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It is shown that in the central-field approximation, a relativistic calculation reproduces the inverted fine

structures experimentally observed in the series of excited sodium nd (3 & n & 16) and cesium nf (4 & n & 12)
terms. Tneoretical results are in good agreement with measured values. In view of the simplicity of the
method used, it can easily be applied to all the states of a given Rydberg series. This work brings to light the
fact that a complete relativistic treatment (which introduces automatically the relativistic contributions on the

large components of the wave functions) is equivalent to a multiconfigurational expansion of nonrelativistic

wave functions taking into account relativistic corrections (in the low-Z Pauli limit).

I. INTRODUCTION

Many alkalilike systems exhibit anomalously nar-
row or inverted fine structures. ' Such an example
is provided by the nd Rydberg states of sodium, or
the nf states of cesium. This well-known result is
rather strange since these levels have a strong hy-
drogenlike behavior as far as atomic properties
such as energies or polarizabilities' are con-
cerned. Recently, Fabre and co-workers, ' using
quantum-beat spectroscopy and a stepwise excita-
tion process, have measured the fine-structure
intervals of highly excited sodium nd states (9 ~ n
~ 16). The experimental data agree with an empir-
ical formula giving the fine-structure interval as
an expansion in odd powers of n '; in the asymp-
totic limit, this empirical function is negative, so
that fine-structure anomalies appear even for very
highly excited states.

For a long time theoretical studies on this sub-
ject have introduced two distinct phenomena. In
1933, Johnson and Breit~ showed that the exchange
term corresponding to magnetic interactions gives
a contribution which reduces the doublet separation
of the cesium nf terms, but this effect is too small
to explain the doublet inversion in this spectrum.
In the same year Phillips tried to explain the in-
version of the 3d levels of the NaI sequence as ow-
ing to core polarization; such an effect can be for-
mulated as a third-order contribution from the ex-
cited configuration 2P' 3P3d, but this contribution
is likewise insufficient. '

Recently, several theoretical groups have be-
come interested in the study of the anomalies in
the fine structures of the alkali isoelectronic se-
quences. According to Beck and co-workers"'
it is necessary to correlate the wave functions and
to include the low-Z Pauli operators, i.e. , correc-
tion terms to the energy of order Z~o.4 (Z is the
nuclear charge and n is the fine-structure con-
stant). As for Lee and co-workers, ' they introduce

the anisotropic exchange core polarization of the
non-s core shells.

The usual spin-orbit and other magnetic inter-
actions are in fact effective operators obtained
from the nonrelativistic limit of the Breit-Dirac
equation. Since the fine structure is essentially
a relativistic effect, it can be studied in the frame-
work of a complete relativistic treatment using
relativistic wave functions. In a previous work"
it was shown that a relativistic central-field model
is able to reproduce the inversion effect observed
in the cesium nf levels and in the 3d states of the
Na I isoelectronic sequence. In order to study
highly excited states it was necessary to improve
the numerical accuracy of the method; indeed, the
doublet separation is very small compared with
the total term energy, and large cancellation ef-
fects occur in the study of exchange terms.
In the following, a systematic study of excited
sodium nd and cesium nf states is described and
an analysis of both relativistic and correlation ef-
fects is presented.

II. RELATIVISTIC CALCULATION OF ATOMIC FINE
STRUCTURES IN THE CENTRAL-FIELD

APPROXIMATION

A. Relativistic Hamiltonian for a many-electron atom

The study of two-electron atoms has been ex-
tensively reviewed by Bethe and Salpeter, "and
we shall present here only the main results. A

fully Lorentz- invariant Hamiltonian describing
two-body interactions between relativistic parti-
cles is not available. Nevertheless, it is possible
to obtain the correction to the Coulomb repulsion
in the form of an expansion in powers of n. The
effective Hamiltonian most often used is the Breit
operator, which introduces corrections of order
Z'a' owing to the exchange of a virtual photon be-
tween the two electrons. Higher-order terms are
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omitted and therefore the Breit correction must be
treated as a perturbation in first order and must
not be included in the Hamiltonian used for gener-
ating the eigenfunctions. In the low-Z Pauli limit,
the Breit interaction reduces to a part of the spin-
spin, spin-other-orbit, and orbit-orbit interac-
tions. "

Practically, the evaluation of the Breit correc-
tion is tedious, but, in fact, it is possible to sim-
plify the calculations by considering the Gaunt op-
erator" H~ only, which is the unretarded interac-
tion between two Dirac currents. Indeed, in com-
puting fine-structure intervals for light atoms, the
Breit and Gaunt operators are nearly equivalent. "
The Gaunt interaction is used in this work to eval-
uate corrections to the Coulomb repulsion.

8. Relativistic radial wave functions

To compute relativistic radial wave functions we
use the relativistic parametric-potential method
described in a previous paper. " However, this
method has been modified to be better adapted to
the study of nonpenetrating Rydberg states.

In the central-field approximation, the Hamil-
tonian for an N-electron atom can be written as
H =H'+H', where H' is a sum of single-particle
Dirac Hamiltonians h, " corresponding to the same
central potential U(r) H', w.hich contains both
one- and two-body operators, is treated as a per-
turbation. A relativistic state ~nljm) is a solution
of the eigenvalue equation

and can be written

) (fj )

f[Q„„(~)/~]~f jm&

where l = 2j —l, and where the radial wave func-
tions P„,&

and Q„» (P and Q for short) are solu-
tions of a system of two coupled first-order dif-
ferential equations" (atomic units),

dP I'—+ ~—=—[1+e —n'U]Q,dr r n

——~ —=—[1—& + n'U]P,dQ Q 1
dr r e

where K = (-1) (j+ 2). U (&0) is the central po-
tential. The reduced total energy E is related to
the binding energy E (in hartrees} by

e = 1+E/mc' -=1+ n'E

(m is the mass of the electron, c the speed of
light). For bound states, e &1; for continuum
states, 6 &1.

The nonrelativistic state ~nljm) a.ssociated with

the relativistic state ~nfjm) is given by

~nljm) = [R„,(r)/r] ~fjm) .

In the parametric-potential method, the central
potential is represented by an analytic function de-
pending on a set of parameters, each parameter
describing the distribution of charges in a corn-
plete shell (JC, L, ...) of the atomic core. The op-
timal potential is determined by minimizing either
the total energy of the studied level [variational
criterion (VC)] or the root-mean-square deviation
between observed and calculated energies of some
chosen levels of the spectrum [spectroscopic cri-
terion (SC)]. The potential U(r) being known, it is
possible to compute radial functions I' and Q by
integrating numerically systems of two coupled
first- order diff erential equations.

C. Optimal central potential in the case of nonpenetrating

Rydberg states

To study nonpenetrating Rydberg states, neither
of the usual criteria (VC and SC) is well adapted
for generating simultaneously core and valence
orbitals. Indeed, in this case the valence electron
is mostly well outside the core, so that the over-
lap between valence and core charge distributions
is very small. The core wave functions are hardly
disturbed by the valence electron and the relative
values of the energy levels are mainly linked to
the direct part of the electrostatic interaction.
For all of these reasons the SC criterion applied
to nonpenetrating Rydberg states does not repro-
duce the overlap of core and valence orbitals very
well. As it will be shown below, the fine-structure
inversions are principally due to this overlap.
Moreover, the contribution of the valence electron
to the total energy of a level (VC criterion) is
weak; thus to obtain the best core wave functions
it is preferable to study the core alone and to apply
the VC criterion to the ground state of the positive
ion. The valence electron moves in the local po-
tential owing to the nucleus and to the direct part
of the electrostatic interaction, and in the nonlocal
exchange potential. Since the overlap of core and
valence orbitals is small, it is possible to treat
the exchange potential as a first-order perturba-
tion. In first approximation the central potential
for the valence orbital is Coulombic (V„=-1/r)
In a more exact way the central potential arises
from the complete electrostatic interaction pro-
duced by the ground state of the core, which has
spherical symmetry; this potential can be written
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where the summation concerns the ng, core orbi-
tals and j,=l, + &. The Y functions" are similar
to those introduced in the nonrelativistic study.

In the particular case of the sodium nd or cesium
nf states, the orthogonality conditions between core
and valence orbitals are automatically satisfied,
since these orbitals correspond to different l val-
ues.

We can further improve the model by introducing
core-polarization effects in an effective way. In-
deed, in alkalilike atoms the binding energies of
nonpenetrating Rydberg states differ from the cor-
responding hydrogenic values mainly because of
core- polarization effects. " These interactions
also influence oscillator strengths in the alkali
atoms. " When the ground state of the core has
spherical symmetry and when nonpenetrating Ryd-
berg states are concerned, it is possible to obtain
perturbed wave functions for valence electrons by
adding to the central potential an effective term
&V~." This polarization potential takes into ac-
count the second-order perturbation owing to the
direct part of the electrostatic interaction, and de-
creases asymptotically as K4. A suitable cutoff
function has to be introduced; in this work we take

&V~(r) = --,'n, r '(1 —e '" "~' ), (6)

where ~~ is the static dipole polarizability of the
core and r, is an effective core radius. For r,
and n„we use the values given by Weisheit, "and
we neglect in &V~(r) higher-order terms such as
quadrupole polarizability interaction or nonadiabat-
ic long- range interactions. "

In conclusion, in this approximation the radial
wave functions for a Rydberg level nlj are generat-
ed using the potential V,(r)+ &V~(r), and the total
energy is obtained by treating to first order the
contributions of the nonlocal exchange potential
H~ and of the Gaunt interaction H~. We note that
for an alkalilike spectrum the direct part of the
Gaunt interaction between the valence and core
electrons vanishes.

D. Numerical procedure

To describe highly excited wave functions which
extend far from the nucleus and which have an os-
cillatory behavior, it is more convenient to use,
rather than a logarithmic mesh, a scaled linear
mesh similar to that introduced by Herman and
Skillman. " This mesh is composed of blocks hav-
ing equally spaced intervals, the interval being
doubled when going to the next block. For each
radial wave function 3000 points can be computed.
The calculations are performed using double pre-
cision on a Univac 1110. For example, this meth-
od enables one to compute the 10d fine-structure

interval for hydrogen with a relative accuracy bet-
ter than 5 x 10 ', although this fine-structure in-
terval is 10' times smaller than the total energy
of the term. (We note that the relativistic deter-
mination of one fine-structure interval is achieved
by calculating independently the total energies of
the two levels j,=l + & belonging to the correspond-
ing nl term ).

III. FINEWTRUCTURE INTERVALS OF SODIUM nd
AND CESIUM nf RYDBERG STATES

A. Numerical results

Table I presents various results concerning the
fine-structure intervals of sodium nd excited states
(3-n-16). Experimental data are given in col-
umn 7. For the lower states (n=3-6) the fine-
structure intervals have been determined using
classical interferometry. For highly excited states
(n= 9—16) the results were recently obtained by
Fabre and co-workers' by means of quantum-beat
spectroscopy. An empirical formula giving the
fine-structure intervals as an expansion in odd
powers of n ' allows these authors to predict the
values for the intermediate states n= 7 and 8.

The theoretical results correspond to the differ-
ent approximations described above. The SC ap-
proximation is presented in column 2. Here the
central potential is determined with the SC criteri-
on applied to the lowest energy levels of the spec-
trum, and it is used to generate core as well as
valence orbitals; moreover, the Gaunt interaction
H~ is not taken into account. In the other columns
core wave functions correspond to the VC criterion
applied to the ground state of the ion Na'. For the
valence electrons the central potential is either the
pure Coulombic one, V„(column 3), or the direct
potential V~ [Eq. (5)] produced by the Na' core (col-
umns 4-6). In column 6 the effective polarization
potential &V~ [Eq. (6)] is added. In these VC ap-
proximations the nonlocal exchange potential II~
is treated as a perturbation to first order and the
Gaunt interaction Ho is either neglected (columns
3 and 4) or introduced (columns 5 and 6).

In Table II we report in an analogous way similar
results concerning the nf Rydberg states of cesium
(4~ n- 12). For Cs the experimental data were ob-
tained by Eriksson and Wenaker" by means of the
classical spectrographic method. These experi-
mental results" are undoubtedly not as accurate
as those obtained for sodium by quantum-beat
spectroscopy, ' but they are better than the experi-
mental values published previously by Moore. '

For both cases the conclusions are similar. The
SC results reproduce the fine-structure inversion
but the absolute values are too large (factor of 3).
As mentioned above, the SC approximation is not
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TABLE I. Fine-structure intervals of sodium nd states (mK). Potentials used to generate
the relativistic radial wave functions: SC, spectroscopic criterion for Nar spectrum; VC,
variational criterion for Na; V„, Coulombic potential; V~, direct potential corresponding to
Na [see Eq. (5)]; and AV&, effective polarization potential [see Eq. (6)]. Hamiltonian treated
as a perturbation to first order: HE, nonlocal electrostatic exchange potential; H&, Gaunt
interaction. 1 mK=10 cm '.

Theory;
ore potential
nd potential
Hamil tonian

SC
SC
H~

VC

vz
H~

VC

v~
H~

VC VC

v~ v~+ Dv~
HE+ Hg HE+ Hg Experiment'

10

12
13
14
15
'16

-174.79
-101.91
-58.56
-35.85
-23.31
—15.93
-11.39

-8.34
-6.31
-4.89
-3.86
—3.10
—2.53
—2.09

32,33
-23.75
-14.54
-9.16
-6.05
-4.18
-3.01

~ 2 1

-1.68
-1.30
-1.03
-0.83
-0.68
-0.56

-36.05
-25.97
—1 5.84
—9.96
—6.57
-4.54
-3.27

-2.40
-1.82
-1.41
-1.12
-0.90
-0.74
—0.61

—40.26
—28.45
—17.28
-10.85
—7.16
—4.93
-3.55

-2.61
—1.98
—1.54
-1.22
-0.98
—0.80
—0.66

-43.79
-30.49
-18.43
-11.55
—7.61
-5.24
-3.75

-2.77
-2.10
-1.63
-1.29
-1.04
-0.85
-0.71

-49.43 + 1.67
-34.31 ~ 0.10
-20.61 + 0.40
-12.41 ~1.67

(-8.44)
(-5.81)

—4.15 ~0.05

—3.05 ~0.03
—2.33 + 0.02

1.80 + 0.02
—1.43 +0.02
—1.14 ~0.03
—0.93 ~0.03
—0.77 + 0.03

~ See Ref. 3.

well adapted to the study of fine- structure inter-
vals for nonpenetrating Rydberg states.

On the contrary, if one supposes that the valence
electron moves in the Coulombic potential V„and
if only the contribution of the exchange potential
Hs is considered (V„+Ha approximation), the theo-
retical results are already in reasonable agree-
ment with the experimental data, in spite of the
rough approximation used in this treatment. The
departure from hydrogenic behavior for the valence
orbital, the Gaunt interaction, and the core-polar-
ization effects contribute to the increase in the
fine-structure inversion, but they are only sec-

ondary effects which, if introduced alone, are not
large enough to explain the inversions. In the so-
dium case these last three effects are of the same
order of magnitude and give rise to corrections
which are ten times smaller than the contribution
of the V„+H~ approximation. Eventually the re-
sults of the complete treatment (V, + &V~+Hs+Ho
approximation) reproduce very well the evolution
of the fine-structure intervals along the Rydberg
series, and the discrepancy between the theoreti-
cal and experimental data does not exceed 10jg.
For cesium the departure from hydrogenic behav-
ior for the f valence electron is significant, but

TABLE II. Fine-structure intervals of cesium nf states (mK}. Same notation as in Table I.

Theory:
ore potential
nf potential
H amiltonian

SC
SC
HE

VC

HE

VC

v~
HE

vC
V~

HE+ Hc Experiment '

8

10
11
12

-529.94
-434.81
-307.62
—215.82

-154.37
-113.18
-85.00
-65.25
—51.08

-203.46
-165.28
-116.19
-81.22

-57.98
-42.46
-31.86
—24.45
-19.13

-223.53
—182.52
-128.70
-90.13

-64.41
-47.21
-35.45
—27.21
—21.30

-223.86
-182.79
-128.90
-90.28

-64.52
-47.28
-35.50
-27.25
-21.33

-181.3
-146.6
-103.7
-69.2
-46.4
-34.0
-23.8
-24.6
-13.5

~ See Ref. 20. Uncertainty +2 mK.



E. LUC- KOENIG

TABLE III. Fine-structure interval of the sodium 3d
term. Experimental value 4)„.=-49.43 +1.67 mK. The
core grave functions are VC functions of Na . The 3d
elec. tron moves in the potential i'J vrhich is either the
hydrogenic potential V„or the direct potential V„of Na
[see Eq. (5)J. H~: direct electrostatic interaction plus
cinetic energy; HE. exchange electrostatic interaction;
H& .. Gaunt interaction.

Fine-structure
interval

(mK)

Average total
energy for 3d

(cm '}
V~

HD -Z/x- U

p (I/~) yo

36.07 39.00
+ 1442.87 1633.4i
-1440.94 -1633.4i

-12 200
-244 282
+ 244 282

Total

-70.33
-3.47

-3$.80

-75.05
-4.2i

-40.26

the contribution of the Gaunt interaction is almost
negligible; the effect of core polarization cannot
be neglected. Indeed, the static polarizability of
the coxe increases by a factor of 20 from sodium
to cesium, " so that in the case of heavy alkali
atoms the distortion of the core wave functions by
the valence electron could be appreciable and the
intxoduction of an effective polarization potential
may be insufficient. For this reason core-polar-
ization effects are not included in the cesium case;
in order to improve the agreement between experi-
mental and theoretical results one would have to
introduce a more elaborate model.

A more detailed analysis of the sodium 3d levels
is presented in Table III. The core orbitals are
VC wave functions of the Na' ion and the valence
orbital is either hydrogenic (column I) or calcu-
lated in the potential V~ [Eq. (5)] (columns 2 and

3). When the hydrogenic wave function is used it
is necessary to introduce as a perturbation to first
order the central part of the perturbing potential,
but the corresponding contribution [-Z/r- V»

+Z (I/r) I"]is small (3 mK). It can be recalled
that this contribution vanishes when the valence
orbital moves in the potential V„since the one-body
part (-Z/r —V, ) cancels exactly the two-body part
[2(I/x)l"] which is the direct electrostatic inter
action between the core and valence electrons. By
numerical calculation this cancellation is verified
with a relative accuxacy of 10"" In column 3 of
Table III we report the average contributions to the
total energy of the 3d term. These values show
that the main contribution to the total energy comes
from the eigenvalue & of the Dirac equation. The
small overlap of the core and valence orbitals
gives rise to the weak value of the contribution of

the nonlocal exchange potential H~. The contribu-
tion of the Gaunt interaction H~ is of order Z'a'
smaller than the electrostatic exchange intexaction
H@.

The operator H~, which contains the kinetic en-
ergy and the direct part of the electrostatic poten-
tial, gives x'ise to a positive contribution to the
fine-structure interval (+39 mK). This was al-
ready shown by Blume and Watson" using the low-
Z Pauli limit, and is demonstrated in the Appen-
dix in the framework of a fuOy relativistic treat-
ment. The negative contxibution of the Gaunt inter-
action Ho (-4 mK) is too small to explain the in-
verted fine structure. The inversion comes fxom
the large negative contribution of the nonlocal ex-
change potential Hs (-75 mK).

8. Negative contribution of the nonlocal exchange potential:
A purely relativistic effect

To aid us in understanding the origin of the nega-
tive contribution of the exchange potential H~, it is
possible to expand the relativistic radial wave
functions in powers of o.2, so that

P„„.-A„,+e hR„,J+

d
Q ~ Qf + g +0 ~ ~

nl

where ~= (-l)~'"'~'(j+2) and &„, is the corre-
sponding nonrelRtlvlstlc rRdlR1 wave function.

In the Appendix we show that a'AR„„., the cor-
rection of order e' to the large component P, can
be interpreted as a shift of the large component
P„„.towards the nucleus with respect to the non-
relativistic function R„,. This displacement is
larger for j„=l—& than for j,= l+ ~ and, with a
good approximation, depends only on j.

The low-Z Pauli limit neglects all terms but the
first in the large component and thus introduces
relativistic corrections corning from the small
component only; moreover, the nonrelativistic
limit of both the electrostatic and Breit interactions
is introduced. The expression (P,Pb+Q, Qb) occurs
in the study of the electrostatic interaction, and
the product P,.gb occurs in the evaluation of the
Breit interaction. %'hen the relativistic effects
associated with the product P,Pb are not smaO—
i.e. , when the quantities n'A, ARb or n'RbAR, are
not negligible compared to Q,Qb—the low-Z Pauli
limit of the electrostatic interaction is not suffi-
cient. The Breit interaction is of order n com-
pared to the nonrelativistic electrostatic interac-
tion; consequently, the terms e'AR„„.give rise to
contributions to the energy of order e4 and are
therefore negligible.

It has been shown previously that the hydrogenic
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approximation V„+H~ is sufficient to reproduce the
essential characters of the doublet inversion, and
this shows, in particular, that the inversion is due
mainly to the exchange potential H~. Consequently,
this approximation can be used to evaluate the re-
spective influences of the relativistic effects from
the large and small components. A simple way to
do this is to neglect completely the small compo-
nent of the hydrogenic nd wave function. The val-
ue obtained in this way for H~ is repox'ted in col-
umn 2 of Table IV; it does not differ much from
the result of the complete treatment (column 1).
We may note that H~ gives the same contribution
for both fine-structure levels when terms e'4R„„.
are neglected, since the matrix element is then in-
dependent of j. Thus any difference seen is due
directly to relativistic corrections to the large
components. The contribution to the exchange po-
tential Hz is negative and large enough (-68.5V

mK) to explain the doublet inversion.
The contributions from the small components of

the wave functions are equal to the differences be-
tween the values in columns 1 and 2 of Table IV
(e excepted), and are reported in column 3. The
direct part of the electrostatic potential gives rise
'to a positive contribution (+ 1.47 mK) which 1s the
two-body part of the spin-orbit interaction, "and
the exchange potential is associated with the small
negative contribution (-1.76 mK) to the spin-other-
orbit interaction. In order to obtain the low-Z
Pauli limit it is necessary to add the spin-orbit
splitting of an hydrogenic 3d state —i.e. , the value
36.07 mK, which is equal to the difference between
the two eigenvalues 3d, and 3d . It can be noted
that the spin-orbit interaction is an effective op-
erator which introduces only the difference between
the small components Q„„., and Q„„.. The total
fine-structure interval is positive (+ 31.30 mK)

and therefore it is impossible to interpret the
anomalies observed in the Rydberg states of al-
kalilike spectra in the framework of the lowest
Pauli limit without configux ation interactions.
Nevertheless, it is possible to account for this
phenomenon in a first-order central-field model
provided that this treatment introduces higher re-
lativistic corrections; accordingly it is possible
to say that these anomalies are "purely relativis-
tic" effects. Another way to describe these inver-
sions is to say that the nonlocal exchange potential
is not the same for the two levels belonging to the
same term, and that it is more attractive fox' the
j, level than for the other one. In the Appendix we
show how this result can be interpreted in terms
of shifts of the large components of the wave func-
tions.

IV. CONFIGURATION INTERACTION AND RELATlVISTIC
EFFECTS IN ATOMIC STRUCTURE

A. Fine-structure study in the framework of a nonrelativistic
description of the atomic states

In Sec. III we have shown that it is possible to
interpret the anomalies in the fine structure of al-
kali atoms in a first-order relativistic central-
field approximation without configuration interac-
tion. A different way to study this problem is to
correlate the nonrelativistic wave functions and to
include the low-Z Pauli operators simultaneously.

Lee and co-workers' have studied the fine struc-
ture of the rubidium 4d term using a method simi-
lar to the following, introduced by Sternheimer'3
in the study of quadrupole shielding: First-order
core wave functions are obtained which take into
account the spin-orbit interaction. These per-
turbed wave functions are used to evaluate the ex-
change electrostatic enex'gy between core and va-

TABLE IV. Respective contributions of relativistic corrections from the small and large
components of the sodium 3d wave functions. The core wave functions are VC functions of
Na . The 3d wave function is hydrogenic.

To tal
Large

components

Small components
ol 10%-Z

Pauli limit

-~z- &~/~

p (&l&)&'
-(z-1)/~+ p (ti~)6

HE

36.07
+ 1442.87
-f440.94

$.93
-70.33
-3.47

-35.80

36.07
+ i082.45
—$081.69

0,46
—68.57

0

36 07
360.VS"

-359.25"
&.47"

76h
-3.4v"

' Spin-orbit splitting for a 3d hydrogenic term.
"Magnetic interactions.
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lence electrons. These energies include the ex-
change core polax'ization contributions to the spin-
orbit splitting, but the calculated value is larger
than the experimental data by a factor of 25.

Beck and Odabasi' used a multiconfigurational
wave function and introduced the low-Z Pauli op-
erators to interpret the fine structure of the NaI
and MgH 3d terms. To generate all of the radial
w'Rve fuDctlons these authors 1Dtx'oduced R centx'Rl

potential similar to the Haxtree-Fock-Slatex po-
tential modified by I indgren. '~ The exchange part
of the potential depends on three paxameters which
are chosen to minimize the 2P63d- 2P'4d config-
Uration intexaction, the Hamiltonian introducing
the one- electron Pauli operatox s. In this sense
the wave functions are relativistic ones Rnd the
central potential partially incorporates x elativistic
effects. In this approach, to xeproduce the doublet
inversion it is necessary to introduce both the
2P' 3d —2P'nP3d configuration interactions and the
two-body Pauli operators. Fox sodium 3d, Beck
and Gdabasi' obtained the value v~ = -38 mK, which
can be compared with the experimental data v,„
= —49.4 mK Rnd with the lesult of Gux' fully 161Rtlv-
istic treatment, v=-43. 8 mK.

B. Discussion

In the txeatments' 9 using nonrelativistic wave
functions, relativistic and correlation effects are
very much mixed, and these studies show that
correlation effects cannot be neglected. On the
contrax'y, the first- order relativistic- central- field
Rppx'oach, which 18 used 1D the px'esent work does
Dot intr'Gduce expllcltly cox'x'61RtlGD effects. It may
appear very strange that both models lead to sim-
ilar results; however (see the Appendix), to order
e' the large component I'„„.can be obtained by
solving a Schrodinger equation which takes into ac-
count the one-electron Pauli operators" (spin or-
bit, Darwin term, RQd vRx'1Rtlon Gf electr'on mass
with velocity). Consequently, the o."4R„» correc-
tions can be obtained in the framework of a first-
ordex' perturbation theory, which introduces a
multiconfigurational expansion of the wave func-
tions. This study shows likewise that relativistic-
central-field wave functions introduce in an effec-
tlVe way conf lguX'RtloD lntelRctlons Coming from
the one- electxon Pauli operatoxs.

In conclusion, correlation and relativistic effects
are strongly connected and some phenomena can be
described as either relativistic effects or config-
uration lnteractlon effec~s according to t e choseI
approximation. Furthermore, as shown by
Feneuille and Armstx'ong, "when cox'xelations and
relativistic effects are separately calculated, it is
necessary to add corrections to such an additive

Rppx'GRch.

A great advantage of the relativistic- central-
fleld approximation comes from its gx'eRt sim-
plicity. Indeed, in the case of alkalilike spectra
it is easiex" to use directly the Gaunt operator than
to intxoduce all of the operatox's appearing in the
low-Z Paub limit. Moreover, the relativistic
tx eatment takes into account automatically the
configuration- interaction effects owing to the one-
electron Pauli operators. Furthermoxe, the rela-
tivistic-central-field approximation enables one to
study all states of a given Rydberg series; on the
contrary, in the approach of Beck and Gdabasi' it
is necessary to generate a multiconfiguxational
wave function fox each state of the series. In the
relativistic- central- field approxiIDation it is pos-
sible to interpret the Rnomahes in the fine struc-
ture in term of shifts of the large components I'„,z
with respect to the nonrelativistic wave function

V. CONCLUSION

In this work we have been able to reproduce the
inversion effect in the fine stx'ucture of sodium nd
and cesium nf Rydberg states, in the framework
of a relative. stic- central- field approximation. This
phenomenon is 1'61Rted to R pux'ely relativistic ef-
fect, which can be accounted for in the single-con-
figuration approach, provided that the relativistic
cox'1'ectlons of Order G on the 1Rx'ge compoQents of
the wave functions are kept. An equivalent method
involves the use of multiconfiguration nonrelativ-
istic wave functions togethex with the low-Z Pauli
operators. In fact, relativistic and correlation
effects are closely related and in the present prob-
lem the distinction between the two phenomena is
somewhat arbitrary.

The RdvRQtRges of the 161Rtlvlstlc-centlRl-field
approximation come from the simplicity of the
method, which allows one to study through a sin-
gle calculation all states of a Rydberg series. The
very good agreement between experimental and
calculated values of the sodium nd Rnd cesium nf
fine-structure intervals shows that this method
might give relevant results fox many alkalilike
spe ctx'a.

The introduction of the concept associated with
the shift of a large component of a xelativistic
wave function allows one to predict whexe purely
relativistic effects can occur. First, they appear
only when the overlap of two different ox'bitals ap-
pears; for this reason, highly excited sodium nd
states behave as almost perfect hydrogen states
Rs fRr Rs totRl encl'gi68 ox' polRx'lzRbllltles Rx'6

concerned. Secondly, pux'ely xelativistic effects
are not negligible when large cancellation effects
occur; indeed, in this case the calculated radial
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integrals are very sensitive to a small relative
shift of the corresponding orbitals. A well-known
example of this concerns the nonzero minimum in
the photoionization cross sections of the ground
states of the Na, K, Rb, and Cs atoms. " Purely
relativistic effects can also explain the line-
strength anomalies in the doublet resonance lines
n'P - 6'S of cesium. " In the relativistic-central-
field approximation we have shown" that the two
integrals J"P„~ Q„dr (j = -,' and 2 and 8 ( n( 11), which a,re equal in the nonrelativistic limit,
differ by a factor of 2, and that the value when
j= 2 is equal to the nonrelativistic one. This re-
sult can be easily understood by remembering that
the shifts of the 6sy/2 and nPy/2 orbitals are almost
equal but are much larger than the shift of the
np, /, orbitals. Fine-structure anomalies in alkali-
like spectra obey both of the following conditions:
The nonlocal exchange potential introduces two
different orbitals and is in this sense a nondiago-
nal quantity; and cancellation effects are impor-
tant owing to the small overlap of core and valence
orbitals.

In conclusion, in the framework of a relativistic
central potential, various anomalies observed in
alkalilike spectra can be related; they are due to
the relativistic terms in the large components of
the wave functions. These corrections give rise
to a shift of the orbital towards the nucleus, the
displacement being different for the j, and j func-
tions.

APPEND IX RELATIVISTICTERM SO(~&(i IN THE LARGE
COMPONENT OF A RADIAL WAVE FUNCTION

Effective Dirac potential

In the central-field approximation the radial
wave functions, for an orbital nlj, are the solu-
tions of system (2).

The small component Q may be eliminated by
introducing the H function" defined by

P= q'i'H, where r) = (I/(). ) (1+@—c('U);

H is a solution of a linear second-order equation
which is formally equivalent to the Schrodinger
equation

—
2 d, ~ II 2, () —a')+ 2, ~ U,) = D, (8)
1d~H 1, I(I+ I)

in which the "effective Dirac potential" U„depends
on the energy and on K,

U„= —— + 2+ —pn U +EU.
1'0" 3 0'
4 g 8 q2 2y

spin orbit, ——,'o.'(v+ 1)(1/r)U';

Darwin term, (') c('[—+ U" + (2/r)U'+ &5(r)] .
(10)

Shift of the radial wave function

In order to study the highest terms of a Rydberg
series it is possible to consider the limiting case
z = 1 (or n- ~) which represents the continuum
wave function at threshold. At large values of r,
where n'U is negligible, it is possible to take into
account the contribution of the relativistic correc-
tions by introducing in the oscillatory part of the
P„„„.wave function a phase shift. 6„„„.with
respect to the nonrelativistic R„„,wave function.
As in scattering theory an approximate value of
this phase shift is given by"

5„„„„.= n' R'„„„,(r)AU„(r) dr .
0

For the hydrogenic potential, the phase shift
depends not on l but only on j and n. At threshold
this value is given by

(12)

As it is well known, the relativistic effects shift
the wave functions towards the nucleus, and this
displacement is greater for j =l —2 than for j,
=l+ g.

At large values of x, &U„ is negligible, so that
the main part of the phase shift comes from the
region near the nucleus where the potential is
Coulombic. Therefore in first approximation,
even for nonhydrogenlike spectra, the phase shift
depends only on j. This assumption was numeri-
cally verified in the Cs I case.

Fine-structure intervals

The direct local part UD of the electrostatic po-
tential always gives rise to a positive contribution
to the fine-structure intervals. Indeed, UD is a
negative function which increases with r; conse-
quently, the contribution of the small components,
which is equal to

It is possible to expend U„and o '(1 —e') in pow-
ers of n'. To the first order in a' it can be easily
shown that H is a solution of a Schrodinger equa-
tion in which the term a'4U„appears in addition
to the potential term U; o.'&U„contains the follow-
ing interactions, which are the one-electron Pauli
operators":

relativistic correction to kinetic energy,
-'(r2[E2 2EU+ U'2] = i

(r2iI)& ~

At large values of r, since g becomes constant,
H is proportional to P.

, (2I+ 1) ""1 dUD(r)
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is positive. As for the large components, since
the j„orbital is closer to the nucleus than the j,
orbital, the j electron moves in a potential @which

is more attractive than the potential acting on the

j, electron; thexefore the corresponding contribu-
tion to the fine-structure interval is positive. In
conclusion, as shown by Blume and Watson" in the
framework of a nonrelativistic treatment, the con-
tribution of the direct part of the electrostatic po-
tential can only be positive.

Consequently, to observe an inverted fine struc-
ture, the contribution of the exchange nonlocal po-
tential must be negative and large enough to cancel
the first part. For example, in the Na isoelec-

tronic sequence, the exchange potential for the Sd
orbital is essentially related to the Gr(2P3d) Siater
integrals (IC=1,3). In a relativistic study several
exchange integrals occur whose values are mainly
linked to the overlap of 2P~ and 3d& relativistic or-
bitals. Since the M, orbitals are more external
than the 2p,. orbitals, it i.s easy to predict from
relative sl&ifts of the wave functions that, for ex-
ample,

c'(2p,.sd„,) & Gr(2p, .sd„,), ~ = —.
' or —,'.

Consequently, the nonlocal exchange potential is
not the same for both 3d& levels and the fine-struc-
ture interval can be negative.
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