whether
a certain particular TCS is obtained by a Hanbury-
Brown- Twiss experiment. The photon counting
distribution (3.23) or (6.4) is also sufficiently dif-
ferent froma Poisson distribution that its measure-
ment will reveal the presence of a TCS. The in-

FIG. 3. Phase-matched degenerate parametric amp-
lification with pump fiel.d at frequency 2~.

A. Ideal linear amplifier

Under the action of a two-photon amplifier, an
input coherent state IP& will be changed to IP&„
from (4.45). For simplicity we assume p, and v to
be rea, l. From (3.28},

&a, &,
= p, = (I —v) p„ (7.1a}

a&, ,&= p=(p+v) p, . (7.1b)

Thus one of the original quadrature components is
linearly amplified while the other is linearly at-
tenuated. The nonlinearity of a two-photon ampli-
fier is therefore of the simplest kind; it is piece-
wise linear.

To be definite let v &0. The quantum noise (nP,'&
decreases from (nP, &

= —,
' to (nP,'& = —,'(p —v)', while

that of P, increases to —,'(y, + v}', from (3.31). If we
define the signal-to-noise ratio

(S/N);, = (a,)2/(&a &&, j = 1,2, (7.2)

where the average is taken in a state p, we find
that (S/N), is invariant . in the amplification and at-
tenuation, i.e.,

( / )fle&=( / )JIB) . (7 3)

The above definition of signal-to-noise ratio is
meaningful. If we try to determine the value of P,
by measuring a, in a coherent state or TCS, (7.2)
provides a standard or measure on how well one
may estimate P„"'or equivalently how "noisy" P,
is in the "best" measurement.

We can interpret
I p) as the state of an optical

signal presented to a receiver which generates
I p &~ by a two-photon amplifier Uo(t, t,) and then
measures a, on I P &~. It is obvious physically that
the signal-to-noise ratio cannot be improved by
amplification. The introduction of f, into U does

VII. APPLICATIONS OF TWO-PHOTON

COHERENT STATES

Vfe will briefly describe some novel applications
of two-photon lasing processes which result from
the quantum properties of TCS. Quite apart from
their quantum characteristics, two-photon lasers
also exhibit certain pulse- shortening behavior ab-
sent in the one-photon case." Their particular
nonlinearity may lead to many interesting phenom-
ena and applications, including the realization of
very-high-power lasers. However, only certain
applications of TCS's will be treated here. These
applications also illustrate the essential differences
between TCS's and ordinary coherent states.



TWO- PHOTON COHERENT STATES OF THE RADIATION FIE LD 2241

not increase the signal energy, i.e., the part of
which is proportional to P', . The advantage of am-
plification is practical, similar to the classical
case. Raising the signal level makes possible
easier measurement of P, . Since the two-photon
amplification process (4.45) operates above thres-
hold, it can be superior to one-photon amplifiers
operating below threshold in its possibilities of
yielding higher gain and lower noise. If amplifica-
tion for both quadrature components is desired,
the input beam can be first split and two diff erent
Uo(f, t,) applied to P, and P, separately. Ideally,
no signal-to-noise degradation will occur from
(7.3).

The above amplifier performance is not sensitive
to the addition of a Gaussian noise. Since we are
now utilizing the bigger noise component, there is
no need to maintain (&a~)) & —, and a random phase
would not seriously degrade the system perfor-
mance. Therefore the process described by Uo(f, t,)
provides a possible mechanism in the realization
of an ideal linear amplifier.

B. Local oscillator

One may take advantage of the absolutely small
(&a',) «-,' in

~ P), in the reception of a coherent-
state signal with a size-limited detector. By em-
ploying a local oscillator which generates radiation
in state

~
P )~, it is possible to attenuate the quan-

tum noise by an amount which compensates the
large diffraction loss incurred in free space or un-
guided propagation. This is achieved by coupling a
mode in ~P)~ to the incoming mode in

~
n) in the

form of a new mode

as = ea z+ (1 —e ')' 'a~, (7.4)

trpa a —S, (7.5)

where &'represents the fraction of energy received
and a~, a~, and a„are the photon annihilation op-
erators for the signal, the local oscillator, and
the receiver mode. The quantum noise in a~ is
clearly dominated by that of a~ for small & '. The
signal-to-noise ratio in a» becomes -4 n,' for
(&a2») =0, whereas it is ~ e 'a, for a coherent-
state local mode (&a2») = —,'. Further discussion
can be found in Ref. 1. Note that this advantage of
(&a2») « —,

' cannot be obtained if a one-photon-laser
local oscillator is used to produce a coherent-
state receiver mode as and a Uo(f, t,) subsequently
applied, because of the corresponding signal at-
tenuation. An absolutely small (4a») is needed in
this scheme.

If an arbitrary amount of power is available, it
is possible to have a state with (&a,') -0. How-

ever, for a fixed total radiation energy

a decrease of (&a', ) in
~ P) can be obtained only at

the expense of spending a portion of available en-
ergy S in the form of added quantum noise energy

~

v ~', from (3.35). Thus (&a', ) -0 requires S -~.
This consideration is not important in the context
of local oscillators at a receiver where large
enough amount of power is usually available to
make (&a',) sufficiently small. A four-orders-of-
magnitude reduction from the quantum noise —,

' of
n, (~ v ~' =10') for a GHz bandwidth optical signal
at ~/2m=10" Hz requires only a

~

v~' correspond-
ing to -1 pW. This will usually bring it down to the
level of other extraneous noises. Furthermore,
even a ten-orders-of-magnitude reduction of the
quantum noise requires -1W under the same con-
dition.

Other practical considerations also should not
invalidate the utilization of this small-noise prop-
erty. With proper signaling and reception schemes
one can always observe the signal quadrature com-
ponent without significant degradation from ran-
dom-phase modulation. From (4.43) it is assured
that free-space propagation of

~ P)~ will not disturb
the quantum noise characteristics. The rotation
(3.59) can be readily compensated in an optical
receiver without affecting the signal level, so that
TCS's are as good as minimum-uncertainty states
in this application. These and many other problems
involved in a realistic communication system will
be treated elsewhere.

C. Transmission source

Further performance improvement can be ob-
tained if the transmitter generates information-
carrying radiation in a TCS. In this case the radi-
ation power constraint (7.5) poses a major limit-
ation on the achievable signal-to-noise ratio. It
has been shown that" TCS's provide the maximum
(S/N), obtainable for one of the quadrature compo-
nents among all possible states satisfying (7.5).
By spending a fraction S/(2S+1) of S as quantum
noise energy with, e.g. ,

l), =(S+1)/(2S+1) ' ' v=S/(2S+1) ' ' (7.6)

P, =P, =O, (7.7)

we have

(S/N), iq) =4(S'+S).

Compared to the signal-to-noise ratio

(S/N), i8) = 4$

(7.8)

(7.9)

in a coherent state, we see that the available "sig-
nal energy" is effectively increased from S to S'
+S. This is actually a reduction of quantum noise."
Among other things, this increase in (S/N), leads
to a higher information capacity even when the
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other quadrature component is not employed for
information transmission. ' In the presence of
other extraneous noise, quantum noise reduction
in a transmitter state

~
P) can also be obtained

with only a relatively small
~

v ~', as illustrated
above.

Finally, we observe that the new photocount sta-
tistics may itself lead to novel applications in
communications.

per: H. S. Kennedy, M. Lax, J.H. Shapiro, H. S.
Tye, and S. Y. Yuen.

APPENDIX: TWO-PHOTON LASING STATE
IN THE SCFA

Here it is shown that the radiation state of a two-
photon laser is a TCS in the self-consistent-field
approximation (SCFA),"'~ if loss is also neglected.
Let H be the total Hamiltonian of an atom-field
system:

VIII. CONCLUDING REMARKS +atom ++fi el d +8int ~ (A1)

%e have discussed in some detail the properties
of a class of radiation states which are closely
related to the well-known coherent states. These
two-photon coherent states possess a number of
distinguishing characteristics which lead to poten-
tial device applications for quantum noise reduc-
tion. They may also find application in experi-
mental situations that require low noise sensitivity.

It has also been suggested that these states can
be obtained from two-photon stimulated processes,
or equivalently that they provide a good description
of two-photon laser states. The ultimate validity
of this proposition must be tested by an elaborated
quantum- statistical theory of two-photon lasing
processes and above all, hopefully, by experiment.

Our present work was motivated by the desire to
realize physically certain specific quantum states
and quantum measurements for practical applica-
tions. It appears that the general problems of
state and measurement synthesis are interesting
and useful areas in quantum optics and electronics,
as well as in the foundations of quantum mechanics.
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where Hc is given by (4.2), with

f, = v, f, =P, tr(M, p„), f, =P, tr(M, p„). (A4)

Thus a TCS will be developed from an initial co-
herent state from (4.12), and (A4) gives the effec-
tive field Hamiltonian under the SCFA. Note that
a resonant factor e "" is automatically present in

f„ from the atomic resonance in M.
Even though the above derivation is given for a

single frequency, it applies equally to any spatial-
temporal mode if Hz is in the form (5.1). The
same result is obtained for a parametric oscillator
by interpreting I, as the pump photon destruction
operator and P, as the susceptibility, with M, =0.
However, it seems less justified to neglect the
quantum fluctuation of the pump photon, which is
also described by a boson operator as the
signal mode.
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