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Theory of alignment and orientation in beam-foil experiments
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The preferential population of magnetic quantum levels of atomic states produced in beam-foil collisions is

explained using a density-matrix formulation. The density matrix for the beam in the interior of the foil is

evolved in time to obtain the density matrix after emergence from the foil. The dependence upon tilt angle of
the foil relative to the beam is calculated. The Stokes parameters of the light emitted by decay of the atomic
state are given in terms of the density matrix. Formulas which are valid for arbitrary angular momentum of
the atomic state are derived. Comparison with experiment shows good agreement with data.

I. INTRODUCTION

The purpose of this paper is to describe align-
ment and orientation effects in atomic beam-foil
collisions within the density -matrix formalism.
After passage of a beam of atoms through a thin
foil, there is a distribution of the atoms in excited
states with a given angular momentum quantum
number l, magnetic quantum numbers m and an
additional quantum number label (n) describing the
excited states. If there is a preferential probabil-
ity for the population of given magnetic quantum
states of this l manifold, a net alignment or ori-
entation of this manifold exists. If this l state de-
cays radiatively to lower energy states, the radia-
tion is polarized as a result of this preferential
population of the magnetic sublevels. By studying
the polarization we obtain information concerning
the preferential population of these states. Ex-
perimentally, the quantities that are measured are
the intensity I of the light in a given viewing solid
angle, and the quantities S/I, C/I, and M/I, where
S, C, and M are the Stokes parameters of the
emitted light. ' These experimentally measured
parameters are related to the expectation vaLue of
angular momentum operators over the l state
manifold of the excited state.

In experiments the angle of incidence relative to
the foil normal, e, is changed by rotating the foil
(see Fig. 1). S/I, C/I, M/I, and I then become
functions of n. The variation of these parameters
with tilt angle indicates that surface effects are
important, for it is only through the presence of
the surface that the tilt angle is defined. The in-
terior of an amorphous foil remains unaffected on
the average by rotating the foil. Varying the inci-
dent velocity of the beam particles yields a veloc-
ity dependence of these quantities. There can also
be a dependence on the properties of the foil.
Furthermore, it is clear that these parameters
are dependent upon the excited-state manifold as
well as the states to which this manifold decays

by radiative processes. A complete theory must
explain all of these dependences. Our aim will be
to describe only those features understandable
from symmetry considerations and the general
nature of beam-foil interactions.

We employ the density-matrix formulation of
quantum mechanics because it is particularly
suited for describing these beam-foil collisions.
The description in terms of ordinary quantum
mechanics necessitates calculating transition am-
plitudes for all the processes resulting in the
formation of states in the l-state manifold of in-
terest. These transition matrix elements must be
calculated for every initiaL state of the foil, every
final state of the foil, and every momentum trans-
fer vector to the incident beam particles, and
then the averaging over initial states and summing
over final states must be done. For this kind of
problem, the benefit of using the Liouville repre-
sentation of quantum mechanics, in which the den-
sity matrix rather than the wave function plays
the central role, has been amply stressed in the
literature. Within this approach, the separation
of the dynamical and geometrical (e.g. , symmetry-
related) aspects of the problem of alignment and
orientation is most easily accomplished. With the
ordinary quantum-mechanics approach, such a sep-
aration is very difficult for this type of process,
because the symmetry exists only after averaging
and summing over the initial and final states.

In Sec. II we construct and evolve the density
matrix for the beam of particles as it travels
through the foil, reaches the region near the rear
surface of the foil, and emerges from the foil.
The density matrix and the evolution operators
will be described in terms of their decompositions
into irreducible representations of the rotation
group. The assumptions and methods of previous
treatments are compared with ours. In Sec. III,
the expressions for the Stokes parameters in
terms of the expectation values of angular mo-
mentum operators are constructed for dipole radi-
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ation, details being presented in Appendix A. Ex-
plicit formulas for any excited l-state manifold
are derived. In Sec. IV the evaluation of the rele-
vant expectation values is carried out with the
angular momentum algebra presented in Appendix
B. Section V contains a comparison with experi-
mental data, .

In this treatment we assume the most general
form for the density matrix of an (n} -state mani-
fold at the second surface of the foil that is invari-
ant with respect to rotations about the beam axis
and with respect to reflections in any plane con-
taining the beam axis. This initial density matrix
is independent of n. Furthermore, we assume
that the evolution of the density matrix from the
surface to far away from the surface can be char-
acterized by an interaction potential with the foil
through which the atom must pass, and this po-
tential is invariant with respect to the translations
parallel to the foil surface. The evolution operator
is a function of n. W'e carry through the analysis
of the evolution operator to second order in the
interaction and form the evolved density matrix.

Previous treatments" ' differ from the treat-
ment presented here in both the assumptions for
the initial density matrix p, and the determination
of the evolution operator. Their description of
the initial state is incomplete [see Eq. (1 )], and
the evaluation of the evolution operator was car-
ried through assuming that the atom experiences
a time-independent field. Also, the analysis in
these references was restricted to the case of
radiation from a p -state manifold to an s-state
manifold. Reference 5 employs a semiphenomeno-
logical approach whose validity seems question-
able. The analysis of this reference implies that
the density matrix for the electronic degrees of
freedom depends in an unrealistic way upon where
the atom intersected the foil and validity of the
approach depends upon the unimportance of mul-
tiple collisions within the foil.

II. DENSITY MATRIX

The density matrix for the system is composed
of the tensor product of density matrices for the
heavy-particle motion, the density matrix de-
scribing the "active" electron about the heavy par-
ticle that finally manifests itself as an excited
electronwhich changes state and thereby emits
light, and the density matrix for the remainder of
the foil variables. The energy of the entering par-
ticle is large compared with its energy loss dur-
ing the passage through the macroscopically thin
foil. Furthermore, we may view the heavy-par-
ticle motion as classical.

We shall construct the form of the density ma-
trix (for the "active" electron) within the foil 3ust
before the particle enters the region close to the
rear surface of the foil. The encounter with the
front surface has long been forgotten because of
the multiple interactions within the foil, which
modifies the density matrix to its value in the in-
terior of the foil. The density matrix can be writ-
ten as a sum of terms each of which transforms
as an irreducible tensor under rotations. Within
the interior of the foil the density matrix is axially
symmetric about the incident particle direction.
In addition to this symmetry, there is symmetry
under reflections in any plane containing the axial
symmetry axis. These conditions are enough to
determine that the density matrix within a given

l,.-state manifold is of the form

p(l l ) = T~' '+ T" ~+ T" '+

~T [2k]y
q-Q t

where [2k] is the rank of the irreducible tensors
and q is the component of q along the incident par-
ticle direction (the y axis of Fig. 1). Only q = 0
terms appear in p, because the state is axially
symmetric around the y axis. The odd-k terms
cannot be present because of the symmetry under
reflections in any plane containing the y axis.
This is the form taken for the initial density ma-
trix in Refs. 1, 3, and 5. More generally, it is
possible to have correlations in the density matrix
between different angular momentum manifolds.
That is, we can have terms in the density matrix
of the form

Z

FIG. i. Beam-foil geometry and coordinate axes.
The foil normal u is tilted at an angle n to the beam
axis y. Light may be viewed along the z axis.

~
I
3m)(f'~' ~,

with different values of E and l'. Because of the
axial symmetry we must still have q = 0, and the
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symmetry under reflection in a plane limits the
k values such that I+ 3'+ k equals an even integer.
Thus for l=1, l'=0, 0 can take on odd-integer
values. Thus including these correlation terms
me have

p ggsT)J)]) (I Ii}
ivan' A=O

where the prime on the sum indicates that [k] is
restricted by the above condition. The Hermiticity
of p determines that TOI'I(I, I') = T,'"'~(f', I}. Some
of these off-diagonal terms in /, l' are contained
in the initial density matrix of Ref. 4, but the corn-
plete description as presented here was not at-
tempted.

It should be noted that the details of the wave
functions of the electrons in the cloud about the
particle when it is within the foil are very com-
plicated. Certainly the eigenstates of the elec-
trons about the particle are nothing like the elec-
tronic eigenstates about the atom in free space.
However, these details do not affect our ability
to determine which irreducible tensor components
may be present in p, this being determined solely
from geometrical considerations.

Inside the foil we can think of the density matrix
as having reached the quasiequilibrium state of
Eg. (1'), dp/dt= 0. Upon reaching the surface the
density matrix is therefore givenby Eq. (1'). It must
now be evolved through the region near the rear
surface. Electrons in the region of the surface
experience a potential which is quite large, 'of the
order of the Fermi energy plus work function of
the foil. This potential modifies the density ma-
trix as the particle passes through the surface
region. The detailed character of this surface po-
tential is not particularly relevant for the discus-
sion that follows. All that we really need know
about this potential is that to a good approximation
it is a function only of the distance of the electron
from the surface. Let us define the coordinate
vector from the laboratory frame to the center of
the mass of the particle by R, and the coordinate
vector to the electron from the c.m. of the particle
by r. The surface potential is then given by
V((R+ r) ~ u), where u is the unit vector normal
to the foil surface. All that we need know about
the surface potential is that it is a function of the
indicated variable (the distance of the electron
from the surface of the foil) and that it approaches
a constant value inside the foil and a constant val-
ue (taken to be zero) at a very small distance be-
yond the surface (less than 20 A).' This is true
except for a (relatively very weak) longer-range
residual induced image dipole interaction. %e
calculate the evolution of the density matrix from

the time that the particle reaches the surface until
it passes through the surface region. Let us de-
fine the origin of time by mhen the particle reaches
the surface. The density matrix at a time t when
the particle is outside of the surface interaction
region is given by

p, = u(t, o)p,v'(t, o),

where p, is given by Eg. (1') and

where the subscript I denotes the interaction rep-
resentation. We can write V(t) more explicitly as

V(t)= V,'[g(R(t) u) —&{(R(t)+r) s)], {4)

with V,' of the order of the Fermi energy plus the
work function and where the first term in Eq. (4)
is a (."-number term which does not affect the elec-
tron distribution and is included for convenience
(it is not a function of r). The function e(d) ap
proaches zero for d&20 A. The details of its struc-
ture are unimportant. Since the heavy-particle
motion is perturbed only slightly, we can evaluate
the integral in Eq. (3) by substituting R(t}= vt and
obtain the following a dependence of U:

UO1-i r u -—Vo - . A. Vo (r ~ u)
v cosQ 2 p cosQ

+ 0((V,r s/v cosn)'),

where v is the velocity of the particle. For e(d)
taken as 1 —8(d), with 8(j) denoting the step func
tion, and for experimental velocities such that the
penetration time through the surface potential is
small compared with the inverse of frequency dif-
ferences within the (n) manifold, so that Vz(V) in
Eg. (3) can be replaced by V(t), the coefficients
A = 1 and V, = V,'. In general V, and A mill depend
upon the eigenvalues of the Hamiltonian for the
free atom. Coefficients of the higher-order terms
can also be evaluated, given an explicit function 8.
The quantity r ~ u transforms under rotation as
T,"'", mhere u indicates the axis of symmetry.
Under inversions r u is transformed to - r u,'

r is an odd-parity operator. As we shall see, this
will have implications with regard to the possible
vanishing of certain terms in the traces of observ-
able operators multiplied by the density matrix.
For small values of (V,/(h)v)(r), where (r) is
some average expectation value, higher-order
terms become less important.

The evolution of the density matrix to I; includes
the effects of the residual electrostatic interaction
V which the electron feels owing to the image di-
pole field. "' This field is also directed along
the foil normal. It too is capable of inducing phase
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changes in and transitions into and out of the l-
state manifold of interest. As with 8, because of
the symmetry of the interaction, the amplitude
and phase changes of the magnetic sublevels along
the u axis owing to this field are equal for states
with the same value of I m„l. The form of U(t, 0),
when taken in a basis representation I(n, jism&),
with m& quantized along the z axis, is given by

(l,m, I U(t, 0}I l,m, )

many of these properties are hidden in the T's of
Eq. (1'), which themselves are velocity and foil
dependent. Some of the velocity and foil depen-
dence does appear explicitly through V,/v in Eq.
(5); this dependence may be extracted, so that
the remaining intrinsic variation of the parameters
may be obtained from experiments.

III. STOKES PARAMETERS

+DE(g3(n(I Pl yl)

x exp [i(d (,((I„l,)]D*'„(2'(a', P', y'), (6)

The intensity of light of a given polarization e
emitted from the atomic states ((i)) that decay by
dipole selection rules is given by"

where a', P', and y' are Euler angles for a rota-
tion of z to u; (d„((l„l,) are the complex numbers
giving the amplitude and phase factors for states
with given o magnetic quantum number along the
I BXis,

There is an a dependence in ~(,((l» l, ). If the sur-
facepotentialwere constant, so that in the rest
frame of the atom the potential were time indepen-
dent, the dependence of u&(, ( (l„l, ) would be I/coso(.
However, this a dependence is not simply I/cosa,
as was previously assumed in Refs. 1, 3, and 4.
The n dependence of &uI,I(i„ l, ) is in general more
complicated. Thus the calculation of the u depen-
dence of the evolution operator in our treatment is
different from previous treatments.

If we take t large enough, it is clear that U(~, t)
tends to the unit operator, since (d(I ' (Il„ }ltends
to 5. .. c(,'~, with E'„', infinitesimally small, and
the effects of the residual field are then included
in U(t, 0). In what follows, we shall choose t large
enough for this to be the case. The first order
Stark effects owing to the residual field are then
included in the term proportional to Vo/v coso. , a
second-order effect in the (V,/v cosa)' term, etc.
For a very near &n we will have to keep the high-
er -order terms.

We have now completed the evolution of the den-
sity matrix to the region beyond the foil where
radiative decay processes occur. Doing the alge-
bra is all that remains. We must express the ex-
perimentally measurable quantities in terms of
traces of observable operators times the density
matrix. From the symmetry properties of the
density matrix we will obtain the a dependence of
the observables. We would also like to obtain the
dependence on impact velocity, foil properties,
and properties of the atomic states. However,

I= Ca ~ f rp "r ~ g* Tr(, )p
f

C& ~ Tr(, )
~ rpr ) ~ i* Tr(, ) p, 8

f

CS h('&(I(, lf)
3 T

2 Tr(, &p l, ', 1' Tr(, )(3L,' —L')p
r(~) p )(~]+ )

(~)

CS h" ~(lq, ly} (10)

CS
Tr (g)p

CS

(~)~

h"'(l„ l, )
l (l 1) Tr(, )(L,L„+L L„)p,i+

h(z)(l
(12)

If the light observed is not resolved into separate
components composed of emission from individual
angular momentum states, (i) must include all
angular momentum states whose emission is not

where C is a constant which is inversely propor-
tional to the square of the distance from the emit-
ting atoms and proportional to the frequency of the
light, co, to the third power, p

') is the density ma-
trix of the emitting atoms in the excited-state
manifold of interest, (i}, and I f) denotes the final
states to which the excited atomic states decay
upon emission of radiation of frequency ~, We
shall derive the expressions for the intensity (I)
of the light radiated along the z direction of Fig.
1, the difference between the intensity of right-
hand and left-hand circular polarization (S), the
difference between the intensity of light polarized
along the y and x axes (M), and the difference be-
tween light polarized along 45' and 135' relative
to the x axis (C).' In order to do so we must take
the traces indicated in Eq. (8). Appendix A outlines
the derivation of the equations for the Stokes pa-
rameters in terms of traces over the density ma-
trix of angular momentum operators. The results
are
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resolved. The factors h(l„ lt)/l, (l, +.1) must then
appear within Tr{,).

IV. EVALUATION OF THE TRACES

We first consider the trace using p0 as the den-
sity matrix, and then calculate the trace with the
expansion for p, [Eq. (5)] as the density matrix.

The evaluation of Tr{,~L,'"'p0 involves only that
part of p, diagonal in {n&)l&. p, (l„l, ). This diagonal
matrix element is proportional to linear combina-
tions of irreducible tensors composed of angular
momentum operators

po(l„ l, ) = boI 0"+ b,L"'+ + b, g
L"'~" (13)

Thus for E, =1, for example,

Let us now evaluate

Tr~, &L,
' 'U(t, 0)poUt(t, 0)

after expanding

[U(t 0)pDU'(t 0)]= p~

to obtain

-A[—,'(r u)"p + p, ~(r u)']). (15}

(14)

Performing the traces shows that S and C are zero
andI and M are nonzero, as is to be expected from
their definition and the simplest symmetry consid-
erations.

Quite generally the traces in Eqs. (9)-(12) using

p, as the density matrix are of the form

T. i-~ Er ~ (ET- )(
t

(&) a 0 0 0
n =0 nl

We must now take the part diagonal in {n,.),l, in the
evaluation of the trace. In so doing components of

p, which are off-diagonal in these quantum num-
bers can contribute to the last two terms. For
instance, it is clear that only off-diagonal terms
in p0 contribute to diagonal matrix elements in
[r ~ u, po] because r u is odd under a parity trans-
formation and only even-parity operators can con-
tribute to the diagonal (in l,.) matrix elements of
this operator. To evaluate p,(l„l, ) we can make
use of the following formulas:

gr IEti~'l TQ2jl rg
[r t y && T lk23]llr3 ~ ( 1)& f & ({n ) l llr tk&3llpgspg) (p " 'l{ 4) 4) LE%i

({n,].lqllL'"'ll{n, ) l, )
2 1

which holds for matrix elements diagonal in {n,),l, , and

(16)

[r' "xT ' ]t~~ =g(—1)"' ' (nlllr' &'ll p'1")(p'1" ll T'~2~lln'l')[(nl)x U'{ 'n1[]"'E l' k

k2 k, E,
" (17)

for off-diagonal matrix elements, where we use
the notation of Ref. 10, and where U is the rotating
matrix by w about the y axis. Equation (17) is em-
ployed for the evaluation of the last set of terms
in Eq. (15). Using Eq. (16) with the substitution of
r "' and the irreducible tensor components of p0
for r'~1' and T'~2~, respectively, the statement
that only the off-diagonal components of p0 con-
tribute to traces to the second term of (15) is
easily understood from the reduced matrix ele-
ments (parity selection rule}. The vanishing
of the 6-j symbols for certain combinations of
angular momentum, and restrictions imposed
by the vector coupling coefficients which enter,
serve to reduce the number of terms even fur-
ther. To emphasize this point let us remark

that as a result of these considerations, the second
term of Eq. (15) contributes only to traces of L,"~
with contributions to L,"' L"' and L"' vanish-
ing. Furthermore, just by looking at the last
terms in Eq. (15) we note that only terms propor-
tional to [u&& u]"' and [u &&u]"' survive.

We will proceed to extract the n dependence of
the quantities in Eqs. (9)-(12) by calculating the
traces Tr L~~'p„but first let us derive some for-
mulas that are needed in the calculation. From
the properties of irreducible tensors we know that

TL~' » = W D~"' &(Il)T &~' ~*
0 ~ Oq~

where R is a, rotation which takes y to z, and thus



YE BUDA B. BAND

D(a'(It ) = (4v/(2g'+ 1)]'~ ' y 'a ' (-'v -')7)

The decomposition of r u into terms which trans-
form as irreducible tensors is effected by the for-
mula

For the coordinate system of Fig. 1 we have"

y'„"(6)= (1/v'2v)6)„(cos-,'v)e "' "~".
Using these properties we ean calculate the terms
that appear in the expression for TrI ~~~p„

Tr L,")p, = [1],"'+ (V,/)) coso. ) —;v[2]',"
+ (Vo/)) cosa)'(4 v)'[3]',~). (18)

The analysis of the o. dependence of the terms [1],
[2], and [3] is presented in Appendix 8.

Keeping terms to order (V,/0)' we find

Tr(,.) I,,"'p = A + (V,/)) cos n ) '(Ii + C cos 2o.), (19)

Tr . L")p=D+ (V, /)) cosa)'(E+E cos2n), (20)

Tr(I.,' -I,)p = 6+ (Vo/v cosn)" (H+I cos2o.'), (21)

Tr(L„L,+ L, L„)p= (V,/v coso)'(I sin2o), (22)

TrL,',"= [(Vo/v) J + (Vo/)))'K] tan+ . (23)

The coefficients A, 8, etc. are velocity, foil, and

state dependent. They depend upon (f Il
T'~)

II P)
[and (1 II rYt )

II l') and 4 of Eq. (15), which are
calculable]. Odd @corn-ponents enter only in the
first term of Eq. (23), and in Appendix 8 we have
shown that only the 0=1 odd component of p, con-
tributes. These equations may be substituted into
Eqs. (9)-(12) to calculate the physically measur-
Rble quantities

For a foil that has a rough surface on the micro-
scopic scale we would have to average the expres-
sions for I, 5, M, and C over the probability func-
tion P(o. }o.',) for the probability of o, given that
Q p is the mac rose opic tilt angle, and then fo rm
S/I, C/I, and M/I.

Charge capture processes taking place as the
particle passes the surface will not add any addi-
tional terms but will add only contributions to the
coefficients in Eqs. (24)-(26). In the charge ex-
change process the density matrix, immediately
after the charge capture, is assumed to be of the
form Toi' "+ Toi')"+, and then the density matrix
is evolved by an evolution operator similar to that
of Eq. (5).

It is clear that reflection of an incident atom off
a surface to produce a net alignment and orienta-
tion of excited atomic states can be described by a
slmllar forma11sm.

Figure 2 plots the experimentally determined
percentage polarizations S/I, M/I, and C/I as a
function of tilt angle e for the 3p' 'E -3s' 'D tran-
sition in Ne III with 1-MeV incident beam energy.
Figure 3 is for the 3P 'P -2s 'S transition in He I

with 245-keV incident beam energy. Both sets of
data were taken with an amorphous carbon foil.
The solid curves show the excellent fit of the pres-
ent theory to the data. The least-squares deter-
mination of the parameters yield a = 0.95, b = 0.68,
e= 0.20, d= -0.01, e= -0.13, and f= -0.03 for
NeIII and @=1.15, b=0.28, c=0.53, d= —0.10,
e= 0.14, and f-= -0.07 for Hei. The effect of
averaging over P(n ln, ), which was not performed,
would have little effect, because the curves are
slowly varying as a function of n [unless the mean

S C tant
T 1+a/cos'n + b cos2n/cos'o. ' (24) } ~ i I } j l i i

C 2d tan&
I 1+a/cos'o. + 5 cos2n/cos'n *

M —[e+ (f+ d cos2o. )/cos'o]
I 1+a/cos'n+ b cos20. jcos'n

(25)

(26)

The dependence on l& is easily extracted and is
contained entirely in the k™(l,, f&) that enter the
coefficients. Higher-order terms in V,/z will add
to the complexity of these equations. Terms lin-
ear in V, /)) are what might be called first-order
Stark terms, the (Vo/v)' terms are the second-
order Sta,rk terms, ete. As 0, -—,'m higher-order
terms will be important. Note that the a depen-
dence is the same regardless of /; and I&,

. only the
coefficients vary. To this order in V,/)), S/I and
C/I are proportional. However, S/I contains con-
tributions from first- Rnd second-order terms.

IG-

o I 1 ), ~)(f f
} g $ T x

N -
x} M/I

Q„ I

-S/II
x

CL 2o -C/I
xX

Qm + + I, +
+ +
) + }

+ +
l }+ + ~ 1 ~l

I + + I-2- } }
i }, } i i s } I ) s ) i i
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FIG. 2. Percentage polarizations 8/I, Cjr, JLf/I as a
function of tilt angle for the Ne III 2866-A 3P' ~$' —3s' 'D
transition with incident i-MeV-energy beam. Curves are
the least squares fits to the data. Unpublished data cour-
tesy of H. G. Her~ and B.M. SchectmA~.
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FIG. 3. Percentage polarizations 8/I, C//I, ~//I as a
function of tilt angle for the HeI 50i5-A 3P'P —2s'8
transition with incident 245-keV-energy beam. Curves
are the least-squares fits to the data. Representative
error bar on data shown. Experimental data from H. G.
Berry et al. , Phys. Rev. Lett. 34, 509 (1975).

squared deviation of P(cg le, ) were large]. Close
to 90 the higher-order terms in the theory would
have to be included.

The parameters can be expressed in terms of
reduced matrix elements of the initial density ma-
trix (1 II

Ti~i
)I l'), together with quantities

( i II
rl'"'

II 1') and k' i'(1, V), which can be calcu-
lated given the manifold of interest, and V, /n and
A of Eq. (15), which can be obtained given a par-
ticular effective surface potential. From an anal-
ysis of the above six parameters we can thereby
learn about the velocity, foil, and state dependence
of {iII T"'ii f'). However, there may be more re-
duced density elements than the number of param-
eters. As an example, consider the decay of a 3p
manifold. There are three (real) k=0, two (com-
plex) k = 1, three (two real and one complex) k = 2,
and one (complex) k= 3 independent reduced den-
sity elements which may be nonzero (recall that
f + f'+ k must be even). We have already shown
that the k = 3 components do not enter into the
Stokes parameters when the surface interaction
is taken to second order, leaving eight elements,
a total of eleven numbers. Therefore in principle
we can obtain a maximum of six relations among
the eight reduced matrix elements. In practice,
often we will not be able to determine completely
all of the relations possible in principle. For ex-
ample, the analysis of the matrix of second deriva-
tives of X' with respect to the six parameters for
the Ne data indicates that one of the eigenvalues

of the matrix is very small. %e therefore must
conclude that the linear combination of parameters
which forms the eigenvector of this small eigen-
value is not well determined by the least-squares
analysis, leaving only five relations among the
eight (i II T"'II 1').

It is expected that a systematic study of such
data for many transitions as a function of incident
energy and various target foils will lead to a bet-
ter understanding of the energy, foil, and state
dependences of the coefficients, and therefore of
the interaction process.
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APPENDIX A: DERIVATION OF STOKES PARAMETERS

The trace in Eq. (8} depends upon the alignment
and orientation of the states generated by the
beam-foil collision and the dynamics of the dipole
transition (and therefore upon the characteristics
of f ). To simplify the evaluation we can use
Racah algebra and the %'igner-Eckart theorem
to reduce the trace over f to sums of terms in-
volving traces of tensorial angular momentum op-
erators times ratios of reduced matrix ele-
ments. '" lt is easy to reduce (8} to a, sum of
terms containing traces of the density matrix
times operators 5',~' which transform as irreduc-
ible representations under rotations,

rxP ~f)(f~ xr
y

(Al)

l; l, k
k(A)(f f ) ( 1)li-&y 11l,

l;

1 1 l;
(A3)

Note that Zy
~ f )(f

~

is a scalar under rotations.
By the %igner-Eckart theorem the matrix ele-
ments (i IS,'"i li} and matrix elements of the irre-
ducible tensors Li'i composed of L and (i' IL,'" li),
are proportional, with the proportionality constant
equal to the ratio o: the reduced matrix elements
(i II

S"'
ll i)/(i II

L"'
ll i). The dependence of this

ratio on k, l„and l& can be determined by Racah
algebra. The result of this analysis' is

(i~S"' ~i')=(i
~

L"'~i')k'"'{1 i )S/1 (1 +1)

where

(i II S"'
Il i) . i, i . ~;(1;+1)S= . „,I.)l, (f;+1)=(i IIs"'IIi)( ' ' )„,,
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For (I„lz) = (1,0), we obtain h"'(I„ lz) = 2,
h" )(I,, I~) = 2; for (I„I~) =(1,2), h") (I,, II) = ——,
&"'(I&, Iy)= -1; for (/&, ly)=(2, 1), h")(I„fy)= -1,
h&"(I„I,) = -'..

It is now a simple matter to take E&I. (A2), multi-
ply it by density-matrix elements (i lp li), and
form the [ ],' component of the tensor composed of
4~, coupling to make a scalar. %e can then pro-
ceed to substitute the expressions for & for the
polarizations we choose and calculate the intensity
as a function of polarization. The results for the
Stokes parameters are given in E&Is. (9)—(12).'

L

I [13 Z0 gi

L &? 3 ~2 (2J 2 L?)

I &21+ I &23 2(L 2 I?)

(A4)

(A 5)

In terms of the components of angular momen-
tum operators the irreducible angular momentum
operators are given by

APPENDIX 8: ANALYSIS OF TERMS IN Trr [q" ]p,

It is a simple matter to form the terms in the expansion of TrL,'~'p, in powers of V /hv cosa,

[1]i&)l

m) m&'q' k' (even)

[2]I =(-')

(I,m,
I
f.,"'

I
1&m,'. )a,",.''(I,.m,. I T,",'I I& &),

(- I)"Y"'(u)(i m If.&»II.m )D&'~

et .m' q' k' (even)i
v v'fmg'm'

)& [(f,m,' I»',"(r) Ilm)(fm
I
TI», '&If,m, ) (f,m, IT&,

'
Ifm)(fm I~Y

(-I)'"'Y&)'(u)Y'".(I,m&
I

f.',"II m )D&"

"[(I&ml
I
~Y!"If'm')«' '

IT,"'I fm) «mI»'. "II&m, )

--'&(I 'I»"'II )(I IrY"'Ii I~Y"'Ifm)(fmIT"'II

—-'&«m'
I
T"'I I'm') «'m'I»'"'Il n)(™I»"'I I m»

(B2)

The first term is easily reduced to

[I][» (I [)I &&)3~]f )
0&k' (even) ~2li

u„(f,lif. "'l)I,) (f,l)T"'][I,)=f(t„„,(I,), h = even,

0, k=odd,

k ~
~

~~
E~ ~~ ~ i ~~ }

where N00 = I Q0 = g and Q& 2
= —~W&. As was expected thel e ls a finite contribution to I and I but van-

ishing contribution to C and S (since this terms gives the po contribution). The second term reduces to

[2]i i =(-i)(l,([I.&~~([1,.) g(-1)~Y"~(u)

l, l. -k' ~odd) - 1+ii
&(;(llz? ' ll() &(II 'atl( )((-(—(l ' ''

II
k' 1 k

k' l I, 'q'p, q

For even k it can be shown that since k' is summed
over odd values only, [2] vanishes; odd-h terms do
not vanish and the e dependence is easily extracted
as [2]~=0&=(sinn)i(f (»„(I,). From elementary sym-

metry arguments we know that 8, which is propor-
tional to TrI 0"~p, must vanish when the tilt angle
goes to zero, and from the fact that [2] is propor-
tional to terms linear in Y"'(u) we conclude that
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the sino. dependence is the only possibility, thus
corroborating our result. Furthermore, the 3-j
symbol properties determine that only the k' = 1
term contributes to [2)"'. The sinrs dependence

of [2]0 llolds fol' any value of /s. No contrtbutlon
to I, C, or M results from [2]. The third term
can be dealt vrith in the same manner. After some
angular momentum algebra ere obtain

[2]r"= &f, llL llf, & g (-l}"-'y'."(')y"'(.} g Dr". (f lls y"'ill& &fllrrs'Ill'& &fills rr "ill &

l, l', ll.', Q e'
0&0' (evea) &k+1'

I,'.";II.' ',",I( . ;)(:::.')
+ (-2 &)&fslls'y"'llf& (f Ilail'"'ill'& (I' ll T"'ill, &

' ' ' [I+ (- l)~""]
p»Z &» qgq»

(86)

The l'r»(sr} can now be coupled together, and we
observe that yes'(u) with only K= 0, 2 appear. The
second term in this equation is quite simple to re-
duce, because the sum over p, and p, » can be easily
performed, leaving

3 1 1 1
94m v'2K+1 000

which vanishes for fs odd (and therefore does not
contribute to circular polarization). Proceeding
in a similar fashion with the first term of [2] we
eventually obtain a result similar to Eq. (BV},
vrithout the term in square brackets and with the
coefficient proportional to a 9-j symbol. Finally,
me find

(which vanishes for odd K). The term in square
brackets therefore indicates that 0+k' must be
even. %e are left arith

ala~ && &'

k' &even) tf' q Q q»

&& [l+ (-I}'"'j+
rs1, 2, 2 .rr

[3]0= Hrs100+ Mrs100 cos2Q ~

[2]0=Ars1)0 s1112Q
q

]0 rs120™rs120

I 2)'2 =f1rrs1-. + Mrs1" se"' .

(88)
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