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Comparison of unitary and Pade sums of the perturbation series for the scattering
of a spinless particle from a Yukawa potential
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Alternative methods for summing the Born series for a scattering process are derived and compared. These
include Pade and unitary approximations of the scattering operator and their combinations. The various

approximations are applied to an attractive Yukawa potential, and it is shown that most of the unitary and

Fade approximations converge much more rapidly than the Born series. A comparison of the methods provides

a practical test for convergence at a particular order of the perturbation theory.

I. INTRODUCTION

The scattering operator S maps the initial state
of a scattering process into the final state. Con-
servation of probability is assured by the unitarity
of S. The transition operator T is related to S as

S =1 —2wi&(E —Ho)T,

where Ho is the free-particle Hamiltonian, and T
is related to the interaction potential V by

T =V +VGOT,

where Go = (E —Ho+i e) '. The matrix element of
T between free single-particle states with mo-
mentum p =hk is directly related to the scattering
amplitude by

f(s) =-(p/2&@')(k~lTlk;}, (~)

where k, and k& are in the incident and scattered
directions, respectively, and g is the reduced
mass of the system. In solving Eq. (2) for T, it is
often necessary to evaluate T approximately by
iterating the equation. The result is the Born ex-
pansion in powers of the interaction strength g,

generating the higher-order terms in the Born
series for an attractive Yukawa potential was pre-
sented. ' However, up to seven terms in the series
were needed to provide fair agreement with the
numerically exact results. ' Similar convergence
problems have been noted for other potentials of
current interest. ' To accelerate convergence for
the Yukawa potential, one of us (C.M.R.) in Ref. 1

resummed the Born series. An extension of New-
ton's variational method by Rabitz and Conn' was
used, which results in a Pads approximant for the
optimum value of T.

The purpose of the present paper is to study al-
ternative methods for expediting the convergence
of the perturbation series. Pads and unitary' ex-
pansions of the scattering operator will be com-
pared, and various combinations of these approxi-
mations will be derived. Such a study should lead
to a better understanding of attempts for extracting
the optimum amount of information from a pertur-
bation theory.

II. UNITARY AND FADE APPROXIMATIONS

(4)

There are two features of the perturbation ex-
pansion that result in a poor approximation to S.
The most obvious and important is the convergence
of the expansion. The second stems from the fact
that the insertion of the truncated Born series into
Eq. (1) does not give a unitary approximation to S,
and hence the approximation does not conserve
probability.

Recently, an efficient numerical technique for

The scattering operator may be expressed in a
manifestly unitary form as

S = (1+ inc)/(1 —ia) =e'" .
If the Hermitian operators & and q are expanded
in powers of the interaction strength as

and the series are truncated, the resulting approx-
imations to S are unitary. Moreover, if the two
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series are terminated at the same point, the re-
sults are different. The operators ~ and q gen-
erate the Heitler and exponential unitary approxi-
mations, respectively.

The operator a is related to the interaction po-
tential V through the operator K as

«=2«&(Z II,)-K, K=V+VGA,

where G, denotes treating the singularity in the
Green's function by the principal-parts method.
The K operator is also related to the T operator
by the on-shell Heitler equation,

T =K —IvK5(Z- If,)T .
Following the variational method of Rabitz and

Conn, ' an operator I, formed by

I = V + V GOT, + T, GOV —T,GOT, + T,GOV GOT, , (9)

is stationary for variations of T, about the exact
value of T. %'xiting the trial T as

&(E- H, ) = —g~&&m) (&1m(,
1

g, m

[k) = „~,g[uf )r, *(8„,y, ),

Tt —K, +1K' Tt, (13)

where, by rotational invariance for a spherically-
symmetr ical potential,

(kl' m[T)kl m)= Tg &, g
-&

(kl'm'[Kfklm) =—-K, &„.&

The scattering amplitude, Eq. (3), likewise re-
duces to

where E =h»k»/2p, , and 8» and Q» are the spherical
angles for k. %'ith these relationships„ the matrix
element of Eq. (9) between the initial and final
free-particle states reduces to the algebraic rela-
tion

T, = Q x„(g"T„), f (8) = —g T, (2l+1)P, (cos8),
1

t
(15)

where g" T„ is the nth term in the Born series for
T, it is shown in Ref. 5 that the optimum choice of
the x„gives the [N, N+1] Pads approximant' formed
from the 2N+1 terms of the Born series. We use
the notation T[N, N+1] for the optimum trial value
of T.

In a similar manner, an operator 4 defined as

Z V+VGPKt+KtG0PV -KtG0PKt+K GPV GPKt

is stationary for variations of K, about the exact
value. Writing the trial K as

2m+i

where 6) is the scattering angle. %e now formu-
late the various approximations.

A. Born and Born-Pade approximations

The Horn series approximation to T, is
2M+X

T;=-&l im~T~ulm}.

Substitution of Tf for T, in Eq. (15) gives the Born
approximation fs(8).

The approximation to f (8) that gives a stationary
value of (kl'm'(I (him) is

K, = x„g"K„, (12)
f",'(8) = —„Q( 21+1) T[ N, N+1]Pg( cos)8. (1&)

1

where g"K„ is the nth term in the Born series for
K, one finds that the optimum choice for the varia-
tional parameters x„ leads to the [N, N+1] Pads
approximant to K formed from the 2N+1 terms of
the Born series, and this value is denoted K[N, N+1].

III. VARIOUS APPROXIMATIONS FROM A PARTIAL-

%AVE DECOMPOSITION

The approximations to the scattering operator
are easily defined and compared in the context of
a partial-wave decomposition. This decomposi-
tion is effected by using the closuxe condition

and the following representations in terms of the
eigenvectors ~him} of Ho, L', and I,:

Here, T, [N, N+1] is the [N, N+1] Pads approxi-
mant formed from the 2N+1 terms g" T",.

There is yet another way to construct a Pads
approximation. to th. . scattering amplitude based
on a variational principle. If we first perform
the partial-wave sum

-2lrh 2

T„(8)=- (kziT„ik, ) =
& g (21+1)T",P, (cos8),
kp,

the Pads approximant Te[N, N+1] formed from the
2N+1 terms g" T„(8) yields a stationary value of
the matrix element (k&~I ~k, ). The corresponding
Pade approximation to the amplitude is

f"'(8) = -(i»/2v h ')Te[N, N+1] .
This is a different approximation than Eq. (17),
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B. Heitler and Heitler-Pade approximations

The Born approximation to K„denoted K, , is
2N+I,

K, = g g"K", , K", —= —(klm ~K„~klm ),
n=g

(20)

since a stationary value of (k~~I ~k, ) does not im-
ply that (klm~I ~klm) is stationary, although the
converse is true.

C. Exponential approximation

The exponential unitary approximation to the
scattering operator is given in Eq. (5}. If the
operator N is introduced by

q = -v&(E H, )-N,

which by rotational invariance satisfies

(kl'm'~N~ klm) -=-5„,5
the matrix element

(26)

(27)

where K„ is the nth term in the Born series for K.
The matrix elements K", are real as the operators
K„are Hermitian, and they are related to the
complex matrix elements T", by Eq. (13). The re-
sult is

Ttt Ktt ' Ktt

hatt

~

n =1
(21)

The Heitler unitary approximation to the scattering
amplitude follows from Eqs. (13), (15), and (20),

e'"& =1+2iT, = (1 +iK, )/(1 —iK, ), (29)

The Born series for the operator q is given in Eq.
(6), and the corresponding Born approximation to
N, is

(kl'm'( e' "~ klm) = (kl'm') [1 —2n i&(E —H )T) ( klm)

(28)

reduces to

1 K,'f„(8)= —„g(2l+1) '. s P, (cos8).
1 7

(22)

The approximation to f(8) that yields a stationary
value of the matrix element (kl'm'~ J~klm) is

Ns( =g g"N", , N", —= (klm~ q„~ klm) .

The substitution of the expansions in Eqs. (30)
and (20) into Eq. (29) gives, upon equating like
powers of g through the fifth,

(30)

f (0)
g g (2) +() ( & ) ])P (cose).(a)

N', =2K', , N' = 2K' N ', = 2K, ——', (K,'),
(31)

(23)

Here, KP)[N, N+1] is the [N, N+1] Pads approxi-
mant formed from the 2N+1 terms g"K",. Note
that this is also a unitary approximation to S.

As in the case of the Born-Pads approximations,
another Heitler-Pads unitary approximation is
constructed by first summing over the partial-
wave terms as

f*(')= ), E(2(+()
2 )&( &).

l 2t (32)

IV. APPLICATION TO A YUKAWA POTENTIAL

N', = 2K', —2K', (K', } —2K,'(K~(} + 5 (K,')' .
The exponential unitary approximation to the scat-
tering amplitude is therefore given by

2@k'
K„(8)=(k&(K„$;) = — g (2l+1)K",P, (cos8}.

1

These techniques are applied to the attractive
Yukawa potential

(24) V(r) =ge ""/r. (33)

The Pads approximant Ks[N, N+1] is formed from
the 2N+1 terms g"K„(8), and this gives a sta-
tionary value of the matrix element (k&~ J~k, ).
The approximant Ke[N, N+1] is decomposed as (k~~ T„~k,. ) =F„,(ko, so), (34)

The terms in the Born series for the transition
operator T are obtained in Ref. 1 in terms of one-
dimensional integrals,

K,"'[N, N+1]=, Ks[N, N+1]P, (cos 8) d cos8,
F j

and this gives the second unitary Heitler-Pads ap-

proximationn

where

F„,(, so+s')
dztt S0

s ' = o r —v' —k' o = (s' +k' + k') /k
(35)

(25)

The details of the evaluation of these integrals is
given in Ref. 1, and the numerical values of
(k&~T„~k, ) are given in Table I of Ref. 1(b) for
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TABLE I. Low-energy scattering amplitude for the various approximations. The real and
imaginary parts are given, and 40 = 0.663.

Scattering angle 0 —0 0 —9Q 0 =180'

Walters's exact
result

Rosenthal's
[2, 3l Pade

Results for three
Born series
Exponential
Heitler
Born-Pade (1)
Born-Pade (2)
Heitler-Pade (1)

1.116, 1.671

1.1589, 1.6818

terms in the Born series
3.1617, 2.9623
0.7754, 1.5730
1.7299, 1 ~ 3828
1.3367, 1.7489
1.2770, 1.9862
1.1192, 1.6717

—Q.142, 1.5041

-0.1106, 1.5123

1.8971, 2.8107
-0.4806, 1.4084

0.4781, 1 ~ 2197
0.0725, 1.2197
0.0718, 1.5701

—0.1454, 1.5038

-0.651, 1.3584

-0.6424, 1.3606

1.3729, 2.6817
-0.9962, 1.2665
-0.0334, 1.0795
-0.4511, 1.4391
-0.3404, 1.2341
-0.6694, 1.3586

Results for five terms
Born series
Exponential
Heitler
Born-Pade (1)
Born-Pade (2)
Heitler-Pade (1)

in the Born series
1.5948, 4.0997
0.7382, 1.5483
1.5765, 1.5419
1.1463, 1.6729
1.1517, 1.6818
1 ~ 1463, 1.6729

-1.1072, 3.9328
—0.5271, 1.3801

0.3119, 1.3740
-0.1197, 1.5045
-0.1101, 1.5122
—0.1197, 1.5045

.-1.6332,
—1.0518,
-0.2121,
-0.6450,
-0.6382,
—0.6450,

3.7888
1.2347
1.2288
1.3589
1.3606
1.3589

g=-1.1825, s, =1. A comparison is made with the
numerical results of Ref. 2.

The Rosenthal technique is used to obtain T, and
the matrix elements T"„defi ned in Eq. (16) are
extracted. These determine the matrix elements
K", and N", as described in Sec. IG.

V. DISCUSSION OF RESULTS AND CONCLUSIONS

The scattering amplitude at c.m. -system scat-
tering angles of 0', 90', and 180' are shown in
Tables I and II at the energies k, =0.663 and 1.816
in atomic units. These values of &0 are chosen to

TABLE II. High-energy scattering amplitude for the various approximations. The real and
imaginary parts are given, and &0=1.816.

Scattering angle a=o. 0 90 0 =180'

Walters's exact
result

Hosenthal' s
[2, 3] Pade

2.182, 0.739

2.1865, 0.7387

0.079, 0.3478

0.0796, 0.3474

-0.05, 0.2134

-0.0482, 0.2123

Results for three
Born series
Exponential
Heitler
Born-Pade (1)
Born-Pade (2)
Heitler-Pade (1)
Heitler-Pads (2)

terms in the Born ser ies
2.2443, 0.9223
2.1489, 0.7523
2.1644, 0.6790
2.1832, 0.7237
2.1605, 0.7659
2.0533, 0.4014
1.4666, 2.2286

0.1526,
0.0757,
0.0993,
0.1096,
0.1168,

-0.0290,
0.2341,

0.5270
0.3612
0.2948
0.3370
0.3273
0.0019
—0.0851

—0.0013,
—0.0645,
-0.0353,
-0.0307,
-0.0019,
-0.1764,
-0.8642,

0.3869
0.2267
0.1664
0.2053
0.1936
-0.1401
-0.0904

Results for five terms
Born series
Exponential
Heitler
Born-Fade (1)
Born-Pade (2)
Heitier-Pade (1)
Heitler-Pade (2)

in the Born series
2.0936, 0.7218
2.1564, 0.7364
2.1624, 0.7180
2.1557, 0.7375
2.1555, 0.7359
2.1556, 0.7381
2.1338, 0.7256

0.0206,
0.0804,
0.0898,
0.0832,
0.0814,
0.0823,
0.0892,

0.3304
0.3452
0.3275
0.3471
0.3471
0.3470
0.3482

—0.1189,
-0.0570,
-0.0496,
-0.0565,
-0.0562,
—0.0577,
-0.0465,

0.1947
0.2108
0.1938
0.2123
0.2111
0.2127
0.2251
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allow a comparison with the results of Walters. '
The amplitudes calculated by Rosenthal in Ref. 1(b)
are also included, as they are the direct [2,3]
Pads approximation to the T matrix element which
avoids the partial-wave expansions.

We will pay closest attention to the convergence
of the various approximations and the corre-
spondence of these approximations at the same
order. The second point is stressed, as it pro-
vides a practical test of convergence without going
to a higher order.

At the lower energy (see Table 1) we see that the
Born series is a poor representation of f(8), even
after five terms are taken. For easy reference,
the remaining approximations are denoted as fol-
lows: fs(8), exponential unitary as given in Eq.
(32); f„(8), Heitler unitary as given in Eq. (22);
f "'(8), Heitler-Pads as given in Eq. (23}; fg~~(8},
Heitler-Pads as given in Eq. (25); f '~~p'(8}, Born-
Padd as given in Eq. (17); and f '~~(8), Born-Pads
as given in Eq. (19}.

The Heitler-Pads (2) approximation [f '„'p (8}]
was found to converge slowly at both energies, and
it is not shown in Table I. The unitary approxi-
mations fz(8) and fs(8) are both superior to the
Born series, and fs(8) gives reasonably good re-
sults even after three terms. The consistency
among the Pads approximations is striking at five
terms, at which point the Born series is still quite
poor.

At the higher energy, Table II, the Born series
converges reasonably well by five terms, but it
is not so good at three terms. At three terms,
however, both unitary approximations fs(8) and

f„(8)are much better than the Born series. The
exponential form is an especially good representa-
tion of f(8). The Born-Pads approximations are
equally good, but they are not as good as fs(8) at

three terms. The Heitler-Pads approximations
are poor representations of f (8) at three terms.
At five terms, all of the methods except the Born
and Heitler-Pads (2) have converged to values
quite close to the exact results.

For the Yukawa potential at the energies select-
ed, the following summary can be made:

(1) The unitary approximations fs(8) and fs(8) are
superior to the Born series, and fs(8) is better than

f„(8). In fact, the exponentialunitary approximation
is an excellent approximation at the higher energy.

(2) The Born-Pads approximations f '~p'(8} and

f '~~(8} are closely matched, although not the same,
and they converge rapidly to values in excellent
agreement with the exact results. These are the
most consistently good approximations.

(3) The Hettler-Padh approximation f '„'p(8) con-
verges faster than any other at the low energy, but
it does not do as well at the high energy. The ap-
proximation f~~~(8) does not do well at all.

We have given the derivation of unitary and Pads
approximations for the scattering of a spinless
particle by a central potential. Each method is
well justified, and most are superior to the Born
series for the example chosen. This variety of
techniques provides a self-consistent scheme for
testing convergence at a particular order of the
perturbation theory. Such a test has not been pro-
posed before, and it could be valuable when the
calculation of higher Born terms is prohibitively
difficult.
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