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A theory of the influence of binary coHisions on the line shapes associated with Doppler-free spectroscopy
is presented. The specific calculation is for hvo-photon absorption through a real or virtual intermediate state,
but the extension of the results to alternative level schemes is included. Collisions are treated quite generally

at first, but, ultimately, a simple but reasonable collision model is adopted to properly account for both the
"phase-interrupting" and "velocity-changing" aspects of collisions. It is shown that collisional processes can be

used to dlstlnguish between thc two-quantunl and stcpwlsc contributions to thc two-photon cxcltation
rate, Moreover, it is demonstrated that systematic experimental line-shape investigations, in addition to pro-
viding tests of current collision theories, can lead to values for collision broadening and shift parameters, exci-
tation transfer rates, magnetic substate relaxation rates, velocity-changing colHsion rates, and collision kernels.

Consequently, Doppler-free spectroscopy can provide a new and important probe of collision effects in atomic
and molecular systems.

I. INTRODUCTION

%'hile n1ost of the initial interest in the use of
laser spectroscopy has centered on the achieve-
ment of ultrahigh-resolution spectra, there have
been some attempts to use lasers as R probe of
collisional processes occurring within atomic and
molecular systems. Narrow-band tunable laser
sources ean provide the means for obtaining both
qualitative and quantitative data on collisions in-
volving either excited or ground-state atoms. One
class of experiments exploiting the high power and
monochromaticity of lasers is atom-atom or elec-
tron-atom scattering in which the target atoms
have been selectively excited by a laser. ' Such
experiments will px'ovide excited-state differen-
tial-scattering cross sections which have been,
for the most part, previously unobtainabl. This
paper is concerned with the theory of another class
of experiments whose Rim lt ls to px'ovlde new ln-
fox mation on collisional relaxation mechanisms in
atomic and molecular systems.

The relaxation parameters we have in mind are
those which manifest themselves in the line shapes
associated with atomic and molecular systems.
Among these paxameters, one might list broaden-
ing and shift coefficients, collisional quenching
rates, rates for collisional relaxation of magnetic
substates, velocity thermalization rates, and col-
lision kernels. The determination of these param-
etex s is important not only for the proper inter-
pretation of experiments where collisions play a
role, but also for providing some clues as to the
natux'e of the interatomic yotential giving rise to
the relaxation. In particular, laser saturation
spectroscopic techniques permit the elimination
of the broad Doppler background encountered in
standaxd spectxoscopy, enabling one to have a

more sensltlve measure of the manner ln which
collisions perturb the energy levels and altex' the
velocity of the active (emitting or absorbing)
Rton18.

Only recently have theories appeared which
purport to properly account for both the "velocity-
ehanging" Rnd "enex gy-level perturbation" aspects
of collisions. ' ' As will be described in this work,
laser spectroscopy can be used to test the pre-
dictions of these theories. The standard type of
experiment' " involves exciting an atomic tran-
sition with a nearly monochromatic source and
then px obing either the same or a coupled tran-
sition with another laser source. To be speeifie,
we shall consider the upward cascade shown in

Fig. 1. If the lasers propagate in opposite direc-
tions, this scheme corresponds to the ease of

eso ant enha eed t o-photon speet oseopy re-
cently discussed by Liao and Bjorkholm. "

To get some qualitative idea of the role of col-
lisions, imagine that the lasers are polarized in
a manner which would render it impossible to
populate the upper level in the absence of colli.-
sions. The only way that upper-level population
could be attained is for collisions to reorient the
magnetic sublevel population of the intermediate
state. Thus the upper-state population serves to
monitor magnetic relamtion processes. More-
over, by varying the laser frequency driving the
2-3 transition and monitoring the upper-state pop-
ulation, one ean gain information on any velocity
changes incurred by the atom when the collision
reoriented the magnetic sublevels.

It is the puryose of this paper to provide both a
formal analysis of the collisional problem out-
lined above and a specific calculation for a simple
but reasonable collision Inodel. A few other cal-
culations have appeared '~ 'v but the collision mod-
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FIG. 1. Energy-level scheme considered in this work.
Levels 1, 2, and 3 may each contain a number of degen-
erate sublevels.
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els used and the connection of those models with
the rigorous theories has not been clearly indi-
cated. In Sec. II the physical system under con-
sideration and approximations of the theory will
be discussed. In Sec. III, a calculation of the
upper-state population {Fig. 1) in the absence of
collisions is made for weak laser fields of arbi-
trary polarization. The distinction between two-
quantum and stepwise excitation is mentioned. """
Collisions are incorporated into the calculation in
Sec. IV and the nature of the solution is di.scussed
in Sec. V. Specific results for a J =0-1-0 cas-
cade is given in Sec. VI. Comments on generaliz-
ing the results to other level schemes are pre-
sented in Sec. VII and the available experimental
results are discussed in Sec. VIII. Section IX con-
tains a summary of the paper.

It might be well worth noting that some qual-
itative feel for the role of collisions may be ob-
tained by referring to the line shapes depicted in
Figs. 2-5. The mathematical detail leading to
line shapes is given in Secs. II-VI.

II. PHYSICAL SYSTEM AND APPROXIMATIONS

The physical system consists of active atoms
which interact with radiation fields and undergo
collisions with perturber atoms. The active-atom
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FIG. 3. Line shape [Eq. (49)] for a deti»i~g D2&

=-4.0ku. when collisions are present and levels 1, 2 and
3 are nondegenerate. Values of the detuning 432 are in
units of ku, and the intensity I is in the dimensionless
units chosen such that the corresponding no-collision
line shape would have a maximum intensity of unity.
The vertical line indicates the central position of the
no-collision line shape which would have a HWHM of
0.01 on this scale. For values of the collision param-
eters, see the text.
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FIG. 2. Two-photon excitation line shape [Eq. (29)] in

the absence of collisions. The line is a Lorentzian cen-
tered at AS2= +21, with HVGIM of yf3.

FIG. 4. Line shape [Eq. (54)] for a detuning ~2f
=-0.5ku, no degeneracy in levels 1, 2, or 3, and three
values of the collision-strength parameter p (p =0-
strong collisions, P =0.8—moderate collisions, P =1-
weak collisions), The coQision parameters are the same
as those used in Fig. 3 and the value of & =y2/[y2+ I'(2)]
is chosen equal to 3.
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energy-level scheme is shown in Fig. 1. Levels
1 and 3 have the same parity, which is opposite
that of level 2. Level 1 is pumped at some rate ~
and each of the levels (1, 2, 3) decays with rates
given by the corresponding phenomenological
damping constants y„y„y,. The important situa-
tion of level 1 representing the ground state may
be taken as a limiting case of the above scheme
in which X-O, y, -0, but the ratio A/y, remains
finite. VVhile each of the levels may themselves
consist of a number of degenerate states, the
enex gy intervals kv» between levels 2 and 1 and

Sv» between levels 3 and 2 are assumed to be
much greater than the thermal energy. Conse-
quently, collisions may cause transitions among
the degenex'ate substates gg jth&g any of the levels
but cannot induce transitions between states 1, 2,
and 3.

The system is subjected to two fields,

E,(R, I) =Re[g, expi(k, R —Q,t)], (la)

E,(R, I) =Re[8, exp f(k, R —Q,f)], (1b)

where k, and k, are the propagation vectors, 0,
and Q, the frequencies, and h, and 8, the com-
plex amplitudes of fields E, and E„respectively.
The presence of the fields leads to a population of
level 3 which is then monitored in some appro-
priate manner (i.e., by a measure of the fluor-
escence from level 3). Thus experimentally one
may determine the population of level 3 as a func-
tion of Q, and Q„either of which may be varied.

The frequencies ~», u&», Q„and Q, are taken

AR ]Is 0
]Is.1 ~o~ P I

to satisfy the following inequalities:

] e» —~»(»k, u or k,u,

f Q, - cu„ i «/ Q —cu„f; ] Q, —cu„/ «/ Q, - cu„j,

where u is the most probable speed of the active
atoms. Equation (2a) ensures that any one field
cannot be resonant with both transitions 1 2

and 2 —3, while (2b) implies that field E, effec-
tively drives only the 1 —2 transition and E, effec-
tively drives only the 2 —3 transition. Further-
more, we shall assume that fields E, and E, are
weak enough so that perturbation theory is applic-
able.

For simplicity, the perturber pressure is as-
sumed low enough (& 100 Torr) such that only
binaxy collisions need be considered and any reso-
nant excitation exchange between active atom and
perturber is neglected (i.e., only foreign-gas col-
lisions are treated). In addition, the duration of
a collision v, ~10 " sec is taken to be effectively
instantaneous relative to other relevant time scales
in the problem (impact approximation). This as-
sumption requires that the frequencies 0, and Q,
satisfy

] Q, - (u„( r, «I and ( Q, —(u» ) r, « I .

Finally, we neglect any radiation trapping which
could also serve as a magnetic substate relaxa-
tion mechanism.

%'ith the assumptions given above, general ex-
citation line-shape formulas will be derived. Ap-
px'opriate generalizations of the theory to remove
some of the above xestrictions will be given in
Sec. VII. Actual illustrations of theoretical line
shapes will be given for a specific case of current
interest —two-photon Doppler-free excitation"'"
from an atomic gxound state. The Doppler-free
condition is achieved by finding a level scheme
which may be excited by counterpropagating fields
of nearly equal fxequency, k, =-k„such that

~(k, +k,) v]«y, .

.5

FIG. 5. Line shape [Eq. (6)l when levels 1, 2, and 3
have J values of 0, i, and 0, respectively. The applied
fieM E& is LCP with propagation vector k&, and field E2
is HCP with propagation vector k2 ——-k&. The debm&ytg

(E2& =-0,5kg) and collision parameters are the same as
those used in Fig. 4.

[The term Doppler-free refers to the cancellation
of Doppler shifts that occurs in two-quantum pro-
ceSses with counterpropagating waves, provided
Eq. (3) is satisfied. ] Recalling that Eqs. (2) re-
quire the field frequencies to be significantly dif-
ferent, so that each field drives only one transi-
tion, one can combine Eqs. (2) and (3) to obtain
the overall condition

y, /k, u & u/c,

which must be sati. sfied for resonantly enhanced
Doppler-free excitation. If condition (3) is not
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appropriate to the given experimental situation,
the more general line-shape formulas must be
used. The relevant equations for such cases are
given in Appendix B.

It is somewhat misleading to refer to Eq. (3)
as a requirement for two-photon Doppler-free
spectroscopy, since narrow Doppler-free reso-
nances may be obtained even if Eq. (3) is not valid.
Such techniques are commonly used in saturation
spectroscopy when frequencies 0, and 0, are
chosen to lie within the Doppler width of transi-
tions 1-2 and 2-3, respectively. In that case,
only a small velocity subset of atoms contributes
to line-shape formation and the resultant line-
width is on the order of the natural widths of the
levels. On the other hand, if the lasers are tuned
outside the Doppler width of the individual transi-
tions, narrow resonances are possible only if con-
dition (3) is satisfied. In that case, all atoms con-
tribute equally to line-shape formation, and the
narrowness of the line is due to a cancellation of
Doppler shifts. Consequently, Eq. (3) will be re-
ferred to as the condition for Doppler cancellation
to distinguish it from more general Doppler-free
criter ia.

III. LINE SHAPE —NO COLLISIONS

p . ~ (R, v, t ). The equation of motion for these
elements follows directly from an appropriate lim-
it of the Schrodinger equation in which the center-
of-mass motion is treated classically. ' This equa-
tion, '4

= —v V p . ~ (R, v, t) + &(v) &

—r p: (Rvt)
+(i5) '[H, +V(R, t), p(R, v, t)] . ~, (6)

has an intuitive form. The contributions to
&p„„.„(R,v, t)/St are (a) a convective flow term
—v. Vp„ t„(R,v, t), (b} a rate density X(v) pro-
viding an incoherent uniform pumping of all sub-
levels of level 1, (c) a phenomenological loss term
—r „p,„(R,v, t), where the decay parameters

(7)

are m independent, (d) the change in p, owing
to the free-atom Hamiltonian Ho,

(ik) ' [H„p (R, v, t ) )„, ~

= —iu p„. (R, v, t), (6)

with
The wave function for the ith active atom is

given by (E E.}/-h— (9)

(t'(r;, R;, t) =g p A' (R;, t) it (r;), (4)
a=? m

where r; represents all relative electronic coordi-
nates of atom i, R; is the center-of-mass coordi-
nate of atom i, e is one of the states shown in Fig.
1, m represents a sublevel of state a, g„(r;) are
free-atom electronic eigenfunctions, and the
A'„(R;, t) represent probability amplitudes. The
sum over m covers all the degenerate sublevels
of each state n. It will be necessary to perform
the calculation in terms of density matrix elements
rather than probability amplitudes once collisions
are introduced. Macroscopic density matrix ele-
ments p ~ ~ are defined as

and E the free-atom eigenenergy of state u, and
(e) the change in p, ~ owing to the atom-field
interaction

(N) '[V(R, t), p(R, v, t)]~,„ {10)

where

The atom-field interaction Hamiltonian V(r, R, t)
is given by

V(r, R, t) = —er. [E,(R, t) +E,(R, t)],
so that the matrix elements needed in (10) are
simply

V„„, ~ (R, t) = —er„,„~[E,(R, t}+E,(R, t)],

p~ .„. .(R, t) = QA~ (R, t)A„(R, t)*, (5) r . = P r*rg ~ (r d'r. (13)

such that

p, (R, t) O'B

is just the total number of active atoms. Instead
of using the purely quantum-mechanical elements
p~, (R, t) it is possible' to introduce density
matrix elements in classical phase space,

Since the pumping is isotropic and each of the
traveling-wave fields is assumed to drive only one
transition, it is possible to find stationary solu-
tions to Eqs. (6) if the rotating-wave approxima-
tion is made (neglect of antiresonance terms).
Writing

p. .. (R, v, t) =p. .. (v) exp[-i(k, R —O, t)],
(14a)
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p„,, (R, v, t) =P, (v),
and noting that

—(Q, + Q) t}), (14c)

(14d)

n —A3]2
P(tm: a'm' Ptj'm'. nmt P(jm: (('m' P(3'm' am t . (16)

p, , (R, v, t) =P, , (v) exp[- i(k, R —Qt)], (14b)

p. .. (R, v, t) =p, , (v)exp(-t[(kj+k, } R

quantity of experimental interest is the upper-
state population, or, to allow for a somewhat more
general experimental situation, "a set of values
for all upper-state density matrix elements. In

perturbation theory, the upper state is reached
by the two types of paths depicted below:

one can substitute Eqs. (14) into (6), employ the
rotating-wave approximation, use Eqs. (1), (8),
and (12), and obtain the following set of equations
for the steady-state quantities p~, ~ ". P3:2

P3:3 ~

[Y(2 —t52((v}]P, , (v) = iX2t', ; P22, 2 (v)
~ ().) g(X2m':l(t Plm:(2(v}

(2)
3X3(t:2m pjm:3(t(v) t

[Y23 32(v)] P2m'3m'(v) X33:2m p3(t 3m'(v)
~ (2) g(X3m':22 P2m:23(v)

(16d)

+ tX2'".~ P~,3 (v), (16e)

[Y(3 3((v)] Plltt:3ttt (v) X2(t:lm P (: 2(tv3)m

(2) g
X3III '2(t pj 2((v)mt

X23:j rm2l(t;jm $/2
(2)

X»:2 =&r32:2 . 62/2g,

6„(v) = &d„—0, +k, v,
632 (v) = (j(32 —iG& +k2 ' v t (18b}

5„(v) =621(v} +632(v} =(j'3( -(Qj+Q)+(k, +k,) v .

(18c)

ln writing Eqs. (16), terms corresponding to field
E, driving the 2 3 transition and E, driving the
1 —2 transition have been omitted, and a summa-
tion convention is implicit in which aE/ repeated
latin indices are summed unless otherwise spec-
ified (the sum is over the magnetic substates).

Equations (16) represent a set of algebraic equa-
tions which may be solved exactly. '0 However, we
are interested only in a perturbative solution. The

C&) gY(Plltt: litt \v j (X2(t; jm P2(t; lttt (v)

(X2(t lm' Pjm 2p(V} +X(V) 6m m'

Y2p2ttt'2ttt (v) (X2m' j(t Pj(t' 2ltt (v) X2m: j(i p2m: j(t(

(2) g - IW C2)
+(X33:2mp32:2m'j» —(X33:2m P2m:33(v) t

(16b)

Y3P3m'3m () X3m'2(t p2(t:3m ( ) X3ttt:2(l p3itt 23( ) t

(16c)

p3 m '3 Itt (v) P3 ttt 3ltt (v) P3 III'3 Itt (v} t

P3m:3m'(v)

= 2"(v)&mm' ['Y(2 'Y23 'Y13 —
Y23 63((v) 621(v)

—Y„6„(v}6„(v)—Y„6„(v)6„(v)]

x«„(v}&„(v)& (v)/(Y, Y,), (2»)

p,'m:,.(v) =4%v}&. ~ Y„Y„&„(v}&„(v}/Y2 Y. Y, ,

(21b)

where

(&) (&) g (2) (2) g
)}j2P:1$ &2r: 1$ X3m:~ &3m':2r

and the Lorentzians

«j(v}= ([Y()j' +[6j((v)]') '.
(21c)

(22)

The quantities p. .. ~ and p. .. ~ represent the
contributions to P, ., ~ from the upper and lower
paths, respectively, shown in (19). This separa-
tion will be useful when collisions are introduced
in Sec. IV. Note that Eq. (21b) is simply a product

The upper path does not involve any intermediate-
state population and is commonly referred to as a
two-quantum process, while the lower path is
usually labeled a stepwise excitation, since the
intermediate-state population explicitly appears.
This separation is somewhat artificial, since there
is no way to separate out the contributions from
either path in the absence of collisions. It is clear
that had the calculation been done with probability
amPlitudes the breakup into two-quantum and step-
wise excitation would not naturally occur. There
will be some cases where the two-quantum contri-
bution is dominant, but, in general, both contribu-
tions influence the line shape.

The value of P, , (v) follows from a straight-
forward perturbation calculation and one easily
fmds
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of absorption cross sections for the 1-2 and 2 -3
t rRQ sit 1on 8.

By combining Eqs. (20) and (21) and making use
of Eqs {7)RIld (18)y oils CRIl wl lte p1((( 1~~ 111 'tile

simplif ied fox'IQ

&,.:,.(v) = ~(v)&...(y, y, y, ) '

x[y, y, 2(,(v) g„(v)

+y, y, &„(v)&„(v) +y, y, &„(v) &„(v)

+ y, y, y, (y, +y, + y, ) &„(v)~„(v) &„(v)].

for the pxaetically important case in which level 1

is a ground state. %riting the excitation density

I.(v) = XW(v},

W{v) = (Ilu') ~' e " ~
is the assumed Maxwellian velocity distribution
and A is the excitation rate per unit volume, and

taking the lixnit

%hen integrated over velocity with some Rppx"o-

priate A(v), the line shape

P .. (v) d'v

is the general result for excitation involving two
photons and is analogous to the result obtained by
Omont, Smith, and Cooper" for the related prob-
lem of Raman scattering. While Eq. {23)will not
be discussed ln detRll 1t may be noted thRt 1Q the
limit of well-defined upper and lower states (y, -0,
y, -0) the velocity-dependent line shape {23)be-
comes proportional to a & function &(&»(v)), in

agreement with the conclusions of Heitler. "'
An explicit evaluation of Eq. (24) will be made

OIle olltRills the lllle sllRpe fl'o111 Eqs. (23) Rlld (24}

I~~~=N~A. ~~~ d'vR'v y» '+ 6„-k, v '

xf(y„)'+[a„-(k,+k, ) v]'f ', (2'7)

where the definitions (18}and (22) have been used
Rnd the detun1ngs + Rl6 defined Rs

21 ~1 ~21' +32 4 ~32

4„=0, + 0 —(((I2(+((13,) .

Equation (27) may be further reduced if the
Doppler cancellation condition [Eq. (3}]is applic-
able. In that limit,

=(("- ((»('*'(~*( I 'f& ~(I)((»(*~ (&., -I (] ',

'I~I'(k u»y) 'exp[-(0, /ku}'], ] n» j&&u,
-&O& ~ [(y„)'+(&,I)'] '

/ a„f»ku,

whexe we have assumed the Dopplex" limit y; «ku
in writing Eqs. (29b). In Fig. 2 the line shape is
shown for fixed 4, and 4, varied. Thex'e is a
single sharp resonance with a half width at half-
maximum (HWHM) of y» at 6» = 6»+ 4» =0. The
absence of another resonance is due to the fact
that level I has zero width. If the lower laser
fxequeney 18 vax led with +g2 fixed& then
shRpe Rs R function of 421 would have tQJO x'eso-
nances, a sharp one at I(,» = 0 (n» = —I1») and a
Doppler-broadened one at 4» =0. The discussion
will be limited to the ease of 4» fixed. More
genexal line-shape expressions, valid when Eqs.
(3) and (26) no longer hold, are given in Appendix
B.

IV. LINE SHAPE —COLLISIONS

In Appendix A, a, formal theory of collision
effects appropriate to the level scheme of Fig. 1

is developed. The results give expressions for the
collisional time rate of change of the various
density matrix elements. These expx'essions are
quite complex, in general, and do not even lend
themselves to a simple interpretation in terms of
"phase-interrupting" and "velocity-changing" col-
lisions. There are, however, certain physical
situations in which the equations take on a sim-
plified form. A common case of practical interest
is one whex'e levels I, 2, Rnd 3 xepresent different
electronic states of an atom. Assuming these
levels experience reasonably different collisional
interactions with pertux ber atoms, eollisional
changes for density matrix elements of the form
p . ~ ., with u'w e, will involve forward scat-
tering ODly, owing to quantum-mechanical Ulter-
ferenee effects. ' ' Withsn a given state e, colli-
sions can both reorient the magnetic sublevels
and cause a change in atomic velocity.
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In light of the above comments, the collisional change in density matrix elements may be written

Bp . ~ .(R, v, t) =-y .„.„(v),o .„(R,v, t),Bt coll

n4 0.', no sum, (30a)

=-R"" .(v; a)p „. „.(R, v, t)+ d'v'W „v'-v;e)p „. „R,v', t). (30b)

The Parameters y~~" . ~mi(v), Rm ~(v, e), and
g"",(v'-v, n) are defined in Appendix A. They
depend on various scattering amplitudes and are
linearly proportional to pressure. Equation (30a)
reflects the fact that because of the assumed
state-dependent collision interaction collisions are
solely of a phase-interrupting nature for density
matrix elements coupling different electronic
states n and n'. The complex quantity yf'" gives
rise to the familiar shift and broadening of spec-
tral profiles. The rate R"" .(v; 8) and kernel
W"" .(v'; B) appearing in Eq. (30b) are complex

TQ + SW.= P3m:3m+ P3m:3m ) (31)

and, in general, cannot be given a simple inter-
pretation. They represent an unseparable combi-
nation of magnetic reorientation and velocity-
changing effects within a given state e.

The right-hand side (rhs) of Eqs. (30) should be
added to the rhs of Eqs. (16) and the set of equa-
tions solved to determine the excitation line shape
in the presence of collisions. This program is
carried out in Appendix A and the line shape is

where

p3m:3m Ã0&3 Asfas d 'Uo+2s:3a(VO —k2)Q1f:3a(VO, -k1 —k2)$1f.2h(Vo, -k1)W(VO)+ C.C. (32a)

and

xG~„(v,- v; 2)[$„.,„(v„-k,) + $„.„(v„-k,)']W(v, } (32b)

correspond to Eqs. (21) modified to include col-
lisions and integrated over velocity. The quan-
tities appearing in Eqs. (32) are Ã0= X/y„

A hmnr (1) (1)+ (2) (2) W~s f q p X2s:1fX2 hf 1m X 3a:2p X3n:2r

containing the applied field intensities,

(33)

+ d 'p1Wp& (V1 Vp 2 Gmn(V V1p 2)

+ 5(v' —v)5,5„h,
where R~„" and W~„" are the complex rates and
kernel given in Eq. (30b), and the Maxwellian

(35)

(v, k) = [y„~-ir, +ik v+y'"„.„. (v)] ',
(34)

which is a resonance denominator containing the
detuning 6«defined in Eq. (28} and a collisional
width and shift contribution y„" .„, (v), the prop-
agator Gt„"(v'- v; 2) defined as a solution to the
equation

y2G~ (v'- v; 2) = -R&„"(v;2)G'" (v' v; 2)

distribution TV(v). For simplicity, the level-3 pop-
ulation rather than an arbitrary density matrix
element has been displayed —the more general
formula appears in Appendix A.

Equations (32) can be easily understood in light
of the above comments concerning the collision
model which has been adopted and the perturbation
chain depicted in expression (19). Collisions dis-
tinguish the upper two-quantum (TQ) chain from
the lower stepwise (SW) one. In both chains, un-
polarized atoms start in level 1 with a Maxwellian
velocity distribution. Since this is an equilibrium
distribution for the atoms, collisions will not
alter it. In the TQ chain, the fields then create
off-diagonal density matrix elements p», p», and
p». The net effect of collisions on such density
matrix elements in the model adopted is to provide
a complex decay parameter y~„" ~ but no velocity
changes. This accounts for the presence of
x)»(vo), ~, (i',.-,), and +23(vo) in Eq. (32a). On the
other hand, although p» and p» also appear in
the SW chain, the intermediate term is now p».
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Collisions are phase interrupting in their effect
on p~ and p», but will, in general, alter p, , (v)
with an unseparable combination of magnetic re-
orientation and velocity- changing effects. Con-
sequently, one finds the product $12(vo)
x G~»(v, —v; 2)X)„(v}appearing in Eq. (32b). In both
chains the final step involves the total upper-state
population, which is unchanged by collisions. The
implications of the difference in the nature of the
TQ and SW chains will be discussed in the follow-
ing sections.

It should be noted that the evaluation of the line
shape [Eqs. (32)] represents a formidable problem
even for the relatively simple collision model
chosen. To determine the propagator G~,"(vo- v„2)
needed in Eq. (32), one must solve Eq. (35) and,
to solve Eq. (35), one must have values for the
rate R~, (v;2) and kernel W~„"(v,-v, ;2). Although
formal expressions for these quantities are given
in Appendix A and these expressions may be
s implif ied by symme try considerations in so me
cases, one is usually forced into adopting some
phenomenological forms for these rates and ker-
nels. Specific examples are given below.

p33 Npy3 A d Do+23 vp» &13 vp k1 )

ps =2N y 'A

X X)12(VO k1)W(VO) + C C (36a)

x d'e d'v, y„+ I'„"v g~„"(v)G(v, —v; 2)

x [y»+ I"~» (v,)]R~»" (v, )W(v, ),
(36b)

V. NATURE OF THE LINE SHAPE

A. No degeneracy

If levels 1, 2, and 3 are nondegenerate, Eqs.
(32) take on an especially simple form. Dropping
all magnetic substate indices and using definitions
(33) and (34), one can reduce Eqs. (32) to

where the collision-modified Lorentzians are
given by

2', ,"(v) = [y, , + I',"(v}]'+[(), (v) S'-,"(v)]',

I';& (v) =Rey (& (v), S,&
(v) =Imy~„"(v),

(z)i 2i (2) i2

(37)

(38)

(39)

The propagator G now satisfies the equation

y G(v -v;2}=-I'(v; 2)G(vo- v;2)

+ d'v, W v, - v; 2 G vo- v„2

+6(v, —v), (40)

with real kernel W(v, - v; 2) and rate I'(v; 2) for
velocity-changing collisions [I'(v; 2) = fW(v- v; 2)
xd'v'], and the B,&

are defined by Eq. (34). The
only difference from the no-collision TQ contri-
bution (21a) is that the replacements y, &- y„.
+I'(,'"(v) and 6, -6&, —S~(&(v), have been made,
indicating a collisional contribution to the decay
of p, &

and a collisional frequency shift. On the
other hand, the SW contribution can now be in-
terpreted as arising from a collisionally modified
absorption to level 2 followed by velocity-changing
collisions in level 2 followed by a collisionally
modified absorption to level 3. Collisions have
resulted in a fundamentally different form for the
TQ and SW chains.

Once a choice for W(vo- v;2} is made, Eq. (40)
may be solved for G(v, - v; 2) and the general ex-
pressions (36) numerically integrated. However,
for the specific example that has been previously
considered, some analytic progress is possible.
Adopting the Doppler cancellation condition (3}
and neglecting the v dependence in y~~~ (which is
generally a good first approximation), Eqs. (36)
may be written

(

p,'o = 2X y, 'A [(y„)' (5„)'] -' d'v, [y„y„y„—y„&„&„(v)—y„()„~,.(v) —y„5., (v)&,.(v)] &'„"(v,)&'„"(v.) W(v. ),

(41a)

p„=4N y, 'Ay„y„d'U, d'v Z~„"(v)G(v, -v; 2)Z„"(v,)N'(v ), (41b)

where

Ph+r; (42a)

5»(v) = —L»+ k, v, 5»(v) = —4»+ k, v, (42b)

31 31)

Ph
21 21 12&

Ph
~32 =~32+ 823

Ph
31 21 32 13 0

(42c)

(43a)

(43b)
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G(v, -v; 2) =(y, ) '((].5(v —v, )

+ (1 —(].) [ v(1 —r')u']

x exp[ —(v —r v, )'/(1 —r')u'] }
(44a)

where
p/ (44b)

(45)& =r, /[r. +I'(2)];

I'(2) is the rate for velocity-changing collisions
in level 2, P is a constant between zero and one,
and u is the thermal speed appearing in Eq. (25b).
Equation (44) may be easily understood if one
realizes that the propagator simply determines
the change undergone by a ~-.function velocity
distribution in the time 7', = (y, ) . Since the pa-
rameter n gives the fraction of atoms that do not
undergo collisions in the interval 7„ the first
term in (44a) represents the contribution from
atoms which have not experienced velocity-
changing collisions. The parameter P character-
izes the strength of a single collision, with P =1
corresponding to a weak collision and P = 0 cor-
responding to a strong thermalizing collision.

and the detunings &;d are defined in (28).
For the propagator G(v, -v; 2), we choose an

extremely simple phenomenological two-parameter
expression

d'vo G(vo-v; 2)W(vo) = W(v)/y„ (46)

expressing the fact that collisions will not alter
an equilibrium distribution.

The line shape (31) may now be evaluated as a
function of 4» for fixed &21. In all the calcula-
tions, the Doppler limit

ku»r, .„is', ," i

will be taken to hold.

(47)

1. I~2, I&& ku

For such va, lue s of g „5»(v)= —d „a.nd Z~»"(v)
=(&») '. Using Eqs. (41)-(43), (46), and (47),
one obtains the line shape (31) as

Consequently, the second term in (44a) represents
the contribution from atoms which have their vel-
ocity changed from a 6 function &(v —v, ) to a dis-
tribution of velocities centered at v =rsvp with width

(1 —r')'~'ku T. he parameter r, defined in (44b),
represents an average vel. ocity-changing effect
for the many single collisions which may occur
in a time interval 7, ." Although simple in form,
G(v, -v; 2) has the needed properties that its in-
tegral over v gives (y, )

' and

I =2N, A(y, ] '(d„] ' fd', tV(, ]Z„'(,](((„(„j„~(„ll„d„—j„ll„lt„( ] ~j„d„5„(]] ((i„]'~ (d„]']

+r„r„(r,) 'j. (48)

Velocity-changing col.lisions are unimportant here,
since the detuning &21 is so large that each vel-
ocity subset of atoms is essentially equivalent
in the 1-2 absorption of the SW chain. The line
shape (48) has a sharp resonance for 4» = —&»
and a broad one at &»=0. Near these two reso-
nances, Eq. (48) may be written

2NoA y„

«r ~32=-~21

4N A~'~2 r'" - ~ +S'" '-'-
0 12

expkuy, (d,»)' y, k u
(49b)

for &, =0,

where, for consistency with Sec. III, we have
taken level 1 as a ground state.

The line shape for a detuning &» = —4.0ku is
shown in Fig. 3, with variables expressed in di-
mensionless units obtained by dividing them by

the Doppler width ku. For the natural-decay pa-
rameters, we have taken y, =0, y, /ku =0.03, and

y, /ku =0.02. The collision parameters depend
linearly on the pressure and, to correspond to
perturber pressures on the order of several Torr,
we have chosen I'~»/ku =0.06, I'~„/ku =0.08,
I'„"/ku =0.1, S~»"=0.02, St,"=0.04, and 8~„"=0.02.
The line shape and those to fol. low are normalized
so that the corresponding no-collision line shape
would have a maximum amplitude of unity. The
no-coll. ision line shape, for this case, would be
centered at &» = —&», with HWHM of y»/ku = 0.01.

The line shape (49) differs from the no-collision
result in two ways. First, the sharp resonance
arising mainly from the TQ contribution has been
shifted, broadened, and decreased in intensity by
collisions. Second, one finds a neu broad reso-
nance at &» =- 8» which arises from the fact
that collisions have effectively introduced some
width into the ground state. The broad resonance
represents an expanded frequency range of &»
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which will give rise to excitation. The ratio of
the broad- to narrow-resonance amplitudes is
2v' '(y»/ku)(r»/y3)&1 and vanishes for no col-
lisions I'P» =0.

2- l&21 I &ku

For detunings within the Doppler width, the
major contribution to the excitation will be
achieved if &„and &» are chosen such that the
same velocity subset of atoms can be resonant
with fields E, and E, on the 1-2 and 2-3 tran-
sitions, respectively. The resonance conditions
for individual atom-field interactions are (ne-
glecting collisional shifts)

k, 'v, ——&2j, k, v2- —k, ' v, ——&32) (5o)

where

x [ ry„Z(s„+a„~s'„")], (51a)

I =y„+y„,

32 21 12 23

(51b)

(51c)

The TQ contribution is slightly asymmetric be-
cause of the presence of resonances at both 432

Ph ph ph
31 13 a 3 31 12 23'

where v, and v, are the atomic velocities when
fields E, and K3 interact with the atom and k,
= —k, in the case under discussion.

Thus in the TQ chain [Eq. (41a)], where velocity-
changing collisions do not enter, v, =v, and Eq.
(50) will be satisfied if d» = —&31. A straight-
forward evaluation of Eq. (41a) in the Doppler
limit (47) leads to the TQ line-shape contribution"

43'~'N, A exp[ —(6» + S3»)'/(k u)']
k uy, [(y„)'+(a33 + a31+ S313)'](I~+E')

In the SW chain [Eq. (41b)], the atomic velocity
may be different when fields E, and K3 act, as a
result of velocity-changing collisions. When Eq.
(44) for the propagator is inserted into Eq. (41b),
the resulting integral does not have a simple ana-
lytic form. However, for a sufficiently large
range of the parameter r defined by Eq. (44b), the
integral may be approximated in the Doppler limit
(47) as

p3," = 4 t1'~ 3NA (k u y3)
' exp[ —(431+ S„")'/(ku)']

mr (1 —13)

y, (F y Z3) (1 —r')'~ 3kuy,

[d.„+ S'„"+r(~„+S'„")]'

a =1 if P=1. (53)

T he SW contribution cons ists of two parts. The
first term represents atoms which have not under-
gone collisions and has a resonance at &» +2/

S» S23 which is effective ly the resonanc e
condition (50) with v, =v, . The second term rep-
resents atoms which have effectively had their
velocity changed from v, to v, =rv„giving rise
to a new resonance condition from Eq. (50) at
&» -- —r(O»+ S3») —S3„".The width of this new reso-
nance is =ku(1 —r')' ' and is a direct manifestation
of velocity-changing collisions.

Combining Eqs. (51) and (52) leads to the total
line shape for the case ( &»( &ku,

(52)

Equation (52) is not valid for r =P'~"= 1. However,
the correct limiting value of p33 for r= 1 is ob-
tained by setting

I = 4n'~3N, A(kuy, ) '(y„) ' exp[ —(631+S~13)'/(ku)']

(
3 I' ZE ) r( )'»», —

3
"—„+,—,"—,

)
+(1 —13)11'~'(I —r') '13(kuy3) '(y»)3exp[ —(4»+r6 ) /3(1I

3—r')k'u']

(54)

where h. . . cY, and I' are defined by Eqs. (43) and
(51). The line shape consists of three parts. The
first term is the TQ contribution, which, in gen-
eral, is asymmetric, since 4 t 4». However, if
I'o$„, the line will possess a nearly Lorentzian
peak centered at &»= —&» —S„", with HWHM of
pj 3 The s econd term is the SW contribution from
those atoms which have not undergone collisions
before being excited to state 3. It is a Lorentzian
centered at &,2 +2y S,2 S23 with HWHM of
I'=$'»+$», and is usually broader than the TQ

term, since I'&y, 3 is typical. The detuning giving
rise to maximum amplitude is shifted from the
corresponding TQ value. The third and final term
is the SW contribution and is a Gaussian centered
at &» = —r(4»+ S») —S», with width (1 —r')' 2k'.
The ratio of the amplitudes of each of the terms
at their respective maxima is

1:a(y»/y3): (1 —n)3'~'(y»F/kuy3)(1 —r ) '1'3,

so that the SW chain contribution will dominate
at high pressures, y»/y3»1. The fact that the
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first two terms have their maxima at different
positions will lead to an asymmetric profile even
if there are no velocity-changing collis. ons (r =1).
The third term will enhance the asymmetry,
since its maximum position is far removed from
the first two (assuming 6» o 0).

These general line-shape features are illustrated
in Fig. 4 for a detuning &„=—0.5ku and the same
collision parameters used in Fig. 3. A velocity-
changing collision rate I'(2) = 2y, (n = —,') has been
chosen and the three curves correspond to P = 0
(strong collisions), P =0.8 (moderate collisions),
and P = 1 (no velocity-changing collisions). As
predicted, the curves are asymmetric, with the
effects of velocity-changing collisions clearly
evident in the broad shoulders of the P = 0 and
P=0.8 curves. The resonance near &»=-~„
is broader for the P =1 case than the others; for
P =1, n =1 from Eq. (52) and the resonance is
dominated by the second term in Eq. (54), which
has a mVHM of I'=$I2+p23 rather than by the
first term in Eq. (54), which has a HWHM=y»&1'.
At higher perturber pressures, u mill decrease
and the velocity-changing term in Eq. (54) will
become dominant, reflecting the fact that at high
pressures it becomes extremely likely for atoms
in state 2 to collide before being excited to state 3.

Figure 4 is graphic proof that collisions can
help distinguish the TQ and S% chains. Experi-
mental verification of such curves would provide
nem insight into the nature of velocity-changing
coll.isions. It should be noted that some offset
of the laser &„40 is recommended to enhance the
visibility of the velocity-changing effects. If
&» = 0 is taken, all contributions to the line shape
will be centered at approximately the same fre-
quency.

B. Degeneracy

%hen level. degeneracy is taken into account,
the line-shape formulas become expectedly more
complex. The degeneracy of levels 1 and 3 does
not add any major complication. In fact, the TQ
chain may be calculated with little modification
[the Lorentzians which appear in Eq. (41a) may
be replaced by sums of Lorentzians]. However,
it is no easy matter to include collisional changes
in level-2 density matrix elements po ., (v). The
general px opagator G~, (v -v', 2) determines the
magnetic reorientation, phase, and velocity-
changing effects occurring in collisions between
atoms in level 2 and perturber atoms. Methods
for approximating or modeling the propagator
are not obvious. Some general symmetry argu-
ments may be used to reduce the number of inde-
pendent elements G[,"(v- v'; 2), and in the extreme

case of fast isotropic perturbers there are but
two nonzero independent elements. " On the other
hand, there are cases where degeneracy can act-
ually simplify matters. A specific case of this
type is discussed in Sec. VI, where it will be
shown that the level-2 degeneracy may be exploited
to provide a sharper picture of vel. ocity-changing
collisions than ean be seen in Fig. 4 of the non-
degenerate case.

VI. LINE SHAPE —1=0

In order to study velocity-changing collisions,
it would be desirable to isolate the third term in
Eq. (54), since this term contains all the velocity-
changing effects. However, in the nondegenerate
case, such an isolation is not possible, and the
resultant line shape (Fig. 4) contains contributions
from atoms which have not undergone velocity-
changing collisions as well as from those which
have had their velocity changed while in level 2.
One can achieve the desired isolation if he is
willing to consider degenerate systems. As a
specific example, level 1 is taken to have J=0,
level 2 to have J=1, and level 3 to have J=O.
Furthermore, the field E, is chosentobe left-hand
circularly polarized (LCP), E, to be right-hand
circularly polarized (RCP), and the two fields to
propogate in opposite directions A', = —k, .

Since E, and E, can each only induce Am=1
transitions {the z axis of quantization has arbi-
trarily been fixed parallel to k, ), there will be
no excitation to level 3 in the absence of collisions.
Hence the only way in which level 3 can become
excited is if collisions reorient the atom when it
is in level 2. Consequently, the total physical
process involves an excitation of the m=1 substate
of level 2 by the field E„areorienting collision
that changes the magnetic substate to m= —1 ac-
companied by some change in velocity, and finally
an excitation to level 3 by the field E,. The line
shape arises solely from atoms which have under-
gone collisions while in level 2 and ean serve as a
direct monitor of velocity-changing collisions.

The mathematical treatment is straightforward.
Using an orthogonal basis (e„e„k,), one can de-
termine that the complex amplitude h, for LCP
light in Eq. (Ia) is h, = E,(e, +ie, ) and the complex
amplitude S, in Eq. (lb) for RCP light propagating
in the -)t, direction is 62 =E,(l, +fe2). The cor-
responding field-strength quantities g appearing in
Eqs. (17) may be easily evaluated, using the
signer-Eekart theorem, as
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where T» and T» are reduced matrix elements of
r between states 2 and 1 and states 3 and 2, re-
spectively. With this result, the necessary pro-
ducts of g's needed in Eqs. (32) are

g Ajqi 0SJfQS

."is~ = 's le~2iTs2 ~i ~2/I I'5.
~ i@,i5., -ib, -i

(56)

(no sum).

v ~vpcC2 y 30vG 1 yvo v;2

Smce A'~:," appears in the TQ expression (32a),
two-quantum processes will not contribute to the
line shape. This result is a direct consequence of
our state-dependent collision model in which it is
impossible for collisions to change the magnetic
quantum numbers associated with off-diagonal
density matrix elements of the form p . for
a ~ a'[see also Eq. (30a)]. Should line shapes ex-
hibit structure characteristic of TQ processes
(narrow resonance centered at 5» =0) one would

be forced to reassess the collision model for that
particular case.

Thus the line shape arises solely from the SW
term (32b) which, for the J=O-1-0 cascade,
reduces to

1=4N(y) 'A'y„, »y2 y 30

P „(a)=(1 -a)/[1+2(l-a}] ~ (59)

Admittedly, the propagator (58) is oversimplified.
A somewhat more realistic propagator would con-
tain several parameters o. , reflecting the fact
that collision rates depend on the magnetic quantum
numbers involved. Correspondingly, the function
P» would take on a different form, "as would the
other factors in Eq. (58).

Substituting Eq. (58) into (57) and performing
the indicated integrations, one obtains the line
shape for the region of interest (n»~&ku as

4v'~'N, A'P „(a} n„+S'„".„I= ' " exp
k,uy2y3 ku

r"
(I")"(~')' '

otherwise

(60a)

k k.uy y (I-")'"
[~„+S,'",

, „+(k,/k, )r(n„+S',„".„)]'
(k,u)'(1 r')-

(60b)

where

F'=y, , :..+(k./k, )y„», Z =., ~„..-.+(k, /k, )a„
(61)

and the Doppler limit (47) has been assumed but
condition (3) has not been invoked. For we~
collisions (P = 1) and nonexcessive pressures
(a&0, implyin gr =p' =1), collisions do not
significantly alter the atomic velocity and, as ex-
pressed in Eq. (60a}, the line shape is Lorentzian,
centered at

n„= —Sf», .„-(k,/k, )(a„+8'„'.„),
with HWHM of F'. For somewhat stronger colli-
sions, (I-P'}''ku»y . „, theline shape re-
flects the velocity-changing collisions and is a
Gaussian centered at

with width k,u(l-r')' '. The above features are
seen in Fig. 5, which is drawn using ky k2 and the
same parameters as in Fig. 4. The background of
the TQ and no-coliision SW processes have been
eliminated, and the resulting line shape clearly
illustrates the effects of velocity-changing colli-
sions. At a given pressure, the shift of the line
center from —~» is a measure of the strength of the
velocity- changing collisions.

In Fig. 6, the amplitude factor P»(a), the shift
of line center from -6», and the width of thereso-
nance is shown as a function of i-n, assuming the

~here r and n are defined as before [Eqs. (44b)
and (45), respectively] and P»(a) is the steady-
state relative probability of finding an atom in
substate m =- 1 when atoms are produced in state
m=1. At low pressures (O. =1), P»-1 —a, since
in the limit of no collisions P» must vanish. On
the other hand, at higher pressures (a=0),
P l1 3y since collisions will have caused total
relaxation of the magnetic substate population. A
reasonable form for P yy is then

2~i(&:2i(vo) (vo) i (57)

where A'=A'„,'', , and Z'-". ~ .(v} and y „~are.
obtained from obvious generalizations of Eqs. (37),
(38), (42}, and (43). Equation (57) has a Lorentz-
ian 2„",»(v, }representing an absorption to sub-
state m=1 of level 2, a propagator G", ,(v, -v;2)
representing the collisional transfer from m = 1
to m = —1 accompanied by a change in velocity from
v, to v, and a Lorentzian g:"-„»(v) representing
an absorption from substate m= -1 of level 2 to
level 3. To determine the propagator, one must
solve the coupled set of equations (35}. However,
in the spirit of Sec. V we choose instead a pheno-
menological propagator

G", ,(v, -v; 2) = (y, ) 'P-»(n)[v(1 -r'}u'] ' '

xexp[-(v -rv, )/(1-r')u'], (58)
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Doppler limit (4V) aII4 ta(Liag the coHision-strength
parameter P = 0.S. The yaalhty 1-8. varies wi.th
the collision rate I'(2) as I'(2)/[y, + I'(2)]; at low
pressures 1-a «1 and at higher pressures 1-n =1.
As discussed above, the amplitude is proportional
to the pressure at low pressures and saturates at
higher pressures owing to the complete equaliza-
tion of magnetic suMevels caused by collisions.
The dimensionless shift S=(E»+a»)/A»
= 1- (k,/k, )r is a measure of the shift of the line
center from —d» owing to velocity-changing
collisions. At low pressures, the shift provides a
direct measure of the collision. strength, since
~ =P; at higher pressures, ~-0, reflecting the
fact that a sufficient number of collisions will
cause a velocity thermalixatian of the sample,
leading to a line centered at 3»~0. The width of
the resonance is (I-r 2)'~'ku, and is (1-8')'~'ku
at low pressures and = km a4 higher pressures when

complete velocity thermalization has occurred.
At still higher pressures, where the Doppler limit
is no longer valid, the lime shape weal become
Lor entz ian.

By studying at a given pressure line shapes of
the type showa ia Fig. 5 awk hy obtaisinN, the
pressure-dependent curves shame ia j['iN, . 6, owe

can arrive at values for the ee11&ion parameters
n, P, I', 8,".„amd 4, , Kn this way, ilLforma-
tion on various coklisioa cross sections 3Ls mell as
the collision-strength parameter ]8 may be un-
covered. There malay be eases where the propa. -
gator (58) is not sufficient, to explain certain ex-
perimental data. For example, if the collision

FIG. 6. Variaboe ef the ampkikwie, shQt, sad with
of the resonance shower+ ia Fil, . 5 as a function ef pressure
through the parameter 1-o.. The curves are drawa for
P = 0.8 but the general nature of the curves is independeat
of P. The shift shown is the dim———ioaless qusetity
(&32+ +2/)/4 2f evaluated K I@ac center and is a measure
of the line center's di~aeememt owing to velocity-
changing collisioas. A,s Ihewa, k& =42.

irkeraetioa has a long-range part plus a hard core,
oae may have to write the propagator as a sum of
"weak-collision" and "strong- collision" parts.
The line shape at moderate pressures [(p„,~)' = 1]
would then consist of a Lorentziam plus a Gaussian.
Rather than give results for many different propa-
gators, we have concentrated on the simple propa-
gators (44} and (58}. As experimental data become
available in the future, one may naturally seek to
find propagators which give best fits to the data.

VII. EXTENSIONS OF THE THEORY

The theory outlined in the previous sections is
a quite general one and can be extended to cover
most cases of practical interest. Several pos-
sibilities for further investigation are listed below.

A. No Doppler canceHation

Although final expressions for the line shape
have been given only for l(k, +k, ) 0l &y» [with the
exception of Eqs. (60)], the more general equations
presented in this work are valid even if there is no

Doppler cancellation and may be integrated with-
oet difficulty. The necessary modifications of the
line-shape formulas under the conditions of no

Doppler cancellation, k, =ok„ lk, —ek, lu &y„, are
given in Appendix 8, where e =1 corresponds to
ceyropagating and e =-1 to counterpropagating
%%ves.

For counterpropagating waves, there is not much
qualitative difference in the results. In the no-
ceklision limit (analogous to Fig. 2), one must
con»der IA»l»ku and ld»l&ku. If l~.il»ku,
the line shape is a Gaussian with width lk, —k, l u

centered at ~» =0; the Gaussian behavior is a
direct consequence of the lack of Doppler cancella-
tien. On the other hand, when ln» l

&ku, only a
small velocity subset of atoms effectively contrib-
utes to line-shape formation and the line is a
I.orentsian centered at a» =-(k, /k, )n. » with a
HWHM of —,'[y, +y, l

1 —(k, /k, ) l]. The HWHM is
greater than the value of —,'y, of the Doppler cancel-
lation case. In the line shape corresponding to
Fig. 3 (collisions with

l d, » l»ku), the resonance
nel r Q 3, = 0 wil 1 show a residual Doppler broaden-
ing, but the broad resonance at h ~ = 0 will be un-
changed. The general nature of the curves corre-
sponding to Figs. 4 and 5 will also remain un-
changed, although the exact values of the widths
and shifts will vary somewhat because of the in-
tro&xction of new combinations of collisional
widths and shifts in the line-shape formulas.

For copropagating waves, the line shape acquires
a new and somewhat surprising feature. " If lA„ l

&kN, owe can perform a contour integration of Eq.
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(36a) in the Doppler limit [Eq. (47)] to show that

p33 =0. The contributions from different velocity
subsets of atoms leads to a cancellation of the
p~~ contribution. %hether or not additional physi-
cal insight may be derived from this result re-
mains to be seen. For copropagating waves, the
line shapes corresponding to Figs. 2-4 mould be
changed as follows: Figure 2—if ~n, » (»ku the
resonance is a Gaussian with width (k, + k, )u cen-
tered at d» =0, and if

~ a» j «ku the resonance is
a Lorentzian with HWHM of g~y3+y2[l+ (k, /k, )]]
centered at A~ = —(k,/k, )A». Figure 3—the reso-
nance at 6» =0 will be Doppler broadened, but the
broad resonance at a» =0 will be unchanged. Fig-
ure 4—the TQ contribution will be absent, but
there will still be a narrow resonance arising
solely from the SW chs, in given in Eq. (52).

8. Alternative level schemes

Instead of the upward cascade shown in Fig. 1,
one could have equally w'ell considered the up-down
cascades shown in Fig. 7. The level scheme of
Fig. f(a) can be analyzed in a manner identical to
that of the upward cascade mith the substitution
6»(v)--(~» —Q2+k, .v), following Eqs. (16). The
Doppler cancellation condition mill now be possible
only for copropagating maves, a mell-known prop-
erty in Raman scattering.

The level scheme of Fig. f(b) provides three ad-
ditional difficulties arising from the fact that level
1 and level 3 are nom identical. First, a different col-
lision model is required (see below). Second, each
field can now drive both the upward and downward
transitions leading to temporal population pulsa-
tions at the beat frequency [this would also be the
case for Fig. 7(a) if the separation between levels
1 and 3 was small enough to invalidate Eqs. (2)].
Perturbation solutions are still possible, although
a steady-state solution of the type posed in Eqs.
(14) will now have to include time dependence in
the populations. Finally, if level 1 is a ground
state, one can no longer measure the final-state
population through fluorescence. An alternative
monitoring scheme is needed and might involve
absorption measurements on the fields involved in
the two-photon processes. It may be difficult to

perform such absorption experiments at low enough
fie!(t -.'. I;rengths for perturbation theory to be valid.

C. Inelastic collisions

If any of the levels under consideration are part
of a fine structure, hyperfine structure, or rota-
tional energy multiplet, inelastic collisions may
have to be taken into account. As long as collisions
cannot couple any of the levels 1, 2, or 3, inelas-
tic collisions can be included as additional decay
or pumping parameters for each of the levels. If
collisions can cause transitions between two of the
levels [as would be the case in Fig. V(a) if levels
1 and 3 were separated by less than thermal en-
ergy], a more detailed collision theory would have
to be developed to consistently treat the collision-
induced phase and velocity changes.

D. Different collision models

The collision model adopted in this work is ap-
propriate to the case of levels 1, 2, and 3 experi-
encing significantly different collision interactions,
as mould normally occur if they mere different
electronic levels. However, if levels 1 and 3 in
Fig. 7 belonged to the same electronic level, one
might have adopted a model in which, to first ap-
proximation, collisions are velocity changing in
their effect on p»(v). The p»(v) element appears
only in the TQ chain; thus it is only that contribu-
tion which mill be altered by the change in collision
model. In the Doppler cancellation case, velocity-
changing collisions play no role because of the
cancellation of all velocity dependence in 53/ Thus
the line will be narrower than the corresponding
case where phase-interrupting collisions broadened
and shifted the TQ resonance. If there was no
Doppler cancellation, the TQ resonance would have
had some residual Doppler midth. Velocity-chang-
ing collisions could narrow this width, ~~'2' pro-
vided inelastic collisions did not mask the effect.
As experiments provide further tests of the theory,
one could abandon collision models altogether and
attempt quantum-mechanical evaluation of the col-
lision parameters given in Appendix A.

E. Resonant collisions

(a) (b)

FIG. 7. Two alternative level schemes which m.ay be
used in collision studies.

In order to analyze pumping schemes in gas
lasers and the feasibility of laser isotope separa-
tion, it is necessary to determine the effects of
collisions between similar atoms in addition to the
effects of foreign-gas perturbers discussed in this
work. The calculation will differ from the foreign-
gas case only if level 2 is optically connected to
the ground state. In that situation, the line shape
will be affected by a resonant exchange of excita-
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tion in a collision. " Diagonal density matrix ele-
ments (population) as well as off-diagonal density
matrix elements (coherence) can be transferred
in collisions. ' Transfer of excitation will also
imply a change in velocity, since the perturber
which picks up the excitation has a velocity uncor-
related with that of the active atom. Thus in the
SW chain, which is of primary interest for colli-
sion studies, the velocity distribution of those
atoms excited by transfer will be Maxwellian,
leading to an additional broad resonance centered
about 6» =-8» in Fig. 5. Such results of reso-
nant exchange are interesting and important enough
to warrant further theoretical and experimental
studies. One could reasonably hope to measure
excitation transfer cross sections using these
spectroscopic techniques.

Radiation trapping

At active-atom pressures, where resonant ex-
change is important (a 10 mTorr), one usually en-
counters the added complication of radiation trap-
ping. If level 1 is the ground state, then at pres-
sures a 1.0 mTorr any spontaneous emission from
level 2 to level 1 will be absorbed by some other
ground-state atom in the sample. Even if level 1
is not a ground state and provided there is a high
enough pressure of active atoms, spontaneous
radiation from any of the levels 1, 2, or 3 may be
trapped if the levels are optically connected with
the ground state. Radiation trapping has been con-
sidered by several authors. " Neglecting any col-
lective affects, radiation trapping simply leads to
a transfer of population and orientation from one
level (1, 2, or 3) of an atom to the corresponding
level of another atom, with no transfer of off-diag-
onal elements (p~„. , n 0 n')."

Radiation trapping on levels 1 and 3 would lead
to an effective increase in their lifetime, but to
no major influence on the line shape. However,
in addition to an increased lifetime, trapping of
radiation from level 2 can lead to a magnetic re-
orientation plus a velocity thermalization, since
the velocity of the atom receiving the radiation is
arbitrary. In this sense, radiation trapping pro-
duces the same effect as excitation transfer col-
lisions or strong thermalizing collisions. It can
be distinguished from these processes by its pres-
sure dependence, however, since the contribution
from radiation trapping will generally saturate at
a pressure lower than that at which collision ef-
fects become important.

G. Strong fields

The calculation may be generalized" """to
treat cases where the fields E„E„orboth are

strong enough so that perturbation theory is no
longer applicable. Analytic solutions are possible
only for oversimplified collision models, but some
physical insight is still obtainable with these mod-
els. For the strong-field case, it becomes diffi-
cult to easily extract velocity-changing effects
from the line shapes owing to complications of
power broadening. It seems highly appropriate to
conduct weak-field experiments if the major goal
is to obtain information on collision mechanisms.

VIII. EXPERIMENTAL CONSIDERATIONS

There are several methods which can be used
for experimental studies of collision effects.
Laser spectroscopic experiments which eliminate
Doppler broadening generally can be characterized
as either fluorescence or absorption measure-
ments. In fluorescence experiments, a laser is
used to drive a given transition, and one measures
the fluorescence spectrum or total fluorescence
from a coupled transition. For the calculation
outlined in this paper, the level-3 fluorescence as
a function of 4» provides the necessary line shape
for collisional studies. Fluorescence experiments
have the major advantage of a high detection ef-
ficiency, enabling one to use laser light of suffi-
ciently low intensity to avoid power broadening.
On the other hand, in absorption measurements,
one generally saturates a given transition with a
pump beam and monitors the absorption of a probe
beam on the same or a coupled transition. Power
broadening does play a role in these experiments
and results must be extrapolated to zero pump
intensity. Both fluorescence and absorption ex-
periments can provide data on collision cross sec-
tions and the strength of velocity-changing colli-
sions.

For the two-photon excitation line profiles dis-
cussed in this work, the HWHM in the absence of
collisions is —,'y„ if the Doppler cancellation con-
dition (3) is appropriate, or —,'(y, +y, (1 -k, /k, (), if
that condition is not met but the tuning is such that

~ A» ~
&ku. Thus it is clear that for high-resolution

spectroscopy the sharpest lines are obtainable in
the Doppler cancellation regime. However, as long
as ~a» ( &ku, the no-collision line shape is still
much narrower than the Doppler width. With re-
gard to collision studies, it is really unimportant
whether or not Eq. (3) is valid, since the overall
qualitative nature of the results is not affected
severely. In fact, by using copropagating waves
in the upward cascade for ( a„~&ku, the line shape
is simplified by the absence altogether of the TQ
contribution, although this is at the expense of a
somewhat larger no-collision HWHM of —,'[y,
+y, (1+k,/k, )].
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The major advantage of using applied fields with

propagation vectors k, and k, such that (k, +k, (u

&y» is that for ~h»(»ku narrow resonances may
be obtained about A» =0. One way to insure this
Dopplex cancellation condition is to use counter-
propagating waves of the same frequency k, =-k,
as has been done by several groups. " In that
case, the two-photon resonance occurs at kyQ Qy

=-,'(&u»+~»), with width y». However, since one
cannot tune Q2 a,nd 0, separately, this technique
is not ideally suited for comprehensive collision
studies, but it may be used solely to determine
I'f," and Sf,". Moreover, if —2(&u»+ u») —up»»ku,
the signal strength is such experiments will be
down significantly owing to a lack of resonant
enhancement fx om the intermediate state. The
3S- 3P 5S transition in Na provides an example
where the Doppler cancellation condition can be
maintained for

~
n. » (»ku, without sacrificing any

substantial loss in resonant enhancement [even
when h~, =0, the Doppler cancellation condition is
approximately satisfied, since (&u» —&u~)u/c=108
sec ', while y,~=10 sec '].

It should be stressed that studies of velocity-
changing collisions require (a„(&ku; whether or
not the Doppler cancellation condition can be main-
tained in this tuning range is really of little im-
portance and should not influence the choice of
transition scheme to be studied.

While there have not been experimental investiga-
tions carried our precisely along the lines dis-
cussed in this work, there have been related
studies, several of which are listed below:

Bishel eg gl. '0 performed an upward-cascade ab-
sorption measurement on vibrational transitions
in CH, F and investigated the narrow resonance
shown in Fig. 3, (4» (»ku. They determined the
broadening and shift of this resonance as a func-
tion of pressure. The existence of a shift of 2.1

MHz/Torr for CH, F perturbers implies that the
collisional interaction for the (0, 1, 1) and (3, 3, 1)
vibrational levels of CH, F differ somewhat. The
large broadening coefficient of 41 MHz/Torr they
found is due mainly to inelastic collisions.

Rousseau et al."measured the forward Raman
scattering of /, with I, perturbers for the case

~ 6» ~
&ku. Their work verifies the existence of

the entire line shape shown in Fig. 3, although it
appears that they fit the broad resonance to a
Lorentzian rather than a Gaussian shape.

Beterov et a/. ' probed the 2s, -2p, transition in
Ne with a strong field applied to the coupled 2s, —

2p, transition. The perturbers were Ne, and ab-
sorption for both copropagating and counterprop-
agating pxobe beams were monitored for A» =0.
Curves similar to those in Fig. 4 were obtained
with a broad Gaussian background which was at-

tributed to radiation trapping and resonance ex-
change effects (see discussion of Sec. VII). By
measuring absorption widths for both copropagating
and counterpropagating waves, various collision
x'ates and cross sections were determined. Further
information on the collision interaction could have
been obtained had they detuned the pump laser so
that b, » t0. In that case, it would have been easier
to uncover' the existence of elastic nonexcitation
transfer collisions which give rise to line shapes
of the type shown in Fig. 4.

Smith and Hansch' performed a saturated absorp-
tion experiment on the 6328-A line in Ne and also
obtained the broad Gaussian background, presum-
ably due to radiation trapping or excitation transfer
from the 3s, level.

Hansch and Toscheke and Keil et al.' did satura-
tion spectroscopy on Ne, but: took a case where

2p~ x'ather than 3@2 was the level common to both
transitions. In this manner, radiation trapping
and excitation transfer effects no longer signifi-
cantly influence the line shape. The pump light
was tuned to resonance, 6„=0, and depolarizing
collisions were monitored for both He and Ne
perturbers. The experimental results indicate
that the average velocity change per collision is
small, hv/v &0.01, and as might have been ex-
pected is larger for neon than for helium per-
turbers. The line shape remains close to Lorentz-
ian, supporting a weak-collision model. The ex-
periments also tend to validate the line shapes of
Fig. 5 in that all magnetic substate changing colli-
sions wex'e accompanied by a change in velocity.

The above choice of experiments is meant to be
repx'esentative rather than complete. There seems
to be growing evidence that velocity-changing colli-
sions in gases are characterized by small changes
in velocity. Recent experiments on inelastic colli-
sions in'~ CO, and" CH, F and elastic collisions in'6

CH3 F have 1ent support to this hypothesis .'7 A
photon-echo experiment'6 on a vibrational transition
in CH, F led to the conclusion that the collision
interaction for the two levels involved was the
same, at least to first order. Many additional ex-
periments are needed to systematically analyze
collisional processes in atomic and molecular sys-
tems.

IX. CONCLUSIONS

A theoretical discussion of collision effects in
two-photon spectroscopy has been presented. Two-
photon spectroscopy offers unique possibilities for
collision studies. Collisional dephasing rates,
excitation transfer cross sections, state-dependent
collision rates, magnetic relaxation rates, and
average changes in velocity per collision can be
extracted from the line shapes. Moreover, the line
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shapes may provide fundamental tests of recent
collision theories'~ that purport to consistently
treat both phase-changing and velocity-changing
collisions. The most conclusive verification of
these quantum-mechanical collision-broadening
theories would involve experiments on transitions
between states experiencing somewhat different
collision interactions. According to theory, there
will be velocity-changing effects associated with
diagonal density matrix elements, but phase-
changing effects associated only with off-diagonal
density matrix elements.

A general formalism was given to account for
binary collision effects within the impact approxi-
mation. The specific calculation involved two-
photon excitation in a three-level upward cascade.
This system may prove especially useful for
studying resonant collision effects involving the
intermediate and ground states. Since the radia-
tion between those states will be almost complete-
ly trapped at typical experimental pressures, the
resonant processes must be monitored on some
other transition. In the two-photon scheme of Fig.
1, fluorescence from level 3 will serve as an in-
direct measure of resonant collision processes in-
volving the 1-2 transition.

It is hoped that additional experiments will be
carried out to provide new inputs for the theory.
From a theoretical point of view, the easiest ex-
periments to analyze would involve transitions
between nondegenerate levels in systems subjected
to foreign-gas broadening at low pressures and

low laser powers. Studies of line shapes versus
pressure for a fixed detuning 4 „g0 of one of the
lasers could yield important information on colli-
sion mechanisms in atomic and molecular systems.
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APPENDIX A

This Appendix is divided into two parts. In the
first part, a formal solution for the two-photon ex-
citation rate in the presence of collisions is de-
veloped. In the second part, a collision model is
assumed and the formal results are seen to re-
duce to Eqs. (30) and (32) of the text.

Formal solution

Assuming that collisions with nondegenerate
ground-state perturbers cannot induce transitions
between active-atom states 1, 2, and 3 of Fig. 1

but can induce transitions among the sublevels of
any individual state, a general form for the colli-
sional time rate of change of density matrix ele-
ments is

sp . „(v, t)
8$

d'v'S„""' „P ~ (v.'- v)p „. .„.(v', t), (Al}

where

8'"',' „" (v(= Nf d' ((' (v (v.-[j„(v.-v.; )(( . „,—f„„(,—,; '('ll„,]),.lP, v~

(A2)

(A3)

m&

x f „(v„' -v„;a)f „.(v„' —v, ;a')*, (A4)

and where N is the perturber density, 8'~(v~) is the
perturber velocity distribution, v„=v- v~ and p.

are the active-atom-perturber relative velocity
and reduced mass, respectively, f „(v„'-v„;a)is
the inelastic scattering amplitude for scattering
from state (am) with velocity v,' to state ( an) with
velocity v„=v„v„', v„'=v'-v~, m and m~ are the
active-atom and perturber masses, and the im-
plicit sum in Eq. (Al) is over repeated latin in-
dices. Equations (A3) and (A4) are analyzed in
detail elsewhere' and will be examined below for
a specific collision model. However, for the pres-

I

ent, Eq. (Al} will be discussed.
The right-hand side of Eq. (Al) is added to the

rhs of Eqs. (16) to obtain equations for steady-
state density matrix elements in the presence of
collisions. Each of the equations (16) takes the
form

+8.......(v), (A5)

where

g (v)p . (v) = d'v'S„"„"'. ." .(v'-v)p „.„.„.(v')
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3l.„.(v) =y ~ —36 ~ (v) (A6)

where the propagators will now contain all colli-
sional information and obey the coupled equations

q„.(v)G""'.™t" (v'-v)

= 5(v —v')5 „6

(A8)

Equation (A5) may be solved by a straightforward

and 6 „. ~ (v) is the rhs of the corresponding
p „.„.(v) equation; for example,

(&) + r~s (2) +
~1m: 3m V) —i/2& ~ ~m+P ~ 3m ' (V) —Q3fn 2 ~ 2& Plm 2P ~V ~ '

To obtain a formal solution to Eq. (A5) that is well
suited for perturbation calculations, one can intro-
duce propagators G„"„'. " (v'-v) through the equa-
tion' "

iterative perturbative technique [recall that 8 is
just the rhs of Eqs. (16)]. The lowest-order term
in the calculation follows from Eqs. (16a), (A5),
and (A6) as

(A 9)

If the pumping rate A. (v), as defined by Eq. (25),
represents an equilibrium velocity distribution
and if, as assumed, all sublevels are equally
pumped, collisions can have no effect on the ve-
locity distribution and

P3'.2, (v) =[X(v)/yi]5 (A10)

as in the no-collision case. Higher-order terms
may be calculated from Eqs. (16) and (A5) for the
two perturbative chains depicted in expression
(19). The TQ and SW contributions to the line
shape

I i = d'v p3 qs / v +p3 q3 I v =pTQ 2+p~+

(A11)

p3~ 3~I NpAqqqqdvdv3dvpdv3(f vpW(vp)

3m:3 '( 3 ) 22:3 '(v2 v )G3l, : 3(v32 v )G ':, (vo v )

+G3', ',J (v, —v) G'"'", (v, —v, )*G,'",;(v,- v, )q G,'"„'.~ (v, —v, }], (A11a)

X{ 3~.'3~ ( 3 ) G2.23qe ( 2 3)[ 22. 2„(v, -v2) G3„.2((( vp- v, )

+ G2 '. 2„(V3 v2)Gu. ~g(Vp Vi)*]

+G,".
3 j(v3- ) 2„.3q, ( 2- 3)*[G22.22(v3-v2)G3 2y(vp —v().

+ G2, 2 2~ (v, —v2) G'„":,~(vp- v, )*]), (A11b)

whereN Xp/y, andA is defined by Eq. (33). Equa-
tions (All), together with Eqs. (A8), represent a
formal solution to the problem.

Collision mode)

The collision model to be adopted is based on the
assumption that the scattering for the electronic
atomic states 1, 2, and 3 is strongly state depend-
ent. Consequently, the overlap term in Eq. (A4)
is assumed to vanish, owing to interference ef-
fects, unless e =n'. There may be some nonzero
contribution from Eq. (A4) for small-angle scatter-
ing even if age, but this contribution is taken to

be negligible in comparison with that from Eq.
(A3). In this model, all collision kernels with
o.c n' are zero, and the diagonal terms are writ-
ten in a slightly different notation as

W"„"'.„." (v'- v) =W""' (v'- v; (2) 5, . (A12)

The kernel W""',(v'- v; a) appears in Eqs. (30b)
and (35} of the text. Equation (A12) reflects the
basic feature of the model; collisions cannot change
the velocity associated with off-state (o q-'(2') den-
sity matrix elements p„.„,(v). For state-in-
dependent collision interactions, the model will
no longer be valid.
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One further simplification is possible before
proceeding to the final line-shape formula. Re-
gardless of the collision model, the forward in-
elastic scattering amplitudes in Eq. (A3) will
vanish, since the internal atomic angular mo-
mentum cannot be changed in collisions that in-
volve no change in the velocity of the atoms. One
may then rewrite Eq. (A3) in such a way as to
define the parameters y

" .„„and Jt"„" (v; o. ) ap-
pearing in the text, taking

for a. =n'. The forward elastic scattering am-
plitudes appearing in Eq. (A3) may be rewritten
in terms of cross sections if one so desires.

Using Eq. (A12) and (A13) one may easily solve
Eq. (A7) for the case a~a', obtaining

G '."„".(v'-v) =K)„. .(v)6(v —v')6 „6
(A15)

where

$„,„(v)= [q„„,(v)+y„.„. (v)] ' (A16)

for a 4 n', and

(A13)

(A14)

appears in Eq. (34) [in Eq. (34), the k dependence
of q„„(v) is explicitly noted]. Using this result
and the notation of Eqs. (A12) and (A14), one can
reduce Eqs. (All) to the form

pro. , ~ = NQA,"',i„"
i

d'v d' vo W(v, )G'~„(vo-v; 3) [B„.,i (vo)S„.,f(vo)D„,,„(vo)+$,„.„(vo)~X)„.„(vo)*B„.„(vo)*],

(A17a)

p, .~ ~ = QA,"',
tp d'vd'v, d voW(vo)G" i(v, -v; 3) [S2~t,g(v, )+g),„.„(v,)*]G~„"(vo-v,; 2)[K)„.,g(vo)+@|i:„(vo)*]~

(A17b)

If there is interest only in the excited-state pop-
ulation, one should set m' =m in Eqs. (17). Setting
m' =m and using the fact, easily derived from Eq.
(A7), that

propagating) are as follows:
(a) Equations (29) become

G'„' (v'-v; o') d'v=(y„) '5. . .

one arrives at Eqs. (32) of the text.

(A18) k,uy3y2

y, +-,'y,
i
I +«k, /k, ]

(y, + —,'y,
~

1+«k, /k, i) +(6„-«b„k,/k, )' '

(Bla)

APPENDIX B

If one takes k, = «k, and
i k, —«k, ]

)y», the
Doppler cancellation line shapes are no longer
applicable. However, the more general ex-
pressions in the text are easily integrated over
velocity even when Eq. (3) is not valid. The
necessary modifications of the line shape for the
two cases « = 1 (copropagating) and « = —1 (counter-

i&2| i» ku. (Blb)

(b) Equation (49a) becomes the same as Eq.
(Blb) with the substitution of A» for 6». Equation
(49b) is unchanged.

(c) Equation (51a) is replaced by

TQ 0 for e =1, (B2a)

k, r, I;-~,~,
k, -k, [(r,)'+ (Z, )'][(r,)'+(K, )2] '

p „=4 'ivA 2(Ny,o)
' exp[- (E»)'/(k, u)'] x

l. (r )'+(& )'][(r,)'+(& )'] ' k —k, )0,
(B2b)



PAUL R. HERMAN

for e = —I, where

I;=y +[k /(k -k, )]y„,
I, = l „+(k,/k, )~„,
I'~ =[k,/(k2- k, )] y, s +(k, /k, )y„,

r, =s„+[k,/(k, —k, )]n,„,

(83a)

(83b)

(83c)

(83d)

Z, =n.„+(k,/k, )L„,
Z, = [k,/(k, —k, )] d, „+(k,/k, )~„.

(83e)

(83f}

Equation (52) is modified simply by replacing I'
by I; and Z by n, Equation (54) is then replaced
by the sum of Eqs. (82) and the modified Eq. (52).

(d) Equations (60) are unchanged.
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