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Relativistic Dirac-Fock calculations of KLL Auger transition energies
in intermediate coupling
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Multiconfiguration relativistic Dirac-Fock calculations of KLL Auger energies are reported for neon, argon,
uranium, and americium. These selected examples demonstrate the feasibility of this method to calculate

completely ab initio, in intermediate coupling, Auger transition energies with a precision of a few eV.
Comparison of our results with semiempirical ones shows that this ab initio method performs at least as well

as those which rely partially on experimental results.

I. INTRODUCTION

Auger transition energies have been, up to now,
a challenge for completely ab initio calculations,
since they require the simultaneous handling of
the problems of intermediate coupling and rela-
tivistic and many-body effects. Therefore, be-
sides a few definite attempts to solve this problem
from first principles, only semiempirical methods
were developed to reproduce experimental data
over a large range of Z values. Numerous ex-
pressions, functions of Z, have been proposed by
different authors for the two-electron integrals
to include a relativistic correction fitted to ex-
perimental data either for a few given Z values,
or for a wide range of Z values with a least-mean-
square adjustment. The foregoing emphasizes the
need for a complete ab initio calculation, avoiding
any adjustable parameters.

In the present work, we calculate the KLL Auger
transition energies and the inner-shell binding
energies as the differences between the total en-
ergies of the relevant initial and final states. The
total energies are calculated from the Dirac-Fock
method without any approximation for the exchange
terms. The higher-order relativistic corrections
are included. Using the multiconfiguration tech-
nique, these ab initio calculations allow one to re-
move the J degeneracy and thus are done in the
intermediate-coupling scheme. Before describing
our method in more detail, we briefly review the
earlier semiempirical methods.

II. EARLIER CALCULATIONS

After the introduction by Asaad and Burhop' of
the intermediate-coupling scheme for two-hole
states, which has been of prime importance for
the understanding of electron Auger spectra, the
general trend of Auger transition-energy calcula-

tions has mainly been to use the expressions given
by these authors. These energy expressions were
adjusted to the experimental data through various
corrective coefficients, functions of Z, which try
to take into account, among other corrections,
relativistic effects.

In these expressions, Auger transition energies
are given as functions of (i) the binding energies
B(nlj ), (ii) the matrix elements of the two-electron
Coulomb interaction F (nl, n'f') and G'(nf, n'l'),
and (iii) the spin-orbit coupling constant g(SL).

In Ref. 1, the F and G integrals were calculated
using screened hydrogenic wave functions, the
screening parameters being adjusted to fit
Hartree calculations for Z= 80. The observed
discrepancy' with the experimental results for
Z =83 was attributed to relativistic effects and
the authors proposed to approximate the F and G
integrals by A(Z —o)(1 —o. Z'), where c is the
screening constant and nZ'(n &0) allowsfor rela-
tivistic effects. Later, Listengarten' proposed to
add the term 1.1(80 —Z) eV to the transition
energy expressions, to give closer agreement for
low-Z values.

However, comparison with earlier experimental
results showed that these expressions do not give
a good agreement for the whole range of Z, and
Hdrnfeldt' proposed the corrective term 1+PZ',
with P & 0, instead of 1 -eZ', and gave a table of
Auger transition energies for Z=20-100. A and
P were calculated by a least-mean-square adjust-
ment with the published Auger experimental data,
while the Slater screening constants o were those
of Asaad and Burhop.

Later, Asaad assumed a corrective term of the
form 1+gZ, with a &0, except for G'{1s,2P) and
G'(2P, 2P), and found that closer agreement be-
tween experimental and calculated energies is
obtained with a correction of the form'
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-4x10 '(Z —3)(Z-12)2(Z —52)2

for the F"s.
More recently, Shirley' improved the formula-

tion of Asaad and Burhop by adding a relaxation-
energy term. This formulation relies again, al-
though to a lesser degree, on experimental data;
(i) the binding energies, which could in principle
be calculated, are the experimental ones, and

(ii) the 1+aZ' relativistic correcting factor to
the Mann's two-electron integrals are fitted with
the experimental Auger transition energies. Thus
these corrective terms appear to be general fit-
ting coefficients including also other neglected
terms and the uncertainty owing to the approxi-
mation used in the relaxation-term calculation.

Compared to the above s

ernie

mpiric al methods,
only a few ab initio calculations have been done.
These calculations were either nonrelativistic or,
when relativistic, in pure j-j coupling with ap-
proximate treatment of potential terms.

More details can be found in the review papers
of Briton, ' Sevier, ' Burhop and Asaad, "and
Asaad. '

III. METHODS OF CALCULATION

For each hole state to be considered, the total
energy is calculated using the multiconfiguration
Dirac-Fock program written by Desclaux. " The
total Hamiltonian of the system used in the varia-
tional principle is the sum of one-electron Dirac
operators plus the classical Coulomb repulsion
between the electrons. After achieving self-
consistency, the full Breit operator (magnetic
interaction and retardation) is included as a first-
order perturbation to the total energy to partially
take into account the relativistic interaction be-
tween the electrons. As the Dirac-Foek formalism
has been described in various articles we will not
discuss it further but rather refer the reader to,
for example, the detailed review article of Grant. "
In the relativistic case, the extension of the single-
configuration approximation to the multiconfigura-
tion scheme is quite analogous to its nonrelativi-
stic counterpart except that, because spin-orbit
interaction is included explicitly, we have to build
up the total wave function on a basis of jj states
instead of LS ones. Since we perform a variational
calculation of each state under consideration, the
relaxation energy is automatically included.

As mentioned, the wave functions are defined in

jj coupling; if we had restricted ourselves to a
single jj configuration per state, such a descrip-
tion would have been meaningless for the light
atoms, which obviously are close to the LS limit.
On the other hand, the importance of intermediate
coupling for the calculation of KLL Auger energies

has been previously demonstrated. ' " In all
these previous works, the problem of intermediate
coupling was handled in a semiempirical way by
extracting the spin-orbit coupling constant from
experimental results. The relativistic multi-
configuration approach we use here allows to in-
troduce the intermediate coupling completely
ab initio and provides the ability to handle a smooth
transition from the almost pure LS limit exhi-
bited by the light atoms to the almost pure jj limit
of the very heavy atoms. To illustrate the method,
consider the case of the J=2 states of the double-
hole P' configuration. Because of the spin-orbit
interaction, the P shell is split into the P, &, and

P3 jp subshe lls . In the pure LS limit we have the
well-known triplet and singlet states given by"

I'&. & =(1/'~&) (&2 IP', /y,'/. & + IP,/P.'/, & ),
I
'D. &

= (1P~ ) ( I p ', /. p './. &
-~2 I p, /, pl/, & &

which are mixed by spin-orbit interaction. Thus
we may write each state as

I~=2) =sIpl/. p.'/. &+(1 —e')'"Ipl/, pl/. &, (2)

where the deviation of a from the values given in

Eq. (1) is just the measure of the breakdown of
LS coupling. The multiconfiguration method pro-
ceeds in the following way: Starting from a wave
function as that defined in Eq. (2) (where obvious-
ly we select the J=2 eigenvector of the total angu-
lar momentum) the expectation value of the ener-
gy is calculated and then minimized with respect
to both the radial wave functions and the coeffi-
cient a. For the example we consider, the total
energy is

Er a'E„(p, /, p,'/——,)+ (1 —a')E„(pg /2 p3/2)

HF (pa/2 ps/—a)+ so (1 —a )G (pi/2 p3/2)

+5O(W2)a(1 —a )' R (p~/2p3/2 p3/2p3/2),

where E„is the average energy" of the config-
uration and I', G, and R are the usual Coulomb
integrals. We perform one self-consistent cal-
culation for each state by forcing the program to
converge either to the lower or to the upper state.
The method we have just described is also used
for the 'P„'S, states of the p~ configuration and
the P„'P, states of the sp' configuration. We
discuss in Sec. IV the results obtained for the a
coefficients.

The total energy includes, through the Breit in-
teraction, relativistic effects up to order 1/c' (c
is the speed of light). However, it is well known
that for heavy atoms higher-order corrections
have to be considered. The next-order terms re-
sponsible for the Lamb shift are included in the
following approximate way: for 1s electrons the
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TABLE I. KLL Auger energies for neon (in eV).

Semiempiric al
Final configuration Auger line State (Ref. 7) (Ref. 6)

Present Experimental
calc. (Ref. 18)

(2s)'(2p)'

(2s)'(2p)'

(2s)'(2p)'

KL iLi

KLiL)

KLiL3

KL2L2

KL+3

KL 3L3

1
Sp

Pi

Pp

3p

3p

1
Dg

3P

P

751

785

785

785

802

806

809

809

754.1

776.1

787.9

787.9

787.9

805.4

807.5

810.3

810.3

747.5

771.6

783.7

783.7

783.8

801.8

806.9

810.3

810.4

748.0 +0.1

771.4 ~0.1

782.0 +0.1

800.4 +0.1
804.1 +0.4

results published by Desiderio and Johnson'4 show
a smooth variation as a function of the atomic
number Z (roughly Z4), and it is easy to extrapo-
late for uranium and americium. For 2s electrons,
the only published value for many-electron sys-
tems is that of fermium. " To obtain an estimate
for uranium and americium, we calculated the
self-energy contribution from the recent work of
Mohr, "using an effective value of Z reduced by
1.6 (this screening coefficient is calculated from
the expectation value of r). The vacuum polariza-
tion contribution was estimated by Fricke'7 for
uranium (13 eV for the 2s shell), using the Uehling
potential. For americium, we interpolate between
uranium and fermium and find 16 eV. The same
procedure is applied to the 2p», and 2p», sub-
shells, the latter being negligible. As we shall
see in Sec. IV, our assumption seems to produce
reasonable binding energies.

For the light atoms considered here (Ne and Ar),
the Lamb-shift correction is not included.

IV. RESULTS AND DISCUSSION

Our method of calculating Auger transition en-
ergies was first tested on the KLL spectra of neon
(Table I) and argon (Table II). For these elements
very precise measurements"" have been per-
formed and these free-atom spectra are directly
comparable with theoretical atomic calculations.
As pointed out by Kelly, "the Hartree-Fock tran-
sition energies obtained for neon are in quite good
agreement with the experimental results, the
many-body effects contributing only a few eV. For
these light elements we do not expect that a rela-
tivistic treatment will drastically modify the re-
sults. Nevertheless, if the relativistic correction
to the 1s binding energy is only about 0.8 eV for
neon, it already amounts to 10 eV for argon, which

TABLE II. KLL Auger energies for argon (in eV).

Semiempir ical
Final configuration Auger line State (Ref. 7) (Ref. 6)

Present
calc.

Experimental
(Ref. 19)

(2s)'(2p)'

(»)'(2p)'

(»)'(2p)'

KLiLi

KLiL2

KLiL3

KL+2
KL2LB

KL+3

ip

Pp

Pi
3p

'Sp

1
D2

Pp

3p

2524

2584

2607

2608

2609

2654

2666

2672

2674

2508.9

2573.8

2597.2

2597.9

2599.2

2649.9

2657.8

2664.2

2666.1

2511.6

2575.6

2599.2

2600.0

2601.4

2649.9

2661.8

2668.4

2670.6

2508.9 +0.4

2575.8+0.3

2599.4 +0.3

2650.6 +1.0
2660.6 +0.3

2666.8 +0.4

2669.1 +0.3
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TABLE III. KLL Auger energies for uranium (in eV).

Final configuration

(»)'(2p)'

(2s)'(2p)'

(») (2p)

KL,L,

KL)L2

KL(L„.

3
Pp

i3P
1

3Pg

KL)L2

KL)L3

KL3L3

Sp

Dg

Pp

P2

Auger line State
Semiempir ical

(Ref. 7)

71 748

72 567

72 615

76 302

76 395

73 353

77 141

80 873

80 938

71 ™49

72 560

72 614

76332

76 430

73 272

77 125

80 889

80 955

71 745+20

72 560 +20

72 620 +20

76320 +20

76430 +20

73 320+40

77 130 +20

Present Experimental
calc. ' (Ref. 8)

Corrected for the Lamb shift: is, 245 eV; 2s, 50 eV; 2p(&&, -3 eV; 2p3&&, negligible.

is greater than the contribution from correlation
effects (the Dirac-Fock result corrected for Lamb
shift is 3205.6 eV, compared to the experimental
value of 3205.9 eV"). Besides these relativistic
corrections, the argon case enables us to judge
the quality of our method for the intermediate cou-
pling. From Table II it can be seen that the ex-
perimental splitting between the 'P, and 'P, states
of the KL,L, line is 2.3 eV, while our calculated
value is 2.2 eV. As implied in the description of
our method given in Sec. III, all of the contribu-
tions to the spin-orbit and spin-spin interactions
are taken into account, but with different levels
of approximation. The spin-same-orbit interac-
tion is included in the variational calculation,
since the associated operator belongs to the Dirac
one-electron Hamiltonian. On the other hand, the
spin-other=orbit and spin-spin interactions are in-

eluded via the Breit operator and thus treated as
first-order perturbations, the only consistent way
to handle them. "

We now consider the results obtained for ura-
nium (Table III) and americium (Table IV), which
are the relevant part of this study. For these
high-Z elements it is obvious that relativistic
effects have to be carefully taken into account if
a good agreement with experiment is to be achieved.
Besides the inclusion of the relativistic correc-
tions discussed in Sec. III it is also necessary to
go beyond the point-charge-nucleus approxima-
tion. For mercury the change in the 1s binding
energy is already 50 eV owing to the finite size of
the nucleus. " The calculations we present here
have been done using uniform charge distribution
inside a. sphere of mean radius equal to 1.2A' ' fm
where A is the nuclea, r mass. Because americium

TABLE IV. KLL Auger energies for americium (in eV).

Final configuration Auger line State
Semiempir ical

(Ref. 7)
Present
calc. ~

Exper imental
(Ref. 22)

(»)'(2p)'

(»)'(2p)'

(2s) (2p)

KL)Li

KL)Lp

KL)L)

KL2L)

KL)L3

KL)L3

'P&

Pp

P1

3p

S

D2

Pp

P

77 116

77 956

78 006

82 349

82 446

78 763

83 211

87 601

87 669

77021

77 878

77 942

82 300

82 414

78 670

83 152

87 575

87 642

77 012 +23

77 895+12

82 320 +50

82470+50

83 169 +12

87 360 ~50

87 602 +24

Corrected for the Lamb shift: is, 270 eV; 2s, 58 eV; 2p&&&, -4 eV; 2p3&&, negligible.
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TABLE V. Binding energies for argon and americium
(ln eV).

TABI E VI. Coefficient a of the configuration with two

2pf/2 electrons [cf. Eq. (2)].

Ar gon Amer ic iuxn

Experiment Present Exper iment Present
(Ref. 21) calc. (Ref. 22) calc.

Atom

3g h
0

3y) c
2

is
2s
2P 1 /2

2P3/2

3205.9 +0.5
326.3 +0.1
250.56+0.07
248.45+ 0.07

3205.6
327.1
250.3
248.2

124986 +5
23 811 +2
22955 +3
18 513 +3

124 978
23 811
22 951
18 514

0.581 07
0.613 19
0.999 80
0.999 84

0.586 65
0.670 87
0.999 97
0.999 98

0.826 54
0.884 59
0.999 98
0.999 99

~ Values and uncertainties deduced by us from the
Porter et al. (Ref. 22) precision electron and y-ray
measurements in 'Cm 2 'Am decay (without any
work-function correction).

Conf lgux'ation spu: L,S llxnlt 0.577 35.
"Configur ation P": L 8 limit 0.577 35.
c Configuration P: L,S limit 0.816 50.

and uranium are well-deformed nuclei, errors of
a, few eV may result from this approximation. It
is difficult to assess the error limits of the cal-
culated values but we expect that they mill not
exceed 10 or 20 eV. To justify this value, let us
consider the main uncertainties in the calculations.
Many-body effects are neglected but it seems un-
likely that the difference in the correlation ener-
gies of the initial and final states could exceed a
few eV. This order of magnitude is supported by
the semiempirical treatment of Coman" based on
a statistical approach. The second main uncer-
tainty is our treatment of the Lamb-shift correc-
tion for the 2s electrons and the neglect of higher-
order relativistic corrections. Here again the
order of magnitude must not exceed a few eV, as
can be seen from the comparison of theoretical
and experimental binding energies given in Table
V.

When comparing binding energies, it is worth-
while to point out that any error in calculation of
the Lamb-shift correction is of great importance
for the s shells, but less significant for the p
shells. The same situation arises for the Auger
transition energies and is even worse for the
EI.,I, line, since any error in the 2s contribution
will be counted twice. For this reason we believe
that the validity of our method has to be judged
with respect to the double-2p-hole final-state con-
figuration. Among the various states of this con-
figuration, the most relevant one is certainly the
'D, state of the KI.,I., line, which is the most
intense one and the best determined, experimen-
tally.

So far we have considered only the intrinsic
errors of the calculation, but it remains for us to
estimate the validity of relating the free-ion cal-
culations to the experimental results. For light
elements, it is mell known that solid-state effects

shift the metallic or oxide Auger spectra by as
much as"" 10-20 eV compared to the vapor
results, while this contribution of the solid-state
effect is only about 5 eV for the inner-shell bind-
ing energies. Besides the two extreme experi-
mental situations, (i) monatomic gases and (ii)
electrically conducting sources (external excita-
tion of metals, radioactive-ion implanted sources,
vaporization of metallic radioactive elements,
etc.), most experiments with radioactive sources
have been performed with sources of poorly known

chernieal states.
Nevertheless, these solid-state effects, for

high Z, mill be of the same order of magnitude
as the experimental uncertainty, and it is not
worthwhile to try to incorporate them. For inter-
mediate- and lom-Z elements, they should be
included, since their contribution is of the same
order of magnitude as the higher-order relativistic
corrections. Preliminary work has been carried
out in this direction and results will be reported in
a forthcoming paper.

Finally, we give in Table VI the value of the
coefficient a of Eq. (2) for the 'P, state of the p'
final configuration, its equivalent for the 'I', state
of the same configuration, and that of the 'P, state
of the sp' configuration. For neon our value re-
produces the almost pure I.S limit, while for
uranium and americium we reach the almost pure
jj limit (results expected for the inner shells of
such heavy atoms).
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