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Low-energy electron-impact excitation of the hydrogen molecule*
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%e present cross sections for the excitation of the two lowest. (b 'X+ and a 'Xg+) triplet states of molecular
hydrogen by electron impact for incident electron energies & 20 eV. The cross sections are calculated using
the distorted-wave approximation with the inelastic transition density obtained in the random-phase
approximation. An e%cient expansion technique using Gaussian basis functions allows us to avoid numerical
integrations and to treat accurately the noncentral nature of the scattering process with full allowance for
electron exchange. The sum of the two triplet cross sections is found to be in good agreement with the
experimental cross section for dissociation of H, into 2H.

I. INTRODUCTION

Current efforts in the identification and develop-
ment of new gas-laser systems have sparked a re-
newed interest in gas dynamic processes and, in
particular, have created a need for accurate low-
energy electron-molecule scattering cross sec-
tions. The precise evaluation of cross sections
for processes involving the collision of slow elec-
trons with molecules has been greatly hindered in
the past because of the severe difficulties intro-
duced into the calculation of molecular continuum
wave functions by the nonspherical nature of the
molecular force field. In most cases, numerical
complications have restricted the computations to
a rather low level of approximation; indeed, for
cases involving molecular electronic excitation,
the calculations almost invariably fall under the
category of Born-type calculations in the case of
spin-allowed transitions, or in the case of singlet-
triplet transitions, Born-Oppenheimer or Ochkur-
type calculations. ' Experience gained in the cal-
culation of electron-atom cross sections has shown
that the validity of such approximate schemes at
low electron impact energies (&50 eV) is highly
questionable. "

In a previous Letter, ' we reported differential
cross sections for the dissociative b 'Z'„state of
H, at 15 eV incident electron energy. The results
were in good agreement with experimental data.
The computations were carried out using the so-
called '"first-order many-body formula"' which, as
the authors have shown, ' is simply a form of the
distorted-wave approximation in which both the
incident and scattered electron move in the field of
the initial electronic state of the target. The dis-
torted waves were obtained by an efficient expan-
sion technique which involves solvingthe Lippmann-
Schwinger equation for the molecular continuum

orbitals in a discrete set of Gaussian basis func-
tions. " This approach allowed us to treat the non-
central nature of the scattering process by explic-
itly including the Z~', Z„', II~, and II„contributions
to the transition amplitude without resorting to a
one-center expansion. The fact that no numerical
integrations were performed also enabled us to
treat the exchange forces properly in computing
the distorted waves.

These computations have now been extended to
other energies between 13 and 20 eV. Ne have also
considered the excitation of the second (a'Z~) trip-
let state of H, over the same energy range. As
will be shown, these two cross sections can be
combined to give a total cross section for the dis-
sociation of H, that is in good agreement with the
experimental cross section over this range of elec-
tron impact energies. The general theory and ap-
proximation schemes employed in these calcula-
tions will also be considered in some detail.

II. THEORY

A. Separation of electronic, vibrational and rotational motion

Within the framework of the Born-Oppenheimer
approximation, we denote the electronic, vibra-
tional, and rotational quantum numbers of the ini-
tial (finai) state of the electron-H, system by n, v,
and l and m (n', v', E', m') and write the wave function
for this state as

+ I&,'&
= e„'&&„-,I({xj,H)g~~"„,'&&(Z) y;ii;, I&(S, q ),

where 4„', the electronic wave function, depends
explicitly on the electronic space and spin coordi-
nates {x—= r, s) in a body-fixed coordinate system
and on the internuclear separation R. There is al-
so an implicit dependence on the orientation of the
molecule with respect to a laboratory-fixed frame,
which comes about through the imposition of a,s-
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ymptotic, scattering boundary conditions. The vi-
brational wave function f„" is assumed to be inde-
pendent of the rotational quantum numbers l and ~
and Y'P(8, q) is a spherical harmonic, with polar
angles referring to the orientation of the molecular

axis with respect to the laboratory frame.
If we label the incident electron as particle 1, the

cross section for the excitation of a particular
electronic/vibrational/rotational state is given (in
atomic units) by

m & ~ & & +--
o(k& k&) =,~ e '"r'& lt*(s,) C„(x„x„R)g~" (R)Yf('8, q) — — +—+—4„'(x„x„x„R)

7T 1A 1& 12 13

2

&& („"(R)l' P(8, y) d x, d x, d x, dR

where X(S,} is the spin wave function of the scat-
tered electron, 4„ is the normalized final-state
electronic wave function of H„and A and B denote
the two hydrogen nuclei. k; and k&, the wave vec-
tors for the incident and scattered electrons, are
determined by the relation

kf ——k2 —2(E~ -E;),
where E& (E,} is the final (initial) energy of the
molecule. In defining the cross section we have
used the post-interaction representation' in which
the noninteracting form of 4„appears, and
4'„+(jx),R) is the fully antisymmetrized outgoing

electronic wave function for the e -H, system.
We can first treat the contribution to the cross

section arising from the rotational motion of the
molecule. Since rotational levels are typically not
resolved in current experiments, it is customary
to treat them as being effectively degenerate and
to sum the cross section of Eq. (2) over all final
rotational levels l' and ~' and average over all ini-
tial states l and m. If we also neglect the slight de-
pendence of the molecular energy upon t and /', it
then follows, from the completeness properties of
the spherical harmonics, that the rotationally av-
eraged cross section can be written as"

e '"f'~ X*(s,)C „* (x„x„R)g,""(R) — — + —+—4'„'(x„x„X„'R)
1A 18 12 13

&f",(R)R'dR dx, dx, dx, (4)

This result, which is equivalent to an adiabatic
treatment of molecular rotation, "simply amounts
to averaging the cross section over all possible
orientations of the molecular target.

A further approximation may be made by real-
izing that the electronic wave functions are more
slowly varying functions of the internuclear sepa-
ration R than the vibrational wave functions and
hence replacing the former by their values at the
equilibrium internuclear separation. This approx-
imation works best when the initial vibrational
state is v= 0 (which is the case for hydrogen at
room temperature) since the vibrational wavefunc-

tion is then nearly Gaussian and centered about the
equilibrium internuclear separation R,. The vibra-
tional component of the cross section can then be
separated from Eq. (4) and gives a multiplicative
factor of

2

qv'v= Rfv' R R~v R dR

which is the familiar Franck-Condon overlap inte-
gral. " The cross section for exciting all. the vibra-
tional levels of a particular electronic state can
then be obtained by summing over all v' values to
give

1
e '"&"X*(s,)C'„(x„x„R,) ————+—+-

7T 1A 1B 12 13

' gjQ&4„'(x„x„x„R,) dx„dx„dx,
%7T

A final approximation consists of ignoring the
dependence of the electronic portion of the scatter-
ing amplitude on the vibrational quantum number;
that is, for each value of the incident electron en-
ergy under consideration, a single electronic tran-

sition amplitude was calculated, with a final wave
number corresponding to a vertical transition from
the v=0 ground state into the vibrational level of
the upper electronic state with the largest Franck-
Condon overlap. Using the electronic potential-
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energy curves of Kolos and Wolniewicz, "'" this
corresponds to a vertical transition energy of 10.14
eV for the O'Z„' state and 12.12 eV for the a'Z,'
state. Relaxing this approximation would have re-
quired computing a different electronic transition
matrix for every possible final vibrational state-
a procedure that would have involved a consider-
able amount of computer time. The final form of
the differential, rotationally averaged, total vibra-
tional cross section used in this work is

gI0(, ,'}"'=, ( T}(k~—k() Q q„, , (7)
1 I' 'dA

~k

4~ g 4m

where

('„(k~ lT,.}=f e'"-~+"&x'(s,}e'„(x„x,;R.}

4„(x&,x» x» R&) dx&dx2dx, . ( )

In the case of the dissociative O'Z„'state, the sum
over v' in Eti. (7) is replaced by an integral.

B. Distorted-eave-random-phase approximation (DW-RPA) for
the electronic transition matrix

plied to e -He scattering. ' As the present authors
have shown, ' the first-order many-body formula is
simply a form of the distorted-wave (DW) approxi-
mation in which both distorted waves are computed
in the field of the initial state and the electronic
target states are treated in the random-phase ap-
proximation (RPA). Other DW calculations have
appeared in the literature recently, on'4 e -He and
e -H, "and in both studies it was shown that better
results were obtained when the initial- and final-
state orbitals were both computed in the field of
the ground state —in agreement with DW-RPA pre-
scription.

The DW-RPA' can be easily obtained for the
general case of scattering from an n-electron
closed-shell atom or molecule by using the two-
potential formula. " To the interaction potential V
between an incident electron and an n-electron a-
tom or molecule, we add and subtract the operators
J—K, the Hartree-Fock Coulomb and exchange
operators for the target in its ground state. We
then partition V into two terms, V = V, + V», where

(9a)

and

For the computations reported in this paper, the
electronic transition matrix T„, was calculated us-
ing the first-order many-body formula. This ap-
proximation was first introduced into electron
scattering by Taylor and his co-workers' and ap-

1l ]
(9b)

We may then write the electronic transition matrix
element for inelastic scattering as

T „(ki-k, ) = (4 „(x„.. . , x„)e ' &' )t(s) I V, I
}1",„(x,x„.. . , x„)) + (0,, (x, x„.. . , x„)I V„ I@"(x,x„.. . , x„)),

(10)

where 0 ' is the exact, antisymmetric electronic
wave function for the full interacting system with
outgoing-wave boundary conditions, and 4». and

0» are eigenfunctions of the operator -2V„+&&„.,„„.&
+ V~ Thus 4»,. and 0»& are products of target
eigenstates and scattering solutions of the static
exchange Hamiltonian -2V„'+ V, . The distorted-
wave approximation is made by replacing 0'by an
antisymmetrized product of the target ground-state
wave function and a Hartree-Fock continuum spin
orbital. The choice of the ground state J -K oper-
ators in the definition of V, leads naturally to a
distorted-wave approximation in which the dis-
torting potential is the static-exchange potential of
the ground state. However this is a somewhat arti-
ficial choice whose justification lies mainly in the
better agreement obtained for" e -H and" e -He
cross sections using the field of the ground state
than were obtained using the field of the excited
state. In the theory of Taylor and co-workers"

the replacement of certain operators in the Bethe-
Salpeter equation by their Hartree-Fock values
leads to the same final result. In fact this is a re-
sult to be expected in first order from a many-body
theory approach to scattering which starts from a
set of hole and particle (bound and continuum) or-
bitals which are eigenfunctions of the ground-state
Har tree- Fock Hamiltonian. '

The distorted-wave approximation to the transi-
tion element may be written as a matrix element
of a simple operator between the ground and ex-
cited states of the target. This expression is then
evaluated in the RPA (details are given in Ref. 6)
to yield

T.((kg-kg) = Q 1*"}(~&y
I Io.~&') +& "9'(»jI I~K)o

where Ã& ~ and Z are amplitudes satisfying the
usual RPA equations, ~ and e refer to Hartree-
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Fock unoccupied and occupied spin orbitals, re-
spectively, k;(f) is a Hartree-Fock continuum spin
orbital at the incident (exiting) wave number with
outgoing- (incoming-) wave boundary conditions,
and the antisymmetrized matrix elements are de-
fined by

(foal l&&). =(foal l~~) -(~il lf&),

where

(12)

i{i)It{)=1yr(x, )yr(x, ), ly, (x,)y, {x,)dx, dx, .
lry —r2

(13)

For the calculations presented here we require
an expression for the cross section in the special
case of excitation from a closed-shell singlet
ground state to a triplet state. By using the spin-
adapted excitation operators of Shibuya and
McKoy, "and following the derivation of Bef. 6,
specializations of Eq. (11) for exciting each of the
degenerate components of the excited state are ob-
tained. The cross section is found by summing
over components of the final state of the target and
over the spin projection of the exiting electron.
We assume an unpolarized incident beam and thus
average the cross section over spin projections of
the incident electron. The resulting expression for
the cross section is

C. Evaluation of molecular continuum orbitals

The successful execution of a distorted-wave
calculation depends on an efficient technique for
computing the continuum orbitals. This is partic-
ularly true in molecular applications, where the
distorted waves must be computed with anonspher-
ical Hartree-Fock potential. A partial-wave ex-
pansion of the scattering wave function leads to
coupled equations whose solutions can, in prin-
ciple, be found by direct numerical integration.
In practice, the relatively slow convergence of sin-
gle-center expansions" and the difficulties of
handling exchange operators render calculations by
this method tedious. Other investigators who have
chosen this approach have often found it necessary
to make severe approximations to the nonlocal
portions of the potential to make the calculations
tractable. "'"

The Hartree-Fock scattering solutions used in
this work, {g(r), were computed by direct solu-
tion of the Lippmann-Schwinger equation for the
wave function. The Lippmann-Schwinger equation
can be reduced to a finite matrix equation by ex-
panding the wave function in a set of square-inte-
grable basis functions, which in this case were
chosen to be ordinary Gaussian functions, y„(r),
centered on the two nuclei":

&tr(P)ot(k k )f
(I)„'(r) = Q p„(r)c'„(k). (18)

dOIT,",'""(k~-k, )l' g-tq„.. . (14)
The Lippmann-Schwinger equation becomes an al-
gebraic equation for the coefficients c~(k),

c.'(k) =(n lk) + g G„",V,„c',(k), (19)
e, y

where V&& is a matrix element of the Hartree-Fock
potential, (o. Ik) is the Fourier transform of ttp (r),
and G'~& is a matrix element of the free-particle
Green's function. The formulas for the matrix el-
ements in Eq. (19) are given in Refs. 7 and 8. In
this approach, nonlocal potential operators pose no
more serious problems than in bound-state calcu-
lations since only matrix elements of the potential
between square -integrable basis functions are re-
quired.

The basis-set expansion of Q„'(r) obtained by the
solution of Eq. (10) is only valid over a finite range
of r, but with a sufficiently large set of basis func-
tions a representation is obtained which can be used
to accurately evaluate the matrix elements of. Eq.
(15). If one chooses basis functions which trans-
form with the irreducible representations of the
point group D„„Eq. (19) may be solved separately
for each molecular symmetry (Z~, Z„', II~, etc. ).
This constitutes a major simplification, since it
reduces the size of the matrices which must be
handled at any point in the calculation. It should be

where

TtrlP)ct(k k )

= g &.'~P'(»~g
I lk a)+z~~J*(nk,

I Ik,'. »). (15)
m,

singlet(k k )

, —f d(tlt", ,
"""(trr tr;)l'Q ~tt, (t&)-

V

with

T.'i"""(&g-k&) = g &".PI2(»~g I I ~f t') (»~j I I &t ~)]-
+z".~l:2(~&g I l»~t) -(~~il IK»)1

(17)

and where the orbitals are again space orbitals.

In Eq. (15) m, or, k& and k; are Hartree-Fock space
orbitals evaluated at the equilibrium internuclear
separation, the spin integrations having been per-
formed in the derivation of Eq. (14).

A similar analysis for exciting a singlet state
gives
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noted that the solution of Eq. (19) for Q~ is carried
out in the body-fixed frame and that the orientation
of the molecule with respect to the incident direc-
tion k enters the calculation through the Fourier
transforms (a~k). Thus we compute distorted
waves for a number of orientations of the molecule
and use these to construct the cross section at
enough points to perform the average over molec-
ular orientations numerically. The details of this
numerical integration in Eq. (14) will be discussed
in Sec. III.

We may correct the electronic transition matrix
elements in Eq. (15) to a certain extent so as to
compensate for the fact that a finite basis repre-
sentation of Pz is being used. Since the first term
in Q'„[Eqs. (18) and (19)] is a plane wave, the ma-
trix element (for example) (mk& ~ ~k,'o.) will confa, in
a plane-wave contribution (mkz~ ~k, u). We can sub-
stract the basis-set representation of this contri-
bution and replace it by the exact plane-wave ma-
trix element. This substitution also has the effect
of including first Born contributions to the scatter-
ing amplitude from higher symmetries not included
in the basis. ' For the basis sets and number of
molecular symmetries considered in this work, the
plane-wave correction was found to be small in all
cases. These plane-wave corrections require the
evaluation of free-free matrix elements. Multi-
center bound-free and free-free matrix elements
can be evaluated in closed form when Gaussian or-
bitals are used. ""

III. COMPUTATIONAL

The first step in the calculation was to compute
an accurate Hartree-Fock ground-state wave func-
tion and the RPA amplitudes I ~ and Z „of Eq.
(11). For this purpose a (7s5P) set of contracted
Gaussian basis functions was used which was form-
ed from the 10s and 5p sets of Huzinaga" (effective
Slater exponent of 1.2) by contracting the four
tightest s functions. The distorted waves 4& of Eq.
(18) were then expanded in larger basis sets. Only
Z~+, Z„', II~, and II„components of the distorted
waves were computed using the Lippmann-
Schwinger equation; higher symmetr ies were in-
cluded through the plane-wave corrections, as dis-
cussed previously.

For the Z,' and Z„' components, a (20s5P, ) set of
Gaussians on each center was used, with s expo-
nents chosen in a geometric series (most diffuse
o. = 4&& 10 ') to extend the Huzinaga" 10s set and P,
exponents also chosen in a geometric series (ratio
1.9, most diffuse o. = 0.102). For II~ and II„sym-
metries, a 15/ set of primitive Geussians was
formed with exponents ranging from 15.3 to 0.001.
The Il„and II, components were solved for sepa-

rately but the potential matrix V„s in Eq. (19) is the
same for both. The adequacy of this basis set was
verified by the close agreement obtained at all an-
gles, energies, and orientations between the plane-
wave contributions to the cross section (discussed
in Sec. II) and the basis-set representation of
these.

Since a smaller basis was used to expand the
occupied o~ orbital of H, than was used to expand
the distorted waves Qk, considerable economy was1~)

realized in the computation of the two-electron in-
tegrals which contribute to the potential matrix
V q of Eq. (19). The smaller (7s5p) set was also
used in solving the RPA equations so that the
Hartree-Fock virtual orbitals m in Eq. (15) were
also expressed in this basis. Thus only the dis-
torted waves in Eq. (15) are expressed in the
larger basis sets and consequently many fewer
two-electron integrals are required than would be
if the same basis was for both y„' and m and 0.. It
is important to realize that the distorted-wave
formula [Eq. (15)] can couple the different com-
ponents of the distorted waves depending on the
symmetry of final electronic state. For example,
in the case of the b'Z„' state, the matrix element
(kfm~ ] nk& ) connects the g and M components of the
two distorted waves, but still leaves the Z, II, 6,
etc. , symmetries uncoupled.

Equation (15) may be used to compute T;~ (k&-k;)
for a given orientation of the molecule relative to
the directions of k& and k&. This is accomplished
by solving Eq. (19) for the incident and final dis-
torted waves, specifying the molecular orientation
through the Fourier transforms. To compute the
cross section we must perform the integral over
molecular orientations in Eq. (14). We may write
this integral as

J
27f 1

d(cos~) dq I T.i I',

the polar angles 6 and y specifying the orientation
of the molecular axis with respect to the axis per-
pendicular to the bisector of the angle between k&

and k& and lying in the plane of those vectors. The
integration was performed in this coordinate sys-
tem using six-point Gauss-Legendre quadrature in
each of the variables cosy and cp. The integral is
symmetric in y and need only be computed on the
interval [0,v/2]. At each orientation the plane-
wave correction discussed in the previous section
was made to T,~(k&-k, ) and the corrected value
was used in the integration over orientations.

Since we are ignoring the dependence of T,~

(kz-k;) on the internuclear separation, and thus
on vibrational quantum numbers, the only factor
left in the computation of the cross section is
Z„i(kz/k, )q„&. Conservation of energy requires
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FIG. 1. Continuum Franck-Condon factor qo„ i for
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that k& depend on v'; v was chosen as the lowest
vibrational level of the ground state in all cases.
The Franck-Condon factors for transitions to the
discrete vibrational levels of the a'Z,' excited state
were taken from the work of Cartwright and
Kuppermann. " No continuum vibrational states
were included in the sum over v' for this state, be-
cause the sum of q,„ for the first eight levels was
sufficiently close to the expected value of unity.

The b'Z„' state is dissociative and thus has only
continuum vibrational states. Vibrational wave
functions were computed for this state by numeri-
cal integration using the potential-energy curve of

Kolos and Wolniewicz. " The wave function of the
lowest vibrational level of the ground state was
also computed in this manner and the Franck-
Condon envelope is shown in Fig. 1. It was found
to be in excellent agreement with the shape of the
dissociative feature in the energy-loss spectrum
for the b 'Z„' state at 15-eV incident energy in the
unpublished experimental results of Srivastava and
Trajmar. ' This agreement gives some indication
that the neglect of the dependence of T„(k&-k~) on
the internuclear separation is justified in this case.

IV. RESULTS

Differential cross sections at incident electron
energies of 13, 14, 15, 16, 17 and 20 eV for ex-
citation of the b 'Z„' and a'5,' states are shown in
Figs. 2 and 3, and Tables I and II, respectively.
The DW-RPA gives similar angular distributions
for both states. These cross sections are back-
ward peaked at 13 eV and develop a well-formed
minimum at 90' as the incident energy increases.

There is unfortunately little experimental data
with which to compare these results. Srivastava
and Trajmar4 have measured angular distributions
for the excitation of the b 'Z„' state at 15 eV and
their results agree very well with those predicted
by the DW-RPA. The energy dependence of the dif-
ferential cross sections we find for the b 'Z„' state
shows that the backward peaking becomes less
pronounced as the energy increases and indicates
the development of a maximum in the cross section
near 30' at higher energies. The experimental
angular distribution of Trajmar et al."for this
transition does show a maximum between 30' and
40' for incident energies between 35 and 60 eV.
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FIG. 2. Differential cross sections for the transition
X 'Z~ 5 3Z+„ in molecular hydrogen. Cross sections
are given in units of ao. Curves on the left (running
top to bottom) are for incident electron energies of 13,
14, and 15 eV, respectively; curves on the right (top
to bottom) are for electron energies of 16, 17, and 20
eV.
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FIG. 3. Differential cross sections for the transition
X 'Z~ —a 3Z+~ in molecular hydrogen. Cross sections
are given in units of ao. Incident electron energies are
the same as in Fig. 2.
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TABLE I. Differential and total cross sections for the X~Z~+ b ~Z+ transition in molecular
hydrogen. The differential cross sections are in units of ao, total cross sections are in units
of mao.

(deg

0
30
45
6o
90

120
135
150
180

(eV)

3.682 (—2)
5.466 (-2)
v.45s (—2)
1.os1(—1)
2.OO9(-1)
3.497 (-1)
4.253(—1)
4.879 (—1)
5.455(-1)

9.583(—2)
1.128(-1)
1.2es(-1)
1.409(—1)
2.1vo(-1)
S.685(-1)
4.492(—1)
5.1ev(-1)
5.776 (-1)

1.284(—1)
1 .418(-1)
1.478(-1)
1.5S6(-1)
2.044(-1)
S.S5V(-1)
4.103(—1)
4.74O(—1)
5.s2 v(-1)

16

1.69o(—1)
1.777(-1)
1.V46(-1)
1.669(—1)
1.9ov(-1)
2.962(-1)
3.600(—1)
4.150 (—1)
4.68V(-1)

17

1.819(—1)
1.89V(-1)
1.815(-1)
1.658(—1)
1.718(-1)
2.5vs(-1)
3.1O1(—1)
3.553 (—1)
s.9e4(-1)

20

1.851 (—1)
2.osv(-1)
1.785(—1)
1.464(—1)
1.154(—1)
1.5S1(—1)
1.805(—1)
2.O41(—1)
2.248 (-1)

Total
cross section

(ma 20) 9.317(—1) 1.050 1.011 9.595(—1) 8.757 (—1) 6.244 (—1)

Cartwright"'" has also calculated differential
cross sections for the b 'Z„' state using the Ochkur-
Rudge" (OR) approximation. This theory predicts
a maximum near 40' for incident energies between
15 and 85 eV. While this type of behavior does a-
gree with the experimental measurements (which
only extend to 80') at energies above 35 eV,"it
disagrees with the distributions we find below 20
eV in shape, although the magnitudes are similar.
The Ochkur-Rudge approximation is, however, a
high-energy theory based on first-order perturba-
tion principles and should not be expected to be
accurate at the low energies we have considered.

In the case of the a'Z~ excitation, no experimen-
tal data are available for the comparison. The en-
ergy-loss spectrum shows a strong overlap of the
a'Z,' vibrational bands with those of the c 'II„state

and this interference makes angular distributions
for the excitation of the a'Z,' state difficult to mea-
sure. " The only other results available for com-
parison are the QR calculations of Cartwright, "'"
and once again these differential cross sections do
not agree with our results in shape, although the
magnitudes are similar.

Since singlet-to-triplet radiative transitions are
not observed in molecular hydrogen and the lowest
triplet state is repulsive, electron impact excita-
tion of any triplet state must lead eventuallytodis-
sociation. Values for the dissociation cross sec-
tion of H» obtained by summing the total cross
sections for excitation of the two lowest triplet
states, are shown in Fig. 4. Also shown are the
OR results of Cartwright, "'"the Ochkur (0) cal-
culations of Khare, "and the experimental results

TABLE II. Differential and total cross sections for the X iZ~+ a 3Z~+ transition in molec-
ular hydrogen. The differential cross sections are in units of ao, total cross sections are
in units of xa02.

8

(deg)

0
30
45
60
90

120
135
150
180

(ev)

8.779 (—3)
8.611(-3)
8.878 (—3)
9.784 (—3)
1.413(-2)
2.15S(—2)
2.5es(—2)
2.926 (—2)
3 273(—2)

14

1.599(—2)
1.25S(-2)
1.073(-2)
1.O76 (-2)
1.876 (-2)
3.825(-2)
5.OSS(-2)
6.137(-2)
7.217(-2)

15

S.O81(-2)
2.145(-2)
1.563(—2)
1 277(-2)
1.978(-2)
4.661(—2)
6.457(—2)
8.128(-2)
9.780(—2)

5.170(-2)
3.462 (-2)
2.368(-2)
1.695(-2)
2.012(-2)
4.920(—2)
6.985(—2)
8.931(-2)
1.086(-1)

6.889(-2)
4.534 (-2)
3.053 (—2)
2.0 71(-2)
1.918(-2)
4.687(—2)
6.787(—2)
8.789 (—2)
1.079 (—1)

20

9.632(—2)
5.945(-2)
3.939(—2)
2.eos(-2)
1.664(-2)
s.58o(-2)
5.251(—2)
6.880(-2)
8.522 (—2)

Total
cross section

(mao) 6.490 (-2) 1.067(-1) 1.341(-1) 1.530(-1) 1.589(-1) 1.486 (-1)



13 LQW -ENERGY ELEC TRON-IMPAC T EXCITATION QF THE. . . 223

~o 1.6
O

O 1.2—
I—

LJJ~ 08-
V)
V)
O
CL
w 0.4-
a
D
1

0.0 I

10.0

I
I

I

p p
I
I p

I I I

15.0 20.0 25.0 50.0
ENERGY (eVj

FIG. 4. Dissociation cross section of H2 into 2H by
electron impact. Cross sections are in units of &ao.
0, present results; solid line, experimental curve
(Ref. 29), after subtraction of ionization cross section
(see Refs. 30 and 24); short-dashed line, Ochkur-Rudge
calculations (Ref. 24); long-dashed line, Ochkur calcu-
lation (Ref. 28).

of Corrigan. "
At energies above 15.4 eV, Corrigan's data must

be corrected to account for the effects of H, ion-
ization. The experimental curve shown in Fig. 4
thus represents the difference between Corrigan's
measurement and the ionization cross section at
the same impact energy measured by Harrison. ""
Our results, as well as the theoretical results of
Cartwright"'" and Khare, "show a, peak in the
ionization cross section between 14 and 15 eV,
while the experimental data" show this peak at
-16 eV. Considering the possible errors involved
in correcting Corrigan's data for the effects of
ionization, the agreement between theory and ex-
periment is satisfactory. There is also qualitative
agreement between our total cross sections and
the 0 and QR results. This agreement suggests
that total cross sections computed using the Q or
OR approximation may be more reliable at low en-
ergies than the corresponding differential cross
sections.
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