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The problem of the interaction between a two-level atom and a quantum electromagnetic field is treated
without the use of perturbation theory, without introduction of classical fields or factorization conditior. s for
the states, and without assumptions about loss of memory. The calculation is carried out in the Heisenberg

picture, without mode decomposition, and the conclusions all refer to physically measurable quantities, such as

the fluorescence detected in the far field of the atom. It is shown that in a coherent field of constant amplitude

the system always settles down to a quasistationary state, and that the stationarity is a manifestation of the

quantum fluctuations. A solution for the growth of the fluorescent light intensity is presented that holds for
any coherent exciting field. The two-time correlation function and the spectral density of the fluorescence are

calculated, and are found to agree in the long-time limit with earlier results of Mollow. The two-time intensity
correlation function of the field is derived, which corresponds to measurable photoelectric pair correlations,
and it is found that this reflects several quantum features of the field. It is shown that quantum fluctuations are

manifest more explicitly in two-time correlations in the steady state than in transient effects, like spontaneous
emission in the vacuum. The measurement of such correlations therefore presents an opportunity for further
experimental tests of quantum electrodynamics.

I. INTRODUCTION

There lms recently been greatly renewed interest
in the details of the interaction between light and reso-
nant atomic systems. This interest stems partly
from the possibility for making precise experi-
mental tests of quantum electrodynamics (@ED) in

the optical domain through resonant interactions,
and partly from possibilities for the development
of new practical techniques, suchas atomic isotope
separation. The theoretical problem of treating
the microscopic interaction between an atom and
a resonant electromagnetic field has received a
great deal of attention since the early treatments
of%eisskopf and%igner' and Heitler and Ma, '
and calculations based on a variety of different
approaches have been published. ' "

However, from the point of view of testing QED
by optical experiments through a comparison of
its predictions with those of semiclassical theor-
ies, such as the neoclassical theory of Jaynes and
his co-workers" or semiclassical source-field
theories, "many of these existing treatments turn
out to be less than completely satisfactory. For
example, calculations based on solving the Heisen-
berg equations of motion frequently assume that
the external or driving field is classical. ' ' '"
Most analyses in which the Schrodinger equation
of motion is solved deal with a certain limited
number of photonss'~ or assume factorization
conditions for the density operator of the combined
system of atom plus field, ' although the recent
treatment of Mollow16 appears to be free from
these assumptions. Master-equation calculations

almost invariably introduce Markoffian assump-
tions about the process, '"'" to ensure that mem-
ory fades as the interaction proceeds. Assump-
tions that are roughly equivalent to the Markoffian
assumption or to the factorization condition ean
also be found in recent Heisenberg-equation cal-
culations. " " Moreover, in the derivation of the
correlation functions in resonance fluorescence,
further assumptions regarding stationarity of the
process are frequently introduced. ''" If QED
is to be tested, and if Markofficity and stationarity
are indeed features of QED that are distinct from
semiclassical theories, they should emerge as
consequences of the equations of motion and
not be inserted a Priori. Finally, we mention that
different treatments, even within QED, have led
to disagreement about the spectral density of the
fluorescent light in the presence of an exciting
field 5» 6 ~ 8» 11» 13 16» 44

In the following we tackle the problem of the
interaction between a two-level atom and an elec-
tromagnetic field near resonance within the frame-
work of QED, without perturbation theory, without
assumptions about Markofficity or stationarity or
faetorization of states, and without the introduc-
tion of a classical driving field. The method is
based on solution of the Heisenberg equations of
motion, and has similarities with some previous
treatments, '' '~' "except that we avoid some
commonly made assumptions and do not make use
of mode decompositions for the field. Instead,
we prefer to express the results in terms of di-
rectly measurable quantities at some point in the
far field of the atom, rather than in terms of
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mode amplitudes, which are not strictly accessible
to measurement. Although approximations are
introduced in the course of the calculation, we
are able to show explicitly that in the px'esence
of a coherent exciting field the fluorescence be-
comes quasistationary in the wide sense, and

that the achievement of a stationary state is a
manifestation of the fluctuations of the quantum
field. We px'esent solutions for the time develop-
ment of the fluorescent light intensity in the pres-
ence of an arbitrary coherent excitation. In the
course of the calculation we observe, as was
also noted by Agarwale and Ackerhalt et al. , '2 that
cex'tain transient effects —such as spontaneous
emission in the vacuum —can be treated without
explicit introduction of the quantum properhes of
the free electromagnetic field, "because Maxwell's
equations hold equally in @ED and in semiclassical
theory. However, the operator character of the
free field enters in a more direct way in the px'o-

per treatment: of certain two-time correlations of
the fluorescent light in the presence of an excit-
ing field. To some extent this is a reflection of
the fact that, unlike transient effects, stationary ef-
fects necessarily imply the presence of a stochas-
tic process, in this case the fluctuations of the
quantum field. The steady-state properties of
the fluorescence therefoxe reflect quantum fea-
tures of the field more explicitly than do transient
effects.

We also study the two-time intensity correla-
tion function of the fluorescence for a monochro-
matic excitation with arbitrary detuning, and show

that it has additional features characteristic of
the quantum nature of the field. We are there-
fore led to the conclusion that measurements of
certain two-time correlations —especially in the
steady state —provide an opportunity for a more
searching test of @ED than do measurements of
spontaneous emission of 3 atom undergoing a
two-level transition in the vacuum.

We start by deriving the Heisenberg equations
of motion and formally integrating them. %'e then

apply them in Sec. GI to the problem of spontan-
eous emission in the vacuum, and in Sec. IV to
the calculation of the fluorescent light intensity in
the presence of a cohex'ent exciting field. We pro-
ceed to evaluate the two-time second-order cox-
relation function and spectral density of the fluo-
rescence in a weak field in Secs. V and VI, and
show that they are obtainable directly by integra-
tion of the equations of motion and that they in-
volve the free-field commutators ~ In Secs ~ VII
and VIII we solve the same problem more general-
ly for Rn exciting field of Rrbitx'Rry R1Tlplitude Rnd

detuning; we make some comparison with experi-
mental results and suggest a different kind of

measurement of the spectral density. In Sec. IX
we obtain an expression for the two-time inten-
sity correlation function that can be measured
directly with a photoelectric detector and appears
to be an attractive object for experimental study.

II. DERIVATION OF THE EQUATIONS OF MOTION

As we shall be interested in conditions of near
resonance between the electx'omagnetic field and
some atomic transition, in which two energy lev-
els play a dominant role, we make the customary
simplification of representing the atomby a spin- —'
sys«m with t o energy «gen«a«s 1» and 12),
separated by an energy interval 8'~, . This sirnpli-
fication xobs the model of some physical attx ibutes
Rnd does not give a proper account of the I amb
shift, "but it leaves most of the dynamics in which
we shall be interested unchanged. The atom is
then described by the three spin variables" Jt, (t),
Jt, (t), and A, (t) that obey the commutation rule

[Jt,(t), R (t))=t ,e„Jt„(t),

which may be expressed in terms of lowering and
raising operators b(t) and 5 (t), with

Jt, (t) =-'[&'(t)+ &(t)], Jt,(t) =(l/2t)[&'(t) —&(t)],

tt, (t) = —,'[V (t), t (t)j .

As is well known, "the atomic energy relative
to a point midway between the two energy levels
is then given by hcooR, (t), and the transition dipole
moment P. ,(t) can be written 2p, Jt,(t), where g,
=—&l ltL((0) l2& is taken to be real, as for a ~ = 0
transition. The "electron velocity" of our model
atom is then

and we take the total energy of the quantum sys-
tem consisting of the atom interacting with the
electx omagnetic field via an electric dipole inter-
action to be of the form

+ tt&u, Jt, (t) +2(u, y. A(0, t)Jt,(t),

where the symbols have their usual meaning. We
take the model atom to be located at the origin,
and work in the Coulomb gauge, such that Rll the
field vectors E, (r, t), B,(r, t), and A,-(r, t) are trans-
verse. The Heisenberg equations of motion for
the atomic oper Rtox' then tRke the form

R, (t) = —(o,R, (t)+2(urjh)g A(0, t)R, (t), (4)
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R, (t}= u), R, (t),

R,(t) = —2{(utah)p. A(0, t)R, (t), (6)

while the corresponding equations for Z, (r, t) and
B,(r, t) are the Maxwell equations

The differentiation in Eq. (9) is to be interpreted
in the sense of generalized function theory, and
can be carried out with the help of the differential
theorem given by Qel'fand and Shilov." We then
obtain the result

Im(rt I} 2~0f3wm5 {r) ij m/

—E(r, t) = c'V x8(r, t)—j(r t) +3(iT r)r /4vr']R, (t).

which can be formally obtained from the Hamil-
tonian (3) with the help of the well-known commu-
tation relations for the field operators. " The
transverse current Qr, t) is proportional to the
transverse 5~ function and is given by

The two Maxwell equations (7) and (8) can, of
course, be combined in the inhomogeneous wave
equation for the vector potential,

whose solution may be expressed in terms of the
retarded Green's function in the well-known form

where u(r) is the unit step function and X;„,(r, t} is the solution of the homogeneous or free-field equa-
tion that is supposed to characterize the field at time t =0. From Eqs. (10) and (12) we have

A( t) (uo &p 6 (r )u(t ~r r I/c)R (I ( ~/ )d
2ve c' 3 Ir —rl

+— „, R, (t —~r —r'~/c) —iT+ „d'x' +A(„„,(r, t)
1 u(t —(r —r'~/c) -, 3(p r'}r'

(13)

Equation (13) allows us to calculate the transverse
electromagnetic field vectors Z, (r, t) and B,(r, t)
at any space-time point through the relation

B(r, t) = VxA(r, t),

together with the integral over time of Eq. (8).
For the far field we find, with the help of Eq. (5),
to the lowest order in I/r, and for t & r/c

JL

+ ~ ~ + B;.„,,(r, t),

-( )
~', p, p r)r - r

+ . . +E,,„,(r, t),

which are well-known expressions for the far
field of an oscillating dipole, if we interpret
—2(u', p, (R,(t} as d'i1, (t)/dt'. .

We point out in passing that while E( (tt)r,
B,, „,,„,(r, t), and A„;„.„.(r, t) are taken to be Hilbert-
space operators, Eqs. (13), (15), and (16) follow
directly from Maxwell's equations, when the ex-
pressions for the dipole moment: and its derivatives
are inserted.

In order to use Eqs. (4) and (6) we need to cal-
culate p, ,A;(r, t) at the position of the atom r =0,
but it is evident from Eq. (13) that the first inte-
gral on the right-hand side diverges as x»O for
our atomic model. The r dependence of R, (t
—~r —r'~/c) can be removed with the help of a
Taylor expansion about t, together with Eq. (5),
and when r =0 the u(t —~r —r'(/c) function can be
replaced by unity everywhere under the first inte-
gral, except when t =0. Provided t &0, Eq. (13)
therefore leads to
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+— dr' de dp ' „-sin8(1 —2 cos'8) +tl X~ ;,„,(r. , t),
1 ", ' " R,(t- r'/c)

4m 0 0

in which the integral over 8 vanishes. The 6-
function integral has the dimensions I. ', but
clearly diverges as r-o, partly because of the
assumed point-dipole natuxe of the atom. This
term leads to a frequency shift of the atomic reso-
nance that me shall identify with the Lamb shift
fox' a real atom. " On introducing two frequency
parameters defined by

I 2p. GPO 1 2p, QPO

4F60 3kC 4WCO 3SC E

where E is a length whose reciprocal represents
the infinite integral, we can rewrite Eq. (17) in

the compact form

X(0, t) =2(h/ohio)[pR, (t) —rR, (t)] tl+X;„,(Q, t),

with the understanding t a.t &&0.
%'e now decompose the field and the atomic

operators into positive and negative frequency
parts, by using Eq. (2) for R,(t) and R, (t) and writ-
ing

A, (r, t) =XI'(r, t)+XI 1(r, t), (20)

where AI+'(r, t) and A,'1(r, t) are annihilation and

creation opel'a'tol's. The decomposition (20) ls
most commonly carried out with the help of a mode
decomposition, in which case the elements of
AI'l(r, t) and AI ~(r, t) vary as e ' ' and e', re-
spectively for a noninterac ting field. Without a
mode decomposition the separation into positive
and negative frequency parts is not unambiguous,
especially for sufficiently short times. However,
since the dominant contributions to terms involv-
ing AI'1(r, t) and AI l(r, t) in a Fourier decomposi-
tion would come from eex'tain optical frequencies
close to the atomic resonance frequency ~„we
may safely make the sepaxation into positive and
negative frequency parts for all times t for which
cooI;»1. This is not a severe restriction on I;, as
times satisfying the condition &,t» j. can still be
very short compared with the atomic lifetime or
any othex' time in which the system changes ap-
preciably. From Eq. (19) we then have, with the

help of Eqs. (2) and (20), for times such that

tl X". (0 t) =(@/ol )(0 tr-)&(t)+tl A"(0 t)

X' '(0, t) =(tf/ohio)(p+fr)b (t)+ tl ~ X,',,', (0, t)

(21)
These equations are similar to ones obtained

by Ackerhalt et al.~ and express the total field as
the sum of contributions from the source and from
the vacuum or free field. They were previously
obtained by a mode decomposition togethex' with a
Markoffian type of approximation, neither of which
was used here. The mode decomposition allowed
Aekerhalt et al." to arrive at a more explicit
(but still infinite) expression for the Lamb shift r.
However, by working with the undecomposed
fields, me shall not lose sight of the fact that the
analysis so far lies within the domain of Max-
well's equations, and we shall more easily be able
to recognize the point at which explicitly quantum-
mechanical features of the field enter.

%e now follow the procedure of Aekerhalt et al."
of using Eqs. (21) to substitute for tl,A;(0, t} in
Eqs. (4) and (6), after expressing the operator
products tl, A;(0, t)R, (t) and p. &A, (0, t)R, (t) in nor-
mal order. Although tl, A;(0, t) commutes with all
atomic operators at the same time, so that any
opex'ator ordering is allowed, the ease with which
terms ean be evaluated, and the interpretation of
each term, depend on the order, as has recently
been discussed. " Gn decomposing R,(t) and R, (t),
we then obtain the two coupled differential equa-
tions

&(t) = (- t~o P+tr) &(t)-—(P+t~) & "(t)
(22)

+2 (ooo/5) [R,(t) p. ~ Xl.;,1,(0, t) + H.c.],
o

R,(t) =- 2P(R, (t)+ —,')

—((uo/tf)([b(t) + V(t)]tl ~ X',-;,',(r, t)+ H.c.j .

At this point it is convenient to introduce slowly
varying dynamical variables that are free from
the rapid oseillations at optical frequencies char-
acterizing b(t), AI;„',(r, t), et. c. They are defined by

$o(t) =f&(t)e o
~ tie(t):—y (t}e o,

Act+1(r, t)=—A~(+i(r, t)e' ", X~o l(r t)=—Xl l(r t)e ' "



THEORY OF RESONANCE FLUORESCENCE 212'7

In terms of these new variables Eqs. (22) and (23}
become

b8(t) =(-p+iy}b8(t) —(p+ty)b8(t)e'"'ot

+ 2((dJK)[RD(t))t ~ X8' (0, t)

+ y, .A(8 )(0, t)R,(t}e" o'], (26)

R, (t) =-2t)[R,(t)+ —,']

—((do/tf} [b87(t) tt. A8(') (0, t)

+ be(t}tt X(8+)(0, t)e ' o'+H. c.],

in which we recognize certain terms oscillating
at twice the optical frequency. When the equations
are integrated over any measurable time interval,
these oscillatory terms make a negligible contri-
bution and, after discarding them, we obtain

(tj b (0)e(-8+(7)t+ o e(-8+(7)t
s
t

(t )tP, P(+) (0 tl }e(8-ty) t '

0

(29)

RD(t) + 8 = [RD(0}+D]e
'

—
&

e ' ' dt'[bt(t')tt. A(+)(0, t')
0

+ H.c.]e'"'

(29)

This simplification is a form of the rotating-wave
approximation. On substituting for b8(t) from Eq.
(29) in Eq. (29), and for R,(t) from Eq. (29) in Eq.
(28}, we finally arrive at the following two integral
equations for 58(t) and R,(t):

t t

(t) = 5 0)e(-8+(7) + e(-8+ty)t[A (0) +-'] dt' )t ~ A ' (0 tt)e( 8 ty)t ' -e(-8+(7)t dt (I 'A + (0 t') e(8-ty)
s = st, I 3 2 a-' s, e

0 0

2 t t' Ps

—2 —e~ "&' dt'e~"8 '&~t dt" t" p, ~ A~s ~ 0, t' +H.c. e '
p. As+ 0, t',

0 0

R (t(+-', =[R (D)+ —,]e ' ' ——"(t (o)e ' ' ' et tt t('tc', t')e' 't" tt.c.}
D

(30)

ee t
tl

e '8' dt'e 8 ' ' dt')7, X' '(0 tet}R (t')e 8+'7' )t ~ A ' (0 t')+H. c.s y 3 $
0 0

(31)

III. SPONTANEOUS EMISSION

&R (t)&+-' = [&&,(0)&+-']e"",

&b (t)&=&b (o)&e' "'"'
(32)

(33)

This shows that the atomic excitation decays ex-
ponentially with lifetime I/2P, and that the dipole
moment oscillates at a frequency that is shifted
from the "natural" frequency ~0 by an amount y
that can be identified with the Lamb shift.

These results have, of course, been obtained

A somewhat trivial application of these equa-
tions is the problem of the spontaneous decay of
an excited atomic state in the presence of a vacu-
um field ((0j&. If we calculate the expectation val-
ues of all terms in Eqs. (30) and (31) for an arbi-
trary initial atomic state ~tc(&, we see immediately
that since A8( )(r, t}~{0)t&=0= &(Oj~A8(t)(r, t}, all terms
except the first term in each equation vanish, and
we obtain the well-known results

many times in different ways, ' '' '" and they
are regarded as characteristic consequences of
QED. It has even been argued that the process of
spontaneous emission is a direct manifestation of
the vacuum fluctuations of QED. However, the
treatment given by Ackerhalt and Eberly' shows
that the process may also be considered as a con-
sequence of radiation reaction (see also Jaynes
and Cummings" ), and the essential equivalence of
these two points of view has recently been empha-
sized." We see that when the equations of motion
are written in normal order quantum features of
the free electromagnetic field do not enter explic-
itly in the derivation of Eqs. (32) and (33), for the
results would remain unchanged if A(8+)(0, t} and

Aet (0, t) were treated as c numbers and were put
equal to zero. We recall that the field was ob-
tained from Maxwell's equations, and the only
quantum property that we introduced was the com-
muting of the total field at the position of the atom
with atomic operators at the same time. Actually,
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it is possible to give rough arguments based on
the transversality of A, (r, f) at the position of the
atom, together with the equation of motion (5},
that also lead to this commuting property, without
reference to the operator character of the free
field in @ED. To be sure, the free field has to be
quantized if the theory is to be self-consistent, "
but if we did not concern ourselves with questions
of internal consistency and proceeded to treat
A~z', &(0, f) and A~z;&(0, t) as c numbers, we would still
arrive at Eqs. (33}and (33). We could then claim
that the results were obtained via a semiclassical
theory in which the two-level atom is the only
quantum system, and its two-dimensional Hilbert
space spans all available degrees of freedom. In
such a treatment the total field given by Eqs. (12)
or (19) would still not be a c number because of
the quantum nature of the source. "'"'" Still in-
sofar as Eqs. (32) and (33) are derivable without
explicit introduction of the operator character of
the free field, it does seem that measurement of
spontaneous emission in a two-level transition,
under different conditions of excitation, ~ does not
represent the best test of the quantum nature of
the field. We shall. see that the phenomenon of res-
onance fluorescence offers an opportunity for a
more convincing test.

IV. FLUORESCENCE IN THE PRESENCE DF

AN EXCITING FIELD

We now turn to the problem of determining the
response of the system when an electromagnetic
excitation is present, in some given quantum
state As Eq.s. (30) and (31) are written in nor-
mally ordered form, they lend themselves to the
immediate calculation of the atomic expectation

values (bs (t)) and (R,(f)) when the exciting field
is in a coherent state ~(v]). This state is the right-
hand eigenstate of A~', (0, t) and the left-hand eigen-
state of Ai~, &(0, t),"with eigenvalues given by

A~'&(0, t) gi&)) = V(t)~(i&j), ((v}~A(~ '(0, f) = V'(t)((U) ~,

(34)

where V(t) is an arbitrary function of time that is
determined by the set of complex mode amplitudes
(i&). Then all field operators A~; (0, t) and Az, (0, t)
in Eqs. (30) and (31) may be replaced by their
right- and left-hand eigenvalues when expectation
values are calculated.

The choice of the coherent state for the electro-
magnetic field has other advantages, besides
simplifying the calculations. In the first place, it
is a good approximation to the state characteriz-
ing a laser beam, and therefore corresponds
closely to the experimental situation in which
atoms are excited by a laser beam. With the re-
cent development of tunable dye lasers this is
likely to be the preferred method for making ex-
perimental tests, and several. such experiments
have already been reported. ~ Secondly, the co-
herent state is the quantum state that comes closest
to the traditional classical characterization of
the electromagnetic field, " and is therefore well
suited for making comparison with semiclassical
calculations. Thirdly, there is a sense in which
any quantum state of the field may be regarded as
a mixture of coherent states with some generalized
weighting function, 3'3' so that the calculation of
expectation values for a coherent state is a step
in the treatment of the more general situation.

With the help of Eqs. (34) we then obtain from
Eq. (31)

(ic, tc)&+ l = ((((,(0»+ -,') -*" „' "((c,'(o&) $ c—c -*vc( )"c-'"'+ .c)
2 t t'

—o —' *" oc' " 'i" v(c') cc" ii v'(c")c'"'"' (R((")& c. .),0 0
(35)

which is an integral equation for (R, (t)) of the
Volterra type. If we integrate by parts we may
express it in the form

t

(R,(f)) = y{f)+ ff (t, t')(R, (t')) dt',
0

y(t) -=—2+ [(R,(0))+-,']e "'
( t

(cc(o)& o('c v(v& ic 'ii' + . .)~0

g (t t)) — 2 0 e-28t, Vg(ty)+(8+ay)t

in which the function y(t) and the kernel K(t, t') are
given by dt e " p, .V(t")+c c

t t
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If V(t) is bounded, as it must always be in prac-
tice, the equation can always be solved by suc-
cessive substitution in the form of an absolutely
and uniformly convergent series, "

t
(R,(t)) = y(t) + dt'K(t, t')y(t')

0

t gt

+ dt' dt" K(t, t')K(t', t")y(t")+. . .
0 0

(39)

This solution holds for an arbitrary initial state
of the atom and for an arbitrary coherent state of
the field, whether in the form of a pulse or con-
tinuous, and it was obtained within the framework
of QED. However, once again we point out that no

explicitly quantum-mechanical features of the
free field have entered in the derivation, which
would remain unchanged if the operators A(2( (0, t)
and A&(, )(0, t) were replaced by the complex c num-
bers V(t) and V*(t) from the beginning, provided
the total field at r =0 commutes with atomic oper-
ators at the same time.

The quantity (R, (t))+ —,
' has an important inter-

pretation in terms of directly measurable quanti-
ties, besides being the energy expectation value
of the atom in units of Su0. The fluorescent light
intensity (E(( )(r, t) E((')(r, t)) radiated by the atom
and detected by a photoelectric detector at r, t
in the far field may be expressed with the help of
Eq. (16), after decomposition into positive and
negative frequency parts, in the form

(2&-)( l) 2l )( l)) I (ll' )

)4we, c' r' r '

x bs~ t bst

other hand, if the excitation V(t) reaches a. steady
amplitude eventually, which we take to be of the
form (expressed in terms of slowly varying vari-
ables)

V(t) ea ((0)0-4)~)(+(l)) (41)

or
—0

R, (t) +-,'-,
2II +P +(y+~ —0)0)

(42)

where D is the Rabi frequency 2(d0)2 T8/g. "'22
This equation expresses the steady-state fluores-
cent light intensity in terms of the strength of the
exciting field 0 and of the detuning u, —(d0. The
expression is known as the absorption spectrum,
and was long ago derived by semiclassical met-
hods, including solution of the semiclassical Bloch
equations. "'" It has recently been measured for
a number of atoms with the help of tunable dye
lasers. "

We may use Eqs. (41) and (42) in Eq. (28) to
evaluate the solution for (52 (t)) as t-~. We then
obtain

where 8, P are real, 7 is a unit vector, and the
frequency w, of the exciting light does not neces-
sarily coincide with the atomic frequency m0, then
the first two terms on the right-hand side of Eq.
(35) still die out as t- ~, but the third does not.
(R, (t))+-, then tends to a nonzero steady-state
value. This value is easily found from Eq. (35),
as the factors e~' and e~' in the integrand cause
the steady-state value of (R,(t)) to dominate the
integral as t- ~. We then obtain from Eqs. (35)
and (41)

e8 ' (R, (t))
(R,(t))+ —', - —2 '

~ (

'
)~

+ c.c.

(d0p. ssng

r
(40)

C

provided the space-time point r, t is chosen so that
E,(';„(r, t)

~ (v})= 0, and the exciting field vanishes
there. g is the angle between p. and r. It follows
that (R,(t))+ —,

' is a measure of the light intensity
in the far field, after due allowance is made for
retardation.

Certain general features of the solution follow
from Eq. (35). If the excitation eventually dies
out, so that V(t)- 0 as t- ~, then, since (R,(t))
is bounded, the exponential factors e ' ' cause
all terms on the right-hand side of Eq. (35) to van-
ish as t ~, and th-erefore (R,(t))- ——,'. The atom
must therefore end up in the ground state. On the

dtl g. V(tl)e( B- y)t'(
0

20l0 2(Y (()I ~0)j (((l)0-(l)y)(+(lil
+P + (P+ QJ& —(d0)

(43)

n' =2P'+2(y+ ~, —~,)'. (44)

The solution given by Eq. (39) simplifies con-
siderably in the important special case in which
the exciting field V(t) has a constant amplitude,

which shows that the induced dipole moment con-
tinues to oscillate in time at the driving frequency,
with an amplitude that increases with the exciting
field strength (measured by the Rabi frequency II)
for small 0, but decreases inversely with Gfor
large Q. The oscillation amplitude is greatest
when



H. J. KIMBLZ AND L. MANDEL

so that Eq. (41) holds for all times t &0. In that
case we find from Eqs. (37) and (36)

y(t) = —k+ [(it, (0))+ -']e "'
e-8(i+& e)~ -28'

-2 —(be(0))e'~ . +c.c. ,

(45)

K(t, t') = (ft'/-P')a(t t') -=@a—(t —t'), (47)

where X —= 0'/P' depends on the strength of the ex-
citation and H(t) does not. The integral equation
(36) can now be solved in closed form by Laplace
tx'ansformation. Thus if

r H(t)e-" dt =e(p), -
D

x[e ' ' [cosP8(t —t')+ 8sinP8(t —t')]

-2 (((i -i ')}
8-=('Y+ ((ii —&o)/P

We see that the kernel K(t, t') is a function only of
the difference I, —t', and may be written in the
forIQ

we have from Eq. (36)

OX'

&.(P) =y(p)+ ~ tf( p)&, (p)

Jt (p) =1(p)/[I —~H(p)]

whex'e K ls R constaQt chosen so thRt Rll slngulR11-
ties of the integrand lie to the left-hand side of
the line Rep = K ln the complex p plRne. From
Eqs. (45)-(46) we readily find

1 (Jt,(0)) + —,
'"" -2P' P2P

1 II (b~t(0))e'~ 1 1
2 P j. -se p+P(1+~6) p+2P

(t(~ (0)) 1 1
1+i 8 p+p(l —i8) p+2p

By inverse LRplace transformation we then have

[ goo+K (p)
&Jt,(t))=—.

0

' e"dp, t&0, (5O)2vt S,„,„ I -~II(p)

y(t)e~'dt = Y(P), -

e "dt-=R, P),

(48) H(P) = ti'(tt+P)/-(2(i+P)[(P+P)'+ t)'8'], (52)

Rnd appllcRtlon of the CRuchy residue theorem to
the integral in (50) then leads to the solution

( 4~ ~ (2P +Pi)[(P+Pi) +tt 8 ]e + [(tt (0))+ i] ~ [(Pj +)I+ V 8 ]e
-'1+I+ 8' 7 2(P, -P, )(P, -P„)P, ' ' ~ (P; -P,)(Pi P,)-

10 ePIt (0)) ei(b

[[P.'t)(I 8)](P; 2—tt) - (P;.~)' &'8'}-
2 I3, , (P, -P, )(P, —P, )

5 0 e '
~

( ( , )
(( D; i ((8( ( l'; 2(() —(('; N' - I*&

*
I)

where p„p„p, are the three roots (assumed to
be unequal) of the cubic equation

p'+4Pp'+ (5+ g'+ x)P'p+ (2+2 e'+ z)P' =O.

(54)
The roots can be expressed in terms of the param-
ete1's 8 and A. Rnd Rle given by

P, /t) =- ,'+n, +n, —

P,/tt = ,' '(n, .n ).-(~-~-/-2)(n, n), -
p. /tt = ;'(n, n ) H~-/2-)(-n,-n), --

with g, given by the principal values of

n, =-,'((-;~ —08'

+ [(-,'X - 98' - I)'+ (3m+ 38' —I)'] 't'}".

Cases fox' which the roots are degenerate, such as
6)=0, A. = 4, have to be treated separately, but the
solution (53) can be used as the critical values
are approached. In the special case in which the
initial atomic state is the ground state, (R, (0))+-,
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O.Y5 V. TWO-TIME CORRELATION FUNCTIONS OF THE

FLUORESCENCE IN THE WEAK FIELD
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We now turn to the calculation of the spectral
density of the fluorescent light emission, which

might be measured via some combination of an
interferometer with a photodetector in the far
field. As is well known, this spectral density can
be obtained by a Fourier transformation of the
two-time correlation function of the electromag-
netic field in normal order, and from Eq. (16),
after decomposition of the field into positive and
negative frequency parts, we obtain

(E (r, t) ~ E ' (r, t+r))
FIG. 4. Time development of the fluorescent light

intensity, which is proportional to (A3(7.))+~, for various
detunings 0= (cu& —coo+ y)/P of the exciting field. The atom
is initially in the partly excited state (1/v 2 )()1) + J2)), the
Rabi frequency 0= 2p and the phase (II) = 0. Note that in
the steady state the light intensity has the same values
as in Fig. 2.

as a measure of the relative magnitude of the light
fluctuations, we see that despite the coherent
nature of the exciting field the fluorescent light
is not coherent in the steady state, since the re-
lative variance is nonzero. Indeed, the stronger
and more "classical" the exciting field is, the
greater are the fluctuations of the fluorescence,
which must be attributed to quantum effects in the
interaction between the atom and the field. Even
with the introduction of so-called phenomenolog-
ical damping terms, the semiclassical Bloch equa-
tions do not predict these fluctuations. "' ' The
fact that a quasistationary state is reached can
itself be regarded as a manifestation of these
quantum fluctuations, as we show more explicitly
in Sec. V.

Here g is the angle between r and p, vectors, and
we choose the point r so that it lies outside the
exciting beam and

E',;,',(r, t) ~(v)) =0. (57b)

The required spectrum therefore follows directly
from the atomic two-time correlation function of
the second order, which we now examine.

To evaluate (bet(t)bt (t+ r)) we once again take
the exciting field to be in a coherent state ~[v)),
with eigenvalues of A.~i (0, t) and A.~, (0, t) given by
Eqs. (34) and (41). For simplicity we shall take
the initial atomic state to be the ground state ~1),
which causes certain terms to vanish. Although
the choice of initial state affects the initial trans-
ient response of the system, it has no effect on the
asymptotic behavior in a constant field, and we
shall therefore focus our attention on the long-
term form of the correlation (b~(t)be(t+T)). From
Eq. (30) we obtain by direct multiplication, after
taking expectation values,

f t+T

(bt(t)b (t r)) ate (-()+it ) -DBt dtt f dt(tet) (5 te) t' t) ((-l())t"
S

0 0

t+T t"
& ~3e (-8+iv)&e-28t ~sr eB(&+i8)t' &xrre-8 (&+i8) t» ar rrr [/z, tt rrnhkei (~0-cu &) t"'+i8

C 1 28t"'+4uc'e
0 0 0

& Q3 (-8+iv)& -28t+4
t+T t t tt

d~reB( -i8)t' dtrre-8( -i8)t" dt {b (t«r~Xe't( 0- 1 t'"+i8
C C 1e 8t'"

0 0

2 t
Q2 0 e (-8+ir )Te-28t dt e-B (1-i8 )t,

x dt, [tt V" (t,)be(t, )+be(t, )tt A"(0, t, )]e~tt
0

t+T t3
dt, e "' '" dtt[b (tt)tt' V(t, )

0 0

~ II A', '(D, I.)5.(I,)]) " . (58)



Similarly, we may use Eq. (30} to construct cor-
relation functions in some other order, such as
(b~(t)b~(t+ 7')). The resulting system of .oupled
integral equations can then be solved for each cor-
relation function in turn. We shall return to this
general problem in Sec. VII. However, when the
external field is weak, so that Q/P«1 and the
higher powers of Q/P can be discarded, Eq. (58}
lends itself directly to a term-by-term evaluation
of (g(t)bz(t+r)&, as we now show. The condition
Q/P «1 can be interpreted to mean that the Rabi

oscillation frequency in the external field is small
compared with the spontaneous decay rate.

We first observe that, because of the factors
e ' in the integrands of the second and third terms,
the steady-state values of (b~(t)& and (b~(t)& make
the dominant contribution to these terms in the
long-time limit. If we insert the long-time solu-
tions given by Eq. (43) into these terms in Eq. {58),
and leave the last term containing the fourfold
integxal for the moment, we find that, as t- ~,

Q2eii&oo-ur))v Qceji&ao ry))r-
[Contributions of first three terms to (bz(t)bz(t+r)&]-

@4&A{tdO-td)()T

8P'(1 + e')(1+8'+ Q'/2P')

This contribution to the correlation function
(E,' '(r, t )h,"(r,t+ v')) therefore becomes indepen-
dent of I; after a long time, but continues to oscil-
late indefinitely with increasing 7 at the driving
frequency {d,. It obviously corresponds to mono-
chromatic light that is elastically scattered by the
atom and contributes no spectral width to the flu-
orescence. Any decay of the correlation function
with 7, i.e. , any finite spectral width, must evi-
dently come from the last term in Eq. (58}, which
can itself be divided into four contributions involv-
ing the following four correlation functions:

P, V'(t, )(b~(t,)ti A~i '(O, t,)b~(t, )&,

ti i(t,)(bJ(t, ))I.A,"(0,t,)bt(t, )) .

We now proceed to evaluate these correlations up
to terms of the second order in Q/tl with the help
of Eq. {30), so as to obtain the value of the last
term in Eq. (58) to O{(Q/P)').

We start with the first term in (60), which caDs for the determination of &bz(t2)b~(t4)&, but only to zeroth
order in Q/P. By direct multiplication of Eq. (30) and evaluation of expectations with the help of Eq. (34),
we have, up to terms of order Q/P,

2

(b (t)bt(t+r)& —e-2))iei )) i)')&+ --0 e-)stei-I-A)i

+ [terms O(Q'/P') and higher] .

t+T
dt))es i)'))'e())+6')I-(~. A(+)"(0 ti}~.Ai-)(0 te))

The first term is of order unity, but becomes
negligible after a sufficiently long time t. The
second term can be evaluated with the help of the
COIIIInlltatoI [ ti)gA", ( Ot'), /JI Ag)'(0, t")], wlllch ls
examined in the Appendix. We find that under the
integral in Eq. (58) the commutator may to a good
approximation be written

[)I,A~", )(0, t'), y, , A , ~i( )Ot")] -" P2(h-'" (u/,') (tb'- t'),

great compared with the optical period 1/i))0. When
this result is inserted in Eq. (61) and we pass to
the long-time limit, we obtain

(b,(t)b,'(t+ r))- ' ~ }' ' (63)
ei'-'"" +O(Q'/P'), lf r-«o,

provided the range of ]},",I;" integration is very
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which is independent of t but falls off exponentially
with the time difference w. It should be noted that
the exponential falloff comes directly from the
introduction of the commutator (62) in Eq. (61),
and is therefore a true quantum-field effect.

The commutation relation (62) allows a simple
heuristic interpretation of the result in Eq. (64)
to be given. If we look at Eqs. (26) and (27), from
which we started, as coupled Langevin-type equa-
tions for the dynamical variables b8(t) and R2(t),
with quantum "noise sources"" A8',. '(0, t) and

(0, t), then Eq. (62) implies that these quantum
noise sources are 5 correlated in soIDe sense, and
therefore represent a Markoffian random process.
The exponential falloff of the correlation function
(88(t)b8(t+r)& is then a reflection of this Markoffian
process. This may be considered a rough justifica-
tion for the Markoffian assumption that is intro-
duced from th~ beginning in certain treat-
ments, ' ""which can also be justified more
formally via the so-called quantum-regression
theorem. '

%e now turn to the evaluation of the second term
in (60), and again make use of the commutation

relation (62). We then obtain

(b,'(t, ) tt A,"(0,t,)&t. A,&-&(0, t,)b, (t, )&

The second term on the right-hand side can be
expanded with the help of Eq. (30), but its contri-
bution is of order higher than Q'/P'. The first
tel'Ill oil the I'lgllt-llR(ld side ls give(1 (l&l tile lollg-
time limit) by Eq. (42), so that we have, to order
Q2/P2

(b,(t.) tt A,('&(0, t,) tt A,'-'(0, t,)b,(t, )&

Finally, we consider the third and fourth terms
in (60), which are essentially conjugates of each
other. Once again we have, by direct multiplica-
tion from Eq. (30),

t( & '(t, )(F&,(t2)&t A,' '(o, t.)b,(t, )&

I
~ ~

~

~

~

~ 1 I t~ 88(4) t2 A

&&,1(2(t ) ( 8+&2&&t2+tt& dtt dtlte&8 &2&&t+t-" & (~, At+&(0 tt)~, A(-j(0 t )~, A(+&(0 ttt)&+0(Q2) (67)

If }I,.A8',.&(0, t) and t(, A8(,.&{0,t) were treated as c
numbers, the first term in Eq. (67) would be of
order Q'/P' and therefore negligible to the order
in which we are working. However, with the help
of the commutation relation (62), we readily find
in the long-time limit, to order @'/P,

)I ~*(t,)(b, (t,)&t A,' '(o, t.)b, (t.)&

@2 e"8(l i8)t2 8(l i8)t4
u(t2 —t,), (68)

2 {do 1 —I8

where tt(r) is the unit step function, which vanishes

for T&0 and is unity for 7'~ 0. Similarly,

1((t,){b8(t,) tt A('j(0, t,)b8(t, )&

] @2 8-8 (1+i8)tg 8 ( j.+i8)to
tt(t, t,) . (69)—

2 (do + l

We may now proceed to use Eqs. (64), (66), (68),
Rlld (69) ill ol'&lel' to evRluRte the coll(1'll&utlo(l of
eRch tel'In ln (60) to tile folll'folc! l&ltegl'Rl 111 Eq.
(68). A straightforward but somewhat lengthy
and tedious calculation leads to the following re-
sults in the long-term limit to order (Q/P)':

( 0 e( 8+it)&e 28t dt d) d) dP e 8(k ifI})tie 8(j+i8)t3828(tg+t2)~, y g t b t )It f t )
0 0 0 0

4&-8I Tl

, ' ---v- I+e '*'"+—. (1 —e "8~)[u(r) 2(( r)]+2-e "'-(e '"
y6I3-'(y+ 8')(9+ g )

' ie

(
2 t

o (-8+i')v -28t 8-8(1-ie&tje-8(l+(8&t3e28(tt+t2&{bt(t ) p, A(+j(0 t )p, A(-&(0 t )b (t )&

Q' 2' 2e (8+i&)T 8(28+i (coo-to I ) 3T

— u(v') + .-- . — . . M(-r), (71)
8P (I+e ) (1+le)(3 te) (I+le)(3+te) (1. te)(3+te) (I;e}(3;e)
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g 2 tl t+T
e' """e ' dt dt dt

t3
dt e-B(I-fe)t Ie-B(I+f8)t~e&(t4+f2)

x8N

x [ii V*(f,)(b~(t,}@A' '(0, t,)b (i,))+(br(t, ) p; A';)(0, f,)br(t, )) p, .V(t,)]

fl e 8e-irt I &8 2g& 2(l &8)e 8r&-i88-r e-Ni88r

BN'(( e') 'e()- 'eN)+8*) (( ~ 'eNB e*) 'e(( ~ '8)() ~ 'e))
&'e"O'"' I +ig 28' 2(I +ig)e8'e (8"-e-""+, , + . , +. . . u(-r). (72)
BP'(1+ 8') (-i8)(3+ig)(1+ 8') (1 —ig)(9+ 8') i8(1 —ig)(3 —i8)

Finally, we combine the results given by Eqs.
(70)-(72), so as to yield the total contribution of
the last term in Eq. (5B). Together with the con
tribution of the first three terms, given by Eq.
(59), we then have the following result for the
atomic correlation function to order (0/P)', in the
long-term limit:

previously. In the language of the theory of ran-
dorn processes, we may say that the exponentially
decaying contribution to the steady-state correla-
tion function is a manifestation of a 5-correlated-
or Markoffian —random process, that in this case
reflects the presence of quantum fluctuations both
of the field and of the atomic source. The two are
of course intimately connected, and are insepar-
able in a consistent theory.

g4 j3ITl i (CVO-tel)T

BP 8(1+8')'

x [sin(pg lr l) +8 cospgr]. (73)

A number of interesting general conclusions fol-
low from this equation. In the first place, we note
that the answer is independent of time t for large
t, which shows that the system eventually settles
down to a quasistationary state, at least in the
wide sense. Of course the system is not strictly
stationary, because of the presence of the mono-
chromatic exciting field in a coherent state. Its
presence is demonstrated by Eq. (43), which shows
explicitly that (b8(f}) does not become i independent,
and is reflected in the strictly oscillatory contribu-
tion to (b8(f)b8(t+r)). Secondly, we note that Eq.
(73) has the proper symmetry property for the
correlation function of a stationary process, i.e.,

(b,'(f)i, (f —r)) = (b,'(f)b, (f + r))*,

and that it reduces to Eq. (42) to order (0/P)' when
& = 0, as required. Moreover, the v' symmetry
comes explicitly out of the calculation, rather than
indirectly from stationarity. Finally, we note the
presence of terms in Eq. (73) that fall off exponen-
tially with ~ in both directions, and we recall that
they come from those contributions to the last
term in Eq. (5B) that involve the free-field com-
mutation relations (62}. If A8',. '(0, f) and A ',. '(0, f)
had been treated as c numbers, this 7-symmetric
exponentially decaying contribution, which of
course leads to a finite spectral width, would be
entirely absent. The quantum properties of the
free field therefore show up much more explicitly
in the two-time correlation function for a driven
atom than in the transient behavior we considered

VI. SPECTRAL DENSITY OF THE RESONANCE

FLUORESCENCE IN A WEAK FIELD

We have already seen from Eq. (57) that, apart
from retardation effects, (b8(t)b8(t+r)) is directly
proportional to the normally ordered correlation
function (EI '(r, f )E,". (r, /+ 7)) of the fluorescent
light at some suitably chosen point r in the far-
field. By taking the Fourier transform of
(E,' '(r, t)E("(r, t+r)) with respect to r, and mak-
ing use of Eq. (73), we obtain the spectral density
4 (r, (()) of the fluorescent electromagnetic field at
r. We then find to order (Q/P)', in the long time
limit,

4(r, (d)

( ) P t)E(+) P t+ ~) eicu7'

4we8c' 2P'(1+ 8')

0x, ), , )n(, )
P 1+8'

(74)

where g, as before, is the angle between the r and
p. vectors. The contribution of the first term ob-
viously corresponds to light that is elastically
scattered by the atom. The second term, whose
integral over all (d is smaller by the factor 0'/P',
contributes two approximately Lorentzian distri-
butions symmetrically placed with respect to the
driving frequency v„and displaced from it by
+ ly+(8) —(d, l. This corresponds to inelastic scat-
tering, mediated by the quantum nature of the pro-
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cess. This contribution is absent in a semiclas-
sical theory, since it depends directly on the free-
field commutation relation. Experimental demon-
stration of the existence of these peaks therefore
represents a, more searching test of @ED than the
study of spontaneous emission, and some experi-
mental results have already been published. "
It is not difficult to see why the existence of a con-
tx"ibution of finite bandwidth to the spectral density
has a significance here that is altogether different
fx'oIQ its slgnlflcance ln spontaneous eIQlsslon ln
the vacuum. An excited atom has only a finite
amount of stored energy and ean radiate only for
a finite time, so that the width of the spectral den-
sity has to be finite in spontaneous emission. How-

ever, in this problem we are dealing with an atom
that is continuously excited by a strictly mono-
chromatic field; in this case the finite bandwidth
of the fluorescence is attributable to quantum fluc-
tuations. Equation (74) is in essential agreement with
the results of Mollow, ""Agarwal, ' and Walls and his
co-workers. " We emphasize that our results were
obtained by direct evaluation of the correlation
function, without the introduction of any classical
driving fields or initial assumptions about station-
arity or Markofficity, although both of these as-
sumptions are now seen to be justified in a sense.

VII. TWO-TIME CORRELATION FUNCTIONS IN GENERAL

We now turn to the more general problem of
evaluating the two-time correlation function of the
I'esonance fluorescence produced in an external
field, without restriction on the strength of the
field or on the time. This time we shall not find
it possible to px oceed in quite such a straightfor-
ward manner as before, and evaluate the correla, —

tion directly from Eq. (58). Instead we need to
solve several coupled equa. tions of motion for sev-
eral different correlation functions. Although the
weak-field ease we have just treated is a special
ease of this more general problem, it provides
insights that ax e not available in the general case,
in that we were able to identify the quantum-field
fluctuations as the source of the finite linewidth.
This is much less obvious in the following more
general treatme nt.

We start by integrating Eqs. (26) and (27) over a,

finite time interval from t to t+7', with r~ 0, and,
as before, we discard the integral of terms oscil-
lating at double the optical frequency. We then ob-
tain

b (t+r) =b, (t)e(S

+ ' dt'R, (t+t')ti, As' (0) t+t')
0

X e 9-~t')(t'-7) (75)

R,(t+ v')+-,' =[R,(t)+a]e ~'

dt'[b,'(t+t')t&, A,( &(0, t+t')
0

+ H. c.]e (76}

We now follow a procedure first used by Milonni"
of forming several different correlation functions,
and solving for them simultaneously, although our
method of solution is different from his, and our
treatxnent is more general in some respects. By
multiplying equations (75) and (76} and their con-
jugates by bz(t) on the left-hand side and taking
expectation values, we obtain several different
correlation functions.

It is convenient to introduce the following nota-
tion for the case where the exciting electron1ag-
netie field is in the coherent state given by Eqs.
(34) and (41):

(5,'(t)b, (t+r))e'"& "'"=g(t, r),-
(b&(t)bt(t + &))ei((oo (o&&(2&+~&e2io =f(t r)

(b (t)R,(t+&})e""o"'"e'o =—h(t &)

(77)

(78}

(79)

These correlation functions are similar to, but not
identical with, the functions introduced by Milon-
ni. " The main difference is that g(t, r), f(t, r) and

l&(t, r) do not oscillate atthe d.ifference frequency
~, —v0; moreover, they become independent of t
a,nd P for large t, as we shall see. From Eqs.
(75) and (76) we then obtain the following relations
among g(t, r), f(t, r), and b(t, r) for r) 0:

g(t, r) = [%,(t)) +~a]e '"""
g dti b(t ti) (&&&-io&(t'-v&

0

i'(t o=of d) ho ( )e~'''
b(t r}= —|(b~('(t))ei(a&o w&&teio

& g dtr t tr +@ t tr eA(t'-&) 82}

In the derivation of these relations we have made
use of the following two operator properties:

b,'(t)b,'(t) = 0 = b,'(t)[R, (t}+-'] (83a)

[&,(t), tii&,''i'(0, t+ &)] = o = [5,'(t), ti;&,' (o, t+ r)]

(83b)

for r~ 0. That Eqs. (83b) hold for r=0 follows
immediately from Eqs. (21), for the total-field
terms t&,.A,". (O, t), t&, A,( '(O, t) commute with all
atomic operators at the same time t. The validity
of the equations for v'&0 is less obvious, although
i't IIllght be expected ln an lntultlve manner from
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the fact that A~',. '(0, t+ r) evolves from A~',. '(0, t) as
a free field. A rigorous proof, based on advanced
and retarded electromagnetic Green's functions,
of the commutation relation

[J(t),E„„(r,t+r)] =0, for r&r/c t (84)

where f(t) is any atomic operator, has recently
been given by Mollow. " The corresponding com-
mutator for the positive and negative frequency
parts of P;„„shouldthen vanish also, provided,
as always, we restrict ourselves to time intervals
long compared with the optical period. Equations
(83b) follow directly from Eq. (84) as a special
case, af ter integration with respect to 7. How-
ever, it should be noted that Eqs. (83b) do not hold
for w&0, which is also to be expected on intuitive
grounds from the fact that the presence of the free
field affects the later time evolution of the a,tom.
We shall return to this point shortly. The same
problem has also been discussed very recently by
Renaud, Whitley and Stroud. 4'

We now proceed to eliminate k(t, 'r) among Eqs.
(80)-(82) and to derive an integral equation for
the combinationg(t, r)+h(t, r) Thu. s from Eqs.
(80) and (81) we obtain

g(t, r)+f(t, r) = [(R,(t)) + ~2]e

+2A dt'h(t, t')e " "cosPe(t' —r), (85)
0

and with the help of Eq. (82) we have, after inte-
gration by parts,

g(t, r)+f(t, r)

(t ( +,f dt' rc( —t ([r(t 't i f,('t ( ((, ',

(ss)

for T'~ 0, where

m(t, T) = [(R,(t)}+g]e

—(&s(t))e""' "'"e*'[AIR(I+ 8')]

x [1—e '(cosPer —8 sin(38T)], (87}

and

K(T) = [A'/P(1+ 8')][e @' —e (cosP8r+ 8 sinPer)] .
(88)

Equation (86} is a Volterra integral equation for
g(t, r)+f(t, r) of the same kind as our earlier inte-
gral Eq. (36) for (R,(t)), in which, moreover, the
kernel is exactly the same [cf. Eq. (46)J, although
the inhomogeneous term m(t, r) is different. The
general solution can be written as before, and
takes the form

g(t, r)+f(t, r)=
(2 2,. A2/&2)(h'(t})e*'0"'""

—A(P(t))e" ' '"e" 1+—+ [(R,(t)) + 2] [P, + P(I +zs)]i
i

i i

(2e+p, )"'
(t;-p, )(p;-t,)'

iAjAk

(89)

in which p„p„p, (assumed to be unequal) are given
by Eqs. (55a} and (55b).

We have already shown that for long times t
(R,(t)) and (b~(t))e""o '"e' become independent
of both t a,nd (t( [cf. Eqs. (42) a.nd (43)]. It follows
from Eq. (87) that m(t, r) also becomes independent
of t and Q for large t, and from Eq. (86) so does
g(t, r) +f(t, r), since the kernel K(r) does not con-
tain t or Q. Equations (80)-(82) then show that all
three correlation functions g(t, r), f(t, r), and

h(t, r) separately become independent of t and (t(

for large times t, so tha, t a quasistationary state
is reached. This quasistationarity is again a con-
sequence of the quantum fluctuations, a.lthough the
conclusion may be less transparent than before.

Once g(t, r)+f(t, r) has been found, it is only a
matter of substitution to derive h(t, r) from Eq.
(82), f(t, r) from Eq. (81), and g(t, r) from Eq. (80).
Thus we find for the atomic correlation function
g(t, r), at any time t, for any initial atomic state,
and for v~0

Qe 4 (Cl)p tu g )fe 4 ttt

g(t r)-
A /, 1 8 (b~(t

P, ~
P T

+
( ) )

R,(t) +-' (p +2P)(p +P+iP8)+'0
=( (P; P;)(P; P~)--i' Ak

1 0 A

—
2
—(0, +2P)(P, + tl+ iPe)(b,'(t.))e""'""'e" (90}
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in which (R,(t)) is given by Eq. (53), and (82(t)) by
Eq. (28) when the value of (R,(t)) is substituted
under the integral.

So far our calculation has been confined to non-
negative values of r, and for good reason. The
commutation relations (83b) do not hold for r &0,
and when the commutators are nonzero the fore-
going simple procedure for deriving g(t, r) breaks
down. However, it follows from the definition (77)
that

~A (1+8')
) p2(1g2/p2+ 1 + 82)2

—'0 (p, +2p)e i'
P (-'II'+1+8') p, (p, —p, )(p, —p, )

'

(94)

which can be shown to reduce to our earlier Eq.
(73) to order (0/P) in the weak-field limit
II/p «I, when r o 0.

g(t, -r) =g*(t —r, r), (91)
VIII. SPECTRAL DENSITY OF THE FLUORESCENCE

g(t, r}-g (t, r} as t- (92}

The function g(t, r) is therefore known for both
positive and negative values of its second argu-
ment r, once it is known for v ~ 0 and for all val-
ues of its first argument.

It is possible, in principle, to associate a time-
dependent spectral density q'(t, ~) with the time-
dependent correlation function g(t, r) given by Eq.
(90), through a finite Fourier integral. Thus we

might define

q{t, ar) =K drg(t r, r)e"" "~"-+c.c. , (93)
0

where K is some constant, and, in view of the
close relationship (57) between the atomic and the
field correlation functions, we might interpret
this quantity as the rate of production of photons
of frequency ur at time t. Had we started from a
mode expansion of the electromagnetic field, we
would have been led to an equation of the form
(93) for the rate of change of the number of pho-
tons. But, despite this interpretation, 4(t, &u) is
not a physically meaningful quantity in the sense
of being accessible to direct measurement. Dur-
ing the time that q'(t, &o) is changing with respect
to its first argument t, the time scale for the
variation is of the same order as or less than the
reciprocal bandwidth, and a spectral density
C(t, (d) that changes in times short compared with
its reciprocal bandwidth is not really physically
rneaningf ul.

Let us then turn to the long-time limit, when

g(t, 7) becomes independent of its first argument.
In that case we may make use of the asymptotic
expressions for (R,(t})+,'- and $2(t)) given by Eqs.
(42) and (43) and substitute them in Eq. (90). We
obtain for 7 ~ 0

and since g(t, r) has been shown to become indepen-
dent of the first argument for large t, we have
immediately

The spectral density 4(r, w) of the fluorescence
observed at some point r is, as before, equal to
the Fourier transform with respect to 7 of the
function (E,' '(r, t)E,"(r, t+ r)) given by Eq. (57a)
in the long-time limit. With the help of Eqs. (94)
and (92) we then find, after some rearrangement
of terms,

C(r, 22) = ', drg(~, r)e"" "~"co() p. sing
4m&,c'r

dr g(~, r)e" "~"+ c.c.Q)() p, SlD$

4m, c'r

(o2n sin] ' —,'fI'/P'
4ve, c'r (—'0'/p +1+8')

1+ 8'
X 2 2 2 o 775((l3 —(It)g)

1Q2jP
2 + 1 + fP

pQ2[4p 2 + ~ Q2 + (~ )2]

I C(2(co, —co)) I'

(95)

C{P}=—p'+4Pp'+ {5P'+P'8'+0') p

+ (2p '+ 2p'8 '+ Il') p . (96)

This spectral density C(r, ru) contains a 6-func-
tion contribution or sharp line at frequency Gpss,

corresponding to elastic scattering of the external
field by the atom, and in general several peaks of
finite width associated with fluorescence. For a
small amount of detuning 8, the area under the
sharp line at (d, becomes increasingly unimportant
as the strength of the external field increases,
i.e. , as 0/p- ~. In the limit of an extremely
strong external field, II/P» 1 and 0/P» 8, Eq.
(95) leads to

where C(p) is the cubic function of p defined by the
left-hand side of Eq. (54),



«Op. Sing
4m&, «;2y

x»(&+ 8') l

g2/ 2 ~(~& —«)+
rp (&—ct)~) + p

ap
! —,—!!!+-!! ! @. . .),ap

--5x{Q s
/'&

)Q.!!

-Sx Q'

Q, =Q.IP

8 p(fl/p{))'
( ~ pg)2+ p2

—,'P(fl/P {I)'
(~- «+ p8)'+p' (97b)

(9 ) and (97) are in agreeme t 'th th
results obtained by Mollow ' M 1

1 6
1 GDQl ~ Agar-

wa, Carmichael and%ROS "and th 1 tan e atest calcu-
o, ut do notatlons of Smithexs and Fxeedhoff ~' but

agree with the conclusions reached 1'e ear ier by
x'oud and Smithers and Fxeedh ff'~o on the basis

of different assumptions. Th 1 te as two treatments
were limited to a finite number of emitted h
mhex'6Rs no such limitations were im osed h

1 6 p otons ~

Rnd sonle d
pose ex'6„

fore to be e
e ifference in the conclusions thls 8x'6-

r o e expected. This point has also b

y Carmichael and%'ROS a d S th
and Freedhoff. "

Some graphs of the form of 4(r, !o) for various
e nings are iOus-fleld stx'engths Rnd vRI'ious detu

tx'ated in Fi s. 5-7t t ' 'g . —,but with the elastically sca,t-
tered Q-fun ction contribution omitted. It will be
seen that the effect of increasing detuning (i e. ,
increasing e) is to lower the absolute heights of
the peaks, but that, the height ratio of th d

p o the central peak of flnlte dth
T is is also evident by inspection of Eq. (97b).
Curves of thee general shape shown in Figs. 5-7
have been obtained by Schuda St d,

34
rou, Rnd Hel-

cher, and more recently b %u 6u~ I'OVe Rnd

zekiel from direct rneasuxement of the xeso-
nance fluoresuox'escence ln Rn Rtonllc beam Gf sodium.

in which there ax'e three peaks f f tG 1Dl 6 width with
e heights of the central peak and of the side

peRks lQ the I'Rtlo 3:1. The side 6Rks
roug y by the Rabi frequency 0 from the line

1 oscillations ofcenter„and they I'ef lect the HRb

the atom. Theth t . e phenomenon is sometimes called
the ac Stark effect. On the other ha d

'
th

it of a strong field but with very strong d tun'

/p l and {)»A/p, we find from Eg. (95)
6 lng)

( )
QPO p, stuff!

4mo«. "X

!
-5

FIG. 5. Spectral density @'(r& Qp)(bpop slDg/47('Q c 'v) of
the fluorescence at position r in the ion -tixne l'

ings =
m& —~0+ y)/P of the exciting field.

R b f — . P. The elastically scatterede Rabi frequency Q=o.i
- unction contribution is not shown

On the other hanhand, ln these experiments the
height ratio of side peaks to central eakn ra peak is found
o ecome progressively smaller as the detunin

lDC I'6Rse S ln, in apparent contradiction w'th F'
6 6 DlQg

5-7. Howevex'ver, it must be remembered that the

'Wl lgs.

figures do not include the elastically scattered
component of the light wh' h t, w ic contributes to the
measurements. Recall that the6 excltUlg field ls Dot
stxictly monochxomatic in the expe1 lments q eveQ
1 1 were, this would show up as a peak of finite
width because of the finite spectral resolution. If
we calculate the ratio of the areas of the central
peak to the side peaks from E . (97b)
the elasticall ss ica y scattered contribution we f' d th t

i I

-{Q -8 -6 -4 -2 Q 2 4 6 8 )Q

(~-~, )

)3

FJG. 6. Spectral density 4 {r,~)(~op sing/4«0~&) of
the fluorescence at position r in the ion -t'

e Rabi frequency Q=4P. The elastically scattered
6-function contribution is not shovrn.
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FIG. 7. Spectral density C (r, u)(mop sing/47(eocmx) 2 of
the fluorescence at position r in the long-time limit, for
various detunings 8= (co& —no+ y)/P of the exciting field.
The Habi frequency 0 = 10P. The elastically scattered
6-function contribution is not shown.

l.O
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FIG. 8. Comparison of the theoretical spectral density
4(r, m) for 0/P=8 and 0=0, after convolution with a
Gaussian instrumental profile of standard deviation
O=P, with experimental results of Wu, Grove, and
Ezekiel (Ref. 34). Both curves have been normalized
to unity, and the experimental curve has been smoothed
slightly.

it increases as 4(P8/A)' with increasing detuning
8. When QjP=8»i, the ratio of the areas given
by Eq. (95) is about 6:1, in rough agreement with
the measurements. The narrowing of the spectral
line in a weak field, because of the presence of the
elastically scattered component, has also been ob-
served by Gibbs and Venkatesan. " Figure 8 shows
a comparison of the theoretical spectral distribu-
tion with some results obtained by Wu et al. ,

'4

after convolution of the theoretical curve with an
instrumental profile of Gaussian shape and of
width 2p = 12 MHz, which gives best agreement.
The validity of the theory therefore seems to be
confirmed. However, we should point out thai

Wu. ef, al. claimed an instrumental resolution of
better than 3 MHz, which does not give good agree-
ment. and that the iwo-level atom approximation
may not be an adequate approximation for the tran-
sitions occurring in their atomic beam.

If spectral measurements of the fluorescence
that are free from the contribution of the elastical-
ly scattered component could be carried out, they
should result in the spectral distributions shown
in Figs. 5-7, and provide a somewhat cleaner
test of the theory. An interesting possibility for
such measurements is provided by the heterodyne
detection technique, in which the light from the
atom is allowed to beat against a portion of the
exciting beam, and the beats occurring in the out-
put of the photoelectric detector are analyzed. The
photoelectric variations in general reflect only the
broadening of the fluorescence relative to the ex-
citing beam.

A superficial examination of the analysis lead-
ing from Eqs. (75) and (76) to the spectral distri-
bution given by Eq. (95) may suggest that the op-
erator character of the free field A~;.'(O, t) and
A~&,'(0, t) played very little role in the calculation,
because of the zero commutator in Eq. (83b), That
is why some calculations in which the operator
character of A ~", (0, f) and Az,.'(0, t) was effectively
ignored yielded essentially the same answers. "'"
This is in apparent contradiction with the conclu-
sions reached in Sec. V, where it was found that
the operator character of A ~~;.'(0, f) and A ~~,'(0, t)
was essential for a finite spectral width. Indeed,
we concluded there that the finite linewidth could,
in a sense, be attributed to the fluctuation. s of the
quantum field, although the fluctuations of the
source and the field are inseparable in a consis-
tent treatment. But the contradiction is only an
apparent one, for A~", (O, f) and A~&,.'(O, t) cannot be
c numbers if the symmetry property (92) of the
correlation function g(t, 7), which is needed for a
real spectral density, is to be satisfied. By
repeating the calculation leading to Eq. (90},
but with 7'&0, we can readily show thai a so-
lution decaying exponentially with [r ~

cannot
be obtained when Az", (0, t) and A~!(O, t) are c
numbers and are replaced by their eigenvalues. The
operator character of the free field and the commuta-
tion relationsobeyedbyA~& (0, t) andA~& (0, t) are
therefore essential to account for the full behavior
of g(f, v) and of the spectral density of the fluores-
cence.

IX. INTENSITY CORRELATION OF THE FLUORESCENT
LIGHT

So far our discussion has been limited to second-
order correlation functions of the field and of the
corresponding atomic operators. However, as is
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well known, it is possible to make correlation
measurements with photoelectric detectors, in
which the arrival times of photoelectric pulses at
some point r at two different times t and f+ v are
registered directly. As has been shown by Glau-
ber, ~ the joint probability density of photode tec-
tion P, (r, t, t+ v) is proportional to the normally
ordered cox'relation function of the fourth order
in the field, or of the second order in the light
intensity, of the form

P, (r, I& (+v)

c&-(E, (r, f)E, (r, t+ v)E,+ (r, t+ v)E (r, t))

= r"'&(r-, I, v), (98)

for T ~ 0. If we choose the point r to lie in the far
field outside the exciting beam, as before, so
that Eq. (57b) is satisfied, and make use of Eq.
(16) for the far field together with the commutation
relation (84), we obtain, for v ~ 0,

X(t, v ) =- ( f&~(t)R,(t +v) b~ (&)),

9(t v)-=(V(t)V(t+v)f&, (t))e" o ""'e"
{&0&)

which, as we shall see, become independent of
both I and Q in the long-time limit. From Eq. (76)
we then obtain by direct multiplication, with the
help of Eqs. (83b), (34), and (41),

X(t& v) = —~(A, (t)) —~

df& [cy(f I&) + 6»(t I&)] 28(& &')&
D

and from Eq. {75),

(&02)

&y(t v) II Jt dt&X(t t&)&(8+(8)(&'-&} {&03)

We now use Eq. (103) to substitute for S(t, t') and
F*(t, t') in Eq. (102):

When 7 & 0, the time t+ v precedes t, and the joint
probability fox' photodetection leads to a correla-
tion function of the form I'~'~~(r, t —(v(& (v(). In-
stead of explicitly studying the symmetry proper-
ties of F~'~~(r, t, 7) with respect to T, we shall
therefore be content to show that F '" (r, t, T) given
by Eq. (99) becomes independent of the second
argument for large times t. Once again it will be
quantum fluctuations of the field that cause the
correlations to die out smoothly as T- ~.

In order to calculate F" (r, t, 7), we again make
use of the two integral relations (75) and (76). It
is convenient to define the two atomic correlation
functions

X(t, v) = ——,'(R, (t)) ——,
'

g2 -287' 7' g
'

dt' dt" x(t, t")
2 Q 0

~[ 8(1+& e)&» 8(&-i&)t' ~ c c ]
~ ~ J ~

After integrating once by parts we arrive at the
following integral equation:

X(t, v} = ——,'(R, (t)) ——,'+ dt'X(t, t')K(v —t'),
0

(&04)

where K(v) is the integral kernel that we encoun-
tered before in Eqs. (46) and (88), in the course
of evaluating (R,(v)) and g(f, v). Each of the prob-
lems of determining (R,(v)), g(t, v), and X(t, v)
therefoxe leads to the same integral equation with
the same kernel, but with a different inhomogen-
eous term, as is also suggested by the application
of the quantum-regression theorem"'" to the
problem. We have already shown that ——,'(R, (t})—~

becomes independent of both t and (II) in the long-
time limit, and since K(v) does not depend on t and

Q, both 3C(t, v) and P(t, v) must also become inde-
pendent of I; and P as t -~.

If we examine the inhomogeneous term given by
Eq. (45) in the integral equation (36) for (R,(v)),
we observe that it reduces to the constant --,' in

the special case in which the atom starts in the
lower or ground state at time zero. Let us denote
the corresponding solution [which is given by Eq.
(53) in general] at time v by (R,(v))~, where G

indicates the atomic ground state. The integral
equations for X(t, v) and (R,(v))o are then almost
identical, except that the inhomogeneous term is
larger by the factor (R, (t))+ 2 in the former case.
Inspection of Eq. (50) then shows that the solutions
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for X(t, r) and (Jt, (T))e must be similar also, ex-
cept fol' 'the fRc'tol' @~(f))+2, so 'thR tw'e may wl'lte

directly

&(I, ~) = (II,(~)) [(II,(t))+ -. ] (&05)

From Eq. (99) we then have for any atomic state,
and foI" the coherent state of the field with eigen-
value given by Eq. (41),

r&' ~ 'i(r, t+ r/c, T)

intx'oduce R Qox'D1Rlized intensity cox'I'elRtlon func-
tion defined by

X(r t I)= '
)

' —I, t&~/C.(E(r, r +r /c)) c
(r, I, + w)

= "DI'","& [(II,(r)), +-,'j[(II,(f))+-,'j, (106)
4m', c'r

where (A, (t)) and (A, ( )r) care both given by Eq.
(53). If we recall that (XI '(r, tg't+'(r, t)) is pro-
portional to the photoelectric detection px obRbility
density p~(r» I) Rt posltlon r at time f» RQd make
use of Eqs. (40), (96), and (106), we can express
the joint probability density P, (r, t, t+ r) at two
times t and t+v in the form of a product

P, (r, t, I+1.) =P, (r, 7 +r/c)eP, (r, &), t &r/c

For small T, X(r, t, r) is negative, because the
detection of one photon at time t makes the detec-
tion of another one at time I;+ v less likely. How-
ever, X(r, t, r) may become positive as 7 in-
creases, and it always tends to zero as 7- ~. The
intensity correlation function therefore reflects
quantum features of the field both in its behavior
foI' sDlRll 7 Rnd for larger 7'» Rnd its measure-
ment would appear to be a very direct test of
some of these quantum properties.

This is a solution of remarkable foxmal sim-
plicity. In the special case of no detuning (8=0)
Rnd fox an atom initially in the ground state, it
agrees with the solution recently obtained by
Carmichael and Walls,"although our Eq. (106)
holds more generally We n. ote that since (R,(0))e
= —2, Fla'21(r, I, T) vanishes identically for 7 =0,
wh1ch is a reflection of the fact that the two-level
atom cannot emit two photons simultaneously. As
7 increases I'~~'~~(r, t, 7) generally may pass
through a maximum, and the same curves illus-
trated in Figs. 1-3 that describe the evolution of
the light intensity with 7 also describe the form
of the intensity correlation function I" "(r, t, r')

As r-~, (A~(T)) becomes independent of the initial
atomic state, and for sufficiently large t and v we
then have

P, (r, t, r) ~ P', (r, ~).

This shows that in the steady state photoelectric
detections or intensity fluctuations separated by
sufficiently-long-time intervals become indepen-
dent, as expected, because the correlations have
died out:. Evidently there is an underlying random
process at work here, which we can again identify
as the fluctuation of the quantum field.

Equation (106) provides a simple and interesting
example of R quantum field whose intensity flue-
tuRtlons D1Ry hRve R llegRtive correlahon. Ex-
amples of such fields have recently been discussed
by Stoler. ~' If we denote the expectation of the
light intensity (EI ~(r, t)EI'l(r, t)) by (I(r, t)), and

X. SUMMARY

%e have examined the interaction of a two-level
R)oM with the quRQtized electromagnetic field
without the use of perturbation theory, without the
introduction of classical fields oI' classical factor-
ization conditions for the states, and without as-
sumptions about loss of memory as the interaction
proceeds. %e find that it is possible to account
fox' certain tx'Rnslent proce88es such Rs tllo8e in
spontaneous emission in the vacuum, without ex-
plicitly invoking the quantum pr operties of the
free field. It is sufficient that the total field
A", (0, t) Rnd A., '(0, I) colllnlll'te with atomic opel-
Rtors at the same time. The quantum properties
of the field are generally more manifest in the
presence of an exciting field when a. Steady state
is reached, as the effects of quantum fluctuations
are then clearly distinguished from transient ef-
fects. Indeed, the fact that a quasistationary state
is reached is itself R ref lectioQ of tile quR1ltuD1

fluctuations. %e have presented a general solu-
tion fox the growth of the fluorescent light inten-
sity, for an arbitrary state of the atom Rnd for an
arbitrary initial coherent stRte of excitation of
the field. %e have calculated two-time correla-
tion functions of the second order and of the fourth
order in the field, and have shown that the quantum
fluctuations of the free field play an essential role
1Q cRUsing correlRtlon8 to die out ~ Curve8 hRve
been presented showing the spectral density of the
fluorescent light under various conditions of ex-
citation and detuning. The two-time intensity cor-
relation function I'~2'2~(r, I;, v.), which is directly
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accessible to measurement with a photodetector,
reveals a further explicit quantum feature in that
it starts from zero for zero separation of the two
times. This reflects the fact that the two-level
atom can emit only one photon at one time, and
that the quantum field, in turn, can produce only
one photoemission at one time. From the point
of view of testing @ED, this would appear to be
one of the most attractive areas for experiment.

APPENDIX: EVALUATION OF THE FREE™FIELD
COMMUTATOR

We consider the commutator

[p,As', , (0, f,), A)A's& (0, t, )]

that is encountered under the integral in Eq. (58}
and el.sewhere, when matrix elements are to be
evaluated. Since A~@'(r, t) is a free-field operator,
it can be given a mode expansion in plane waves
in the usual form,

&l 2
~(+)(r t) ~ ~ ~~ ~tPk r+(~o-~)tg

st ~ LB/2 ~ 2 &
k,s k.s

(A1)

for a=cd, in which the operators ~k s and their
conjugates B~ obey the commutation relations

t

(A2)

With the help of Eqs. (Al} and (A2) we then have

As" (0~ fi} V'As (0~ ts}1 = —,g g, pq(ek s), (sf s) e'~ o "i~'& 's~

k, s

g 1, d'k, (iT k)',(„,)(, , )

when we replace the sum by an integral in the
usual way, and put u =ok. The integral is most
easily evaluated in polar coordinates, if we choose
the z axis in the direction of p, . We then have

[iT, As'(0, t,), p As '(0, t, ) ]
2 Qe

y dy e a (~o -ctf ) ( t q -t2 )
2 roc(2m)'

sin'8 d(9 d(t)
0 0I'

d~'(~, -~')8' '"~ "'. (A4)
6m'&o&'

The first term can be well approximated under a

t„ t, double integral by a 0 function, and the sec-
ond term by a derivative of a 5 function, provided
the t„t, integrals extend over intervals that are
very great compared with 1/uo, and provided the
rest of the integrand contains only functions that
vary slowly compared with optical oscillations.
Accordingly, we may write, with the help of Eq.
(18),

[P.Ais'i(0, t,}, p ~ As~ «(0, t, )]

= 2P(g/(o, )'[8(t, —t, ) + (f/&o, )5'(f, —f, )] (A8).

When applied to a slowly varying test function, the
contribution of the second term will evidently be
much smaller than the first, and can be discarded.
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