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Elastic scattering of electrons from F2. An R-matrix calculatione
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The R-matrix method for electron-molecule scattering developed by one of us {B.I.S.) is applied to the elastic
scattering of electrons from F, in the static-exchange approximation. Calculations are presented using both F,
and F2 core orbitals to construct the electron-molecule interaction potential. The total and differential elastic
scattering cross sections are quite different for the two molecular fields and can be interpreted in terms of the
presence or absence of an F2 bound negative ion, at the equilibrium internuclear separation in F2. Since there
is little experimental data on F, or e + F, collisions, the calculations coupled with some detailed electron-
beam experiments would be of great value in furthering our understanding of the chemistry of F, .

I. INTRODUCTION

In the past four or five years there has been a
rekindling of interest in the theory of electron-
molecg. e collisions. Most of the early' ' work on
electron-molecule scattering is based on the use
of model potentials of one sort or another, with
parameters chosen either from experiment or
crude theoretical arguments. While these methods
often give reasonable agreement with experiment,
one can easily cite cases where they fail. What is
perhaps even moxe important is that it is difficult,
if not impossible, to rely on these theories as a
predictive tool. Clearly what was needed was a
well-founded theoretical model(s) based on the
actual molecular structure of the system from
which the cross sections could be computed in
an ab initio fashion.

A great deal of progress along these lines was
made in the late 1960's and early 1970's,' ' but
it was not until 1974 that some new and quite gen-
eral methods began to appear in the literature. ""
One of these techniques, the 8-matrix method, ""
had been successfully applied to electron-atom
collision problems by Burke and co-workers. "
The extension of this method to multicenter scat-
tering problems with nonspherieal fields was not
obvious. The essential step in the successful 3p-
plication of the B-matrix method to electron-mol-
ecule collisions was the introduction of an analytic
basis set capable of accurately describing the
scattering orbitals and yielding simple one- and
two-electron matrix elements. Such a basis has
been described by one of us in a previous publica-
tion." The method has been applied to elastic
e+ H, scattering with considerable success, and
its extension to treat both elastic and inelastic
scattering, including polarization and short- range
correlations, is in progress.

In this paper, we present an B-matrix calcula-
tion of e+F, elastic scattering in the static-ex-

change model. The calculation is significant for
a variety of reasons. It is the first calculation of
any sort on the scattering of electrons from F,.
Since F, is not a particularly spherical molecule,
we would expect the coupling of partial waves to
lead to reasonably large off-diagonal K-matrix
elements at higher energies. This was borne out
by the actual calculations above 8 eV incident
energy.

The cross section shows a large potential or
shape resonance at 1.8 eV. This resonance is in
the I', wave and causes the cross section to rise
to 130a20 at maximum. " One question we have
tried to answer is whether this resonance is an
artifact of the static-exchange approximation for
F» or would it still be present in more sophisti-
cated calculations. It is interesting to note that
Fisk' in his 1937 paper predicted a low-energy
resonance in e+ Cl, collisions. In addition, he
states that similar calculations of e+ F, scattering
give essentially identical results. The early ex-
periments on the e+ Cl, problem performed by
Bailey and Healey" and Fisle do show a resonance,
but it is shifted to much higher energies and is
considerably broader than in the calculated cross
section. The experimental cross section is also
much greater than the theoretical over the range
of electron energies investigated.

Our greatest concern centers on the fact that
the static-exchange field for F, does not support
a bound negative ion at the F, equilibrium inter-
nuclear separation. The existence or nonexistence
of a negative ion can have profound effects on the
behavior of the scattering cross section. Since F,
is such an electronegative gas, any caleulational
technique, ab initio or model potential based,
could encounter severe difficulties. If F2 is
bound at the F, internuclear distance, the reso-
nance predicted by our calculation might well be
the bound-state pole pushed into the continuum by
a molecular field which is too weakly attractive.
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II. THEORY

Since the general technique has been presented
in an earlier publication, "we give only those de-
tails necessary to understand the e+ F, problem.
The Hamiltonian for the scattering electron is
(atomic units are used throughout the paper)

H =-2V +VN+2J —K) (1a)

Unfortunately, we cannot appeal to experiment
to resolve the dilemma as there is little data
available on F, and no experimental cross sections
are available for e+F, collisions. We have tried
to settle the question by performing self- consistent-
field (SCF) calculations on F, at the F, inter-
nuclear distance. These calculations do indeed
give a o„orbital bound by about 2 eV. Scattering
calculations using the static-exchange field of F,
but with F, core orbitals do not show a resonance.
This calculation is incorrect in the sense that the
scattering is taking place off the wrong target
state. However, it does show the dramatic effects
of negative-ion formation on the behavior of the
phase shifts. Hence we must conclude that the
existence of the resonance depends quite critically
on the presence or absence of an F, bound ion at
the equilibrium internuclear separation in F,.

As our calculated cross sections for the two
molecular fields are so different, there is little
doubt that accurate beam datawould resolve the dif-
ficulty. Consequently, we hope our theoretical
results will be of sufficient interest to spur some
experimental work on the e+ F, problem. Since
these cross sections are needed to model electron-
beam initiated HF lasers, such results are of
more than academic interest in laser-fusion-re-
lated research.
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where
l
n) refers to one member of an orthonormal

set of molecular orbitals.
The orbital exponents for the diffuse functions

were chosen in a geometric progression, the
smallest exponent being 1.0x10~. The size of the
basis set used to represent the potential was 82
functions of 0 symmetry and 38 functions of 7t sym-
metry. In calculating the occupied g molecular
orbitals for the 0-wave case, a contracted set of
primitives was used. Similarly, for the m-wave
case, a contracted set of v orbitals was used to
represent the occupied v functions. The one-par-
ticle Hamiltonian was then diagonalized in the R-
matrix basis. The box radius was chosen to be
( =10ao, well outside the charge distribution of F, .
From the eigenfunctions obtained in the diagonal-
ization, we constructed the R matrix and extracted
the K-matrix elements. Within the fixed-nuclei
approximation the cross sections can be computed
from the formulas given by Hara, '

where

] ]V~=-Z —+ —,2J K= 2Ja K, , 1b
-+la +j.g-

and J, and K,. are the Coulomb and exchange oper-
ators for the occupied F, orbitals (lo, lo'„, 2o,
2o'„, 3o~, lt„,1t ). The orbitals were taken from
SCF calculations ou F, (case 1) and F, (case 2)
performed by the authors on the basis set de-
scribed in Ref. 19. These orbitals were aug-
mented by a set of diffuse s and p Gaussians on
each center to form a representation of the inter-
action potential,

(3a)

QX(jlk pm)X*(j'l')'g ,'m ')
&L)tom Pl')t'gm'

x &gX' —mm'
l

L —M ~)&p p'm —m'
l
LM~) &,

XX'00
l
LO) & p p, '00

l
LO)P~(cos&)/(2L+ 1),

(3b)

where

X(jl),p, m) =A,„A,[(X+m)I(p, +m)! /(X —m)! (p, —m)! j'~'T, , (3c)

The A,.~ are the expansion coefficients for the
spheroidal angular functions, Sj in Legendre
polynomials. The T, , elements can be constructed
from the K matrix and the total and differential
cross sections computed from (3a) and (3b). A
justification for the use of the fixed nuclei approx-
imation can be found in Ref. 20.

III. CALCULATIONS

The calculational procedure is conveniently
divided into the following parts:

(a) Choice of a primitive or contracted set of
Gaussian atomic orbitals and evaluation of the
one- and two-electron integrals.
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TABLE I. Gaussian basis for SCF and static-exchange calculation, p',. =&,'~y~t'z, "te &p,

9995 ~ 0
1506.0
350.3
104.1
34.84
12.22
4.369
1.208
0.3634

44.36
10.08
2.996
0.9383
0.2733

44.36
10.08
2.996
0.9383
0.2733

44.36
10.08
2.996
0.9383
0.2733
0.90
0.90
0.90
0.90
0.90
0.90

0.10
0.06
0.04

0.025
0.015
0.0096
0.0060
0.0038
0.0023
0.0015
0.0001
0.18
0.12
0.07
0.045
0.028
0.018
0.010
0.007
0.004
0.0027
0.0017
0.0010
0.000 65
0.18
0.12
0.07
0.045
0.028
0.018
0.010
0.007
0.004
0.0027
0.0017
0.0010
0.000 65

0
0
0
0
0
0

0
0
1

1

1

1

1

1

1

1

1

1

1

1

1

0
0
0
0
0
0
0
0
0
0
0
0
0

(b) Calculation of the occupied molecular orbi-
tals of F, or F, in the basis defined in (a) using
the Hartree-Fock SCF procedure. The functions
used to describe the occupied orbitals are the
9s5p primitive bases of Huzinaga" augmented
by a set of 3d polarization functions. For the cr-

wave calculation, the fluorine v functions Q, and

p„)were contracted to two functions. Similarly,
for the m-wave calculations, the s and p, a func-
tions were contracted to 3s and 2p functions,
respectively.

(c) Calculation of the Hartree-Fock virtual or-
bitals of F, or F2 using the occupied orbitals ob-
tained from step (b). The use of a completely
contracted basis was found to provide too few vir-
tual orbitals to describe the interaction potential
in Eq. (2) adequately. Hence a completely uncon-
tracted basis was used to describe the virtual
F, or F, orbitals. No bound (negative energy)
virtual orbitals were found in the SCF calculation

of F, at the experimental bond distance of 1.42A.
When F, orbitals were used to construct the Ham-
iltonian in (1a), one bound virtual orbital of 3c„
symmetry was obtained with an orbital energy of
2 eV.

(d) Transformation of the Hartree-Fock potential
from the atomic Gaussian orbitals to the set of
occupied and virtual molecular orbitals.

(e) Choice of the R-matrix basis and transforma. -
tion of the Hartree-Fock potential to this basis
via the equation

(4)

As we pointed out in Ref. 13, the use of two basis
sets allows us to calculate the difficult two-elec-
tron integrals V ~ with standard integral programs
such as POLYATOM. " A simple transformation
requiring only overlap integrals on the finite inter-
val gives us the needed potential matrix elements
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TABLE II. 8-matrix basis for static-exchange calculations in F2 f see Eq. (5) and accompanying text].

0.001
0.001
0.001
0.001
0.00 1

0.001
0.001
0.001

10.0
10.0
4.0
4.0
2.0
2.0
1.0
1.0
8.0
8.0
5.0
5.0
4.0
4.0
1.0
f.0
5.0
5.0
3.0
3.0
4.0
4.0
2.0
2.0
1.0
1.0
8.0
8.0
2.0
2.0
6.0
6.0
3.0
3.0
2.0
2,0
1.0
1.0
4.0

0.0001
-0.0001

0.0001
-0.000 1

0.0001
—0.0001

0.0001
—0.0001
10.0

-10.0
4.0

-4.0
2.0

—2.0
1.0

—1.0
5.0

—5.0
8.0

—8.0
2.0

—2.0
3.0

—3.0
3.0

—3.0
5.0

—5.0
4.0

-4.0
2.0

—2.0
1.0

-1.0
5.0

—5.0
4.0

-4.0
2.0

—2.0
5.0

-5.0
2.0

—2.0
1.0

—1.0
2.0

0.0
O.D

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
D.O

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
2.0
2.0
2.0
2.0
2.0

4.0
2.0
2.0
5.0
5.0
1.0
1.0
2.0
2.0
2.0
2.0
1.0
1.0
4.0
4.0
2.0
2.0
5.0
5.0
1.0
1.0
2.0
2.0
2,0
2.0
4.0
4.0
4.0
4.0
2.0
2.0
5.0
5.0
1.0
1.0
2.0
2.0
4.0
4,0
5,0
5,0
0.5
0.5
0.5
0.5
0.5
0.5

—2.0
4.0

-4.0
3.0

1.0
—1.0

2.0
-2.0

2.0
-2.0

1.0
-1.0

2.0
-2.0

4.0
—4.0

3.0
-3.0

1.0
-1.0

2.0
—2.0

2.0
—2.0

1.0
—1.0

2.0
—2.0

4.0
-4.0

3.0
—3.0

1.0
—1.0

2.0
—2.0

2.0
-2.0

8.0
-8.0

0.5
-0.5

0.5
-0.5

0.5
-0.5

2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
4.0
4.0
4.0
4.0
4.0
4.0
4.0
4.0
4.0
4 0
4.0
4.0
4.0
4.0
6.0
6.0
6.0
6.0
6.0
6.0
6.0
6.0
6.0
6.0
6.0
6.0
6.0
6.0
6.0
6.0
6.0
6.0
2.0
2.0
4.0
4.0
6.0
6.0

for the 8-matrix calculation.
(f) Diagonalization of the static-exchange Hamil-

tonian in the 8-matrix basis.
(g) Construction of the R matrix using the eigen-

functions obta. ined from step (f).
(h) Numerical integration from infinity to the

8-matrix surface, including any long-range multi-
pole potentials in each channel and the solution of
a set of algebraic equations of dimension of the

number of channels needed to describe the scat-
tering, to obtain the X-matrix elements. The
permanent quadrupole moment of F, computed
with our basis set is 0.60a,' in excellent agreement
with the experimental value of 0.65a', . Inclusion of
the contribution of this long-range potential in the
external region had little effect on our results.
Presumably this is a consequence of the small
size of the permanent quadrupole moment in F,.
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FIG. 1. Total elastic cross section for e + F& scatter-
ing (F2 core orbitals).

(i) Calculation of total and differential cross
sections using E»ls. (3a)-(3c).

The basis set of primitives used in the first
and second steps is given in Table I. The functions
appearing above the dashed line were used to com-
pute the occupied orbitals. The R-matrix basis
used to diagonalize the static-exchange Hamil-
tonian was constructed from a set of elliptic float-
ing Gaussians .of the form

R SmV,-(t)Ig(g-A])R
cosv,.(t)

'

The values of the parameters l, m, P, o.', and A.

appear in Table 1I. The most time-consuming
steps of the calculation are steps (a)-(d). The
diagonalization of the Hamiltonian and the extrac-
tion of the K-matrix elements at 4V energies took
an order of magnitude less time than steps (a)-(d).
This allowed us to study the behavior of the cross
section around the resonance in great detail and
is one of the great advantages of the R-matrix
method.

»

45 90
Angle (deg)

»

135 ISO

FIG. 3. Differential cross section for e+ F& scattering
at k =0.2ao' (F2 core orbitals).

IV. NUMERICAL RESULTS

The calculations described in Sec. III have been
carried out for o and m symmetry using both F,
and F, core orbitals. Six partial waves were
retained in the external region and in the matching
step. Since the internal basis set was chosen to
describe s, P, and d partial waves accurately,
we did not use the phase shifts for higher l values
in calculating the cross sections reported in this
paper. However, we did examing the f partial
waves and found them to be considerably smaller
than the d-wave contribution. Calculations in-
cluding f-wave contributions were performed at
isolated energies; these contributions were found to
have a negligible effect on the cross sections. As

50

40-

cU 0 30
b

20-

I I I I I I I I

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
k(a )

FIQ. 2. Solid curve: total elastic cross section for
e + F2 scattering (F2 core orbitals). Dashed curve:
momentum transfer cross section for e+ F2 scattering
(F2 core orbitals) .

40 45 90
Angle (deg)

135 180

FIG. 4. Same as for Fig. 3, but at k =0.3a 0
'.
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k=0.6 go

cu o

T

l0

bP

45
Angle (deg)

I80

Angle (deg)

I

l55 )eo FIG, 7. Same as for Fig. 3, but at 4 =0.6a& ~.

FIG. 5. Same as for Fig. 3, but at @=0.32ao~.

ls quite evident froIQ Figs I Rnd 2 the nRtux'e

of the scattering is qualitatively different for the
molecular field based on F, or F, core orbitals.
The reason for this is quite simple. The static-
exchange potential used in most scattering cal-
culations is constructed from a wave function of
the form

(8a)

(8h)

The molecular orbitals of the target, 4, ~

are calculated in the Hartree-Fock potential for
N rather than %+1 electrons. Consequently, if a
true negative ion of the (X+1)- leetrco snystem

exists, it will not be described correctly, if at all,
in this potential. For the e+F, system, the static-
exchange field based on unperturbed F, orbitals
does not give a bound F, ion at the equilibrium
internuclear separation in F~. Hartree-Fock
calculations on the compound system, on the other
handy do produce R bound negative ion. The SCRt-
tering fxom these two potentials is quite diffexent.
When the potential does not support a bound-nega-
tive-ion state ~ we find a large P~ shRpe resonRQce
at 1.8 eV. The differential cross section (see
Figs. 8-8) changes drastically as a function of

20

k=Q. B g

l5CO

OJ y
lo

IO

20 90
Angle (deg)

l80 0 45 90
Angle (deg)

FIG. 6. Same as for Fig. 3, but at k =0.4ao i. FIG. 8. Same as for Fig. 3, but at 4 =0,8ao~.
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M
N 0

k=O. I ao

CV

0

00 45 90
Angle (deg)

135 ISO

00 45 90
Angle (deg)

135 180 FIG. 11. Same as for Fig. 9, but at k =0.5a0'.

FIG. 9. Same as for Fig. 3, but at k =0.lao and for
F2 core orbitals.

energy from backward peaking at small k to for-
ward peaking at high k. Near the resonance we
expect a cosinelike behavior and, indeed, we see
this in Fig. 5. The same potential using F, orbit-
als does support a negative ion and shows no reso-
nance behavior in any of the eigenphases or cross
sections. The differential cross section is forward
peaked at all k (see Figs. 9-13},typical of a scat-
tering situation dominated by direct rather than
exchange forces. In short, our resonance pole
has moved to the negative real axis, and this has
profound consequences on the nature of the scat-

tering cross section. For completeness, we pre-
sent the momentum transfer cross section for
electrons on F, in the dashed curve in Fig. 2.

It is interesting to make some qualitative com-
parisons between our results for F, and the known
cross sections for electron impact on N, and 0,."
Since N, does not support a bound negative ion, we
would expect the shape of its cross section to re-
semble our case 1. This is indeed the case, with
N, showing a large resonance around 2-2.5 eV.
The cross section at the peak of the resonance is
100-110a'„in agreement with our value of 130a,'
for F,. 02, on the other hand, does support a
negative ion and shows no obvious resonant be-
havior in its cross section aside from the well-
known vibrational resonances associated with the
bound 0," state. The shape and magnitude of the
cross section are in qualitative agreement with
case 2 in F, . Although long-range polarization
would have some effect on the quantitative details

15
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0
O

1
1

cl
IP

M
CU 00

7ao

0
45 90

Angle (deg)

I

135 ISO
p 45 90

Angle (deg)
135 Iep

FIG. 10. Same as for Fig. 9, but at k =0.3a&'. FIG. 12. Same as for FiN;. 9, but at k =0.7a 0
'.
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20

l5
0.9 p

V)

IO

s lc',

00
I

45 90
Angle (deg)

l35 I80

FIG. 13. Same as for Fig. 9, but at k =0.9a0 .

of the cross section, the qualitative picture we
have just described should be unchanged.

The experimental situation is less satisfactory
than one would hope for. There is no information
on the existence of a bound negative F, ion at the
equilibrium internuclear distance in F„although
F, is probably more stable than F, at its own
equilibrium internuclear separation. The cor-
rosive nature of fluorine has put off experimenta-
lists, and the elastic scattering cross section has
never been measured in spite of its importance in
understanding electron-beam-initiated fluoride
lasers. The authors hope the theoretical calcula-
tions presented in this paper will stimulate the
experimentalists to measure some of these quant-
ities. A careful electron-beam study of e+F,
collisions would bring a great deal of understanding
to the chemistry of F, and its negative ion.
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