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A Crlauber approximation to the scattering amplitude for the direct inelastic scattering of structureless charged

particles by ion targets is derived and applied to inelastic scattering by hydrogenlike ions with arbitrary

nuclear charge. The 1s~ nl m 61auber scattering amplitudes are evaluated in closed form as simple sums of
Meijer 6 functions. The asymptotic behavior of these amplitudes is examined for both large and small

momentum transfers, and for the limit of infinitely large nuclear charge.

I. INTRODUCTION

The Glauber approxlmatlon to the scattering
amplitude has proved to be a useful and reason-
ably reliable predictor of intermediate- and high-
energy inelastic scattering of structureless
charged particles by neutral atoms. ' For these
inelastic collisions the Glauber predictions of both
the integrated (over scattering angle) cross sec-
tions and the angular distributions for scattering
at angles 690' are in remarkably good agreement
with experiment when the incident paxticle speed
v; is greater than I a.u." At scattering angles
greater than 90, the Glauber-predicted angular
distributions are found to be somewhat less ac-
curate when compared with very recent experi-
ments. ' On the other hand, it is well established"
that the Glauber predictions of the elogtic scatter-
ing in these same atomic collisions are unreliable;
nevertheless, the utility of the Glauber approxima-
tion for inelastic collisions involving neutral tar-
gets cannot be gainsaid.

In the conventional Glauber approximation, the
direct scattering-amplitude formula involves a
straight line eikonallike path integral over the in-
teraction potential V, seen by the incident particle.
For a direct collision between a charged particle
and a neutral aggregate of charged particles, V,. is
dipole at large distances; consequently, the Glau-
ber amplitude formula is mell defined, regardless
of its physical significance. On the other hand, if
both the incident particle and target are charged,
then V; is asymptotically Coulombic and the con-
ventional Glauber amplitude formula is no longer
mathematieaHy well defined. Nevertheless, the
success of the Glauber approximation in charged-
particle-neutral-atom inelastic scattering has
prompted a number of very recent attempts to

seek a simple extension of the Glauber approxima-
tion appropriate for collisions between charged
particles and ionic targets. These efforts include
calculations by Narumi and Tsuji, ~ Ishihara and

Chen, ' and Thomas and Franco. ' Although some-
what different methods are employed to derive the
formula for this Coulomb-modified Glauber ampli-
tude, the final amplitude formulas obtained are,
not too surprisingly, identical. Differences do ap-
pear, however, when actual applications of this
result are made to the excitation of hydrogenic
ions by incident charged particles. In particular,
Narumi and Tsuji, and Ishihara and Chen are able
to compute these Glauber amphtudes only after re-
ducing the Glauber multidimensional amplitude in-
tegrals to differing one-dimensional integral rep-
resentations which require numerical integration.
In contradistinction to those results, we have been
able to reduce these Glauber amplitude integrals
to closed form, as simple sums of Meijer { func-
tions; thus we a.re able to compute these Glauber
amplitudes with only slightly greater effort than
that required to compute the corresponding closed
form e -H(ls) Giauber amplitudes. ' The purpose
of this present paper is to detail the analysis lead-
ing to these new closed-form Glauber amplitude
expressions for the excitation of ground-state hy-
drogenic ions by struetureless charged particles.
Numerical results for the Glauber-predicted ex-
citation of He' and Li++ to the n=2 and n =3 levels
by both incident electxons and protons shall be pre-
sented in a subsequent paper.

The contents of this paper may be summarized
briefly as follows. The {oulomb-modified Glauber
amplitude formula is derived in Sec. II. In See.
III we describe the reduction to closed form of the
Glauber amplitude integrals for general 1s -nlm
excitations of hydrogenlike ions by structureless
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charged particles. As useful examples of the gen-
eral result, we give the explicit expressions for
the 2s and 2p excitation amplitudes in Sec. IV.
Finally, in Sec. V we evaluate the asymptotic
forms for the Coulomb-modified Glauber ampli-
tudes in the limits of large and small momentum
transfers q. In addition we develop the asymptotic
form of the appropriately scaled 1.s-2s and &s

-2P Glauber amplitudes in the limit in which the
nuclear charge of the hydrogenlike ion is allowed
to approach infinity.

For convenience, we have deferred to Appendix
A our discussion of an extremely useful generali-
zation of an alternative integral representation for
the integral,

where Y, is the conventional spherical harmonic
and s is the projection of the three-dimensional
vector r onto a plane containing the vector b; q is
purely real. This result is useful not only for our
present purposes, but also in the general evalua-
tion of the conventional Glauber amplitudes for
induced transitions in multielectron atoms" and
in the evaluation of the Glauber partial-wave ioni-
zation amplitudes for which it was originally de-
veloped. ' Appendix B describes the generating
functions which lead to the closed-form Glauber
amplitudes for general 1s-nlm transitions in
atomic hydrogen. This result, which has not here-
tofore been generally published, is obtained from
the results of Sec. III by the simple limiting pro-
cess of setting the excess nuclear charge equal to
zero.

II. DERIVATION OF THE COULOMB-MODIFIED GLAUBER
FORMULA

The Glauber approximation to the scattering am-
plitude for a direct collision (excluding exchange
or rearrangernent, but including ionization) of a
structureless particle of charge Z&e with an a.tom
which consequently under goes a transition from an
initial state i to a final state f is given by'"-'

&(i -f; q) = ' 8'q'"'uf* r)I'(b, r)

where

x u, (r) d'b d r,

dp e +(1+8 —28 cosp) ",
2 Z

Q

developed originally by Thomas and Gerjuoy. ' We

employ the result of Ref. 7 to obtain an equivalent
one-dimensional integral for the more general
integral

In Eqs. (Ia) and (lb) V, (r', r) is the interaction po-
tential seen by the incident particle with coordinate
r'; r denotes the collection of internal coordinates
required to specify the initial and final bound-state
wave functions, u& and u&, of the target atom. The
momentum transfer is given by q=K& -K& with
A. K;,AKf ——p, v;, p, vf, where v& and v& are the initial
and final relative velocities of the scattered par-
ticle in the center-of-mass system; p, is the re-
duced mass of the incident-particle-target-atom
pair. It is by now well understood' that identifying
Eqs. (1a) and (lb) as the direct scattering ampli-
tude incorporates the subsumption that the z direc-
tion in Eq. (lb) is to be taken along a direction P

perpendicular to q in the scattering plane. Thus
in Eq. (1) b is the projection of r' onto the plane
perpendicular to v.

As long as the target atom (or molecule) is neu-
tral, the potential V, seen by the incident charged
par tlcle ls proportional to (t' ) when g ls large
so that the profile function I'(b, r) and Eg. (la) are
well defined. If the target system is an ion with
nuclear charge Z„and M bound electrons then, ne-
glecting spin-dependent interactions,

(2b)

(Z„-ill )Zge'

and r,. is the coordinate of the jth bound electron.
For the moment we have assumed the target to be
a positive ion, i.e. , 0& M & Z„. When Eq. (2b) is
used in (lb), the path integral over V, is well de-
fined and convergent; on the other hand, the inte-
gral over the long-range Coulomb interaction V,
is not well defined so that the ensuing amplitude
expression (1) is consequently ambiguous. Never-
theless, Eq. (1) still may be used to define a
Glauber approximation for these charged-particle-
ion-target collisions provided the residual Cou-
lomb inter action V, is treated as the limit of an
appropriately chosen sequence of short-range po-
tentials. The motivation for this course stems
frozen a, trv. .~y remarkable property of the Glauber
potential .'. "-".ttering formula: aside from an over-
all cons~a~&t phase factor, the Glauber-amplitude
formula for either a cutoff Coulomb potential or
Yukaw'a is, in the limit of zero screening, exact
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not only in modulus, but also in phase. " Thus,
in place of Eqs. (2) and (3), we write

V, (r', r) = V,(r', r)+V,'(r')

(Z„-M)Z,e'

In the usual may" me nom define t e phase-shut
functions X, and X, via

e'x'=e p — da'('(Pi, (),S5]

oo

&+(&) —exp d&r yg Pg e2fa+Ko(gb)
Av]

in Eq. ('I); however, in actual practice this pro-
cedure is impx actical. Therefore we employ the
standard technique used to derive the exact Cou-
lomb potential scattering amplitude in the Glauber
approximation" and assume that the limit may be
taken prior to performing the integrations. In
other words, we replace e'X~ in Eq. (7b) by the
lime'"' as e-0 Nom when ~ is small me have
from (5b) that"

lt, =2a~, (ef() --2a„[@+In(-,'eb)]+0(e),

where y is Euler's constant; consequently,

e'x&-exp[-2ia„[ln(e/2)+y]} b 2("~. (9)

Using Eq. (9) in (7b) and dropping inconsequential
overall constant phase factors, we obtain our final
formula for the Glauber amplitude for the inelastic
scattering of a structureless charged particle by
a positive ion„namely,

where

'() = —Z(e /55(, a„=—Z((Z„—M )e /88(,

A(i-f;q)= '
db dre'" 'b "'~

2m

xu~(r)(1 —e'"') u, (r), (10)

s& is the projection of r~ onto the plane containing
q and b, and go is the modified Bessel function. "

The Glauber amplitude for scattering by the ion,
when the incident interaction is given by Eq. (4), is
nom mell defined and given by

mith

-Z;e' -Z;(Z„-M )e'
i

xug(r)(I —e'x'e'x~)u, (r) . (6)

In Eq. (6) the subscripted A, clearly denotes that
we have constructed the scattering amplitude using
the Yukawa V,' of Eq. (4) rather than the exact
Coulomb V, of Eqs. (2) and (3). If the scattering
is inelastic, i of; then using the orthogonality of
the wave functions u& and u& we may write

A,(i-f;q)= ' d'bdre'q' u&(r)
iK)

x ( e&xae&xe(~))u (r)

and M is the number of bound electrons in the ion.
Several remarks about Eq. (10) now are in order.

Equation (10) differs from the conventional form
of the Glauber amplitude for scattering by a neu-
tral atom only by the additional 5-dependent phase
factor b " ~. Thus standard techniques" may be
employed to reduce (10) to a one-dimensional in-
tegral over 5 when the bound-state wave functions
may be represented as products of one-electron
orbitals. Since we are concerned only with inelas-
tic scattering, the unit term in the profile function
I',(1, r) =1 —e'"& does not contribute to the ampli-
tude (10); however, when we formally retain this
term I', has the convenient separation

xug(r)(l —e'"')u, (r) . (7b)

Equation (7b) follows from (7a) because i ef and

X, is independent of r. The convenience of writing
A, in the form (71) will be made clear below. "

%e now define the Coulomb-modified Glauber
amplitude via the limiting relation

A(i —f; q) = limA, (i —f; q) . (8

In principle, the limit of Eq. (8) should be taken
only after performing the integrations indicated

I', (b, r) = P I'~ (b, r, )

Q I') (b, rq)1 ((b, r g) + ' ' ',
g = pi=/+1

wherein the atomic scattering analog of the usual
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separation" of the Glauber amplitude into single
scattering, double scattering, and higher-order
scattering terms is made manifest. When Eq.
(11) is used in the neutral-atom case to separate
the Glauber amplitude the single scattering terms,
involving only one 1 &(b, r,. ), are found' to be the
most difficult to compute numerically from a one-
dimensional integral representation involving b.
However, as Thomas and Chan' point out, these
terms may be evaluated in closed form using the
methods of Thomas and Gerjuoy. " Correspond-
ingly, the use of Eq. (11) in (10) permits a similar
separation of the so-called single scattering terms
in the Coulomb-modified Glauber amplitude for a
multielectron-ion target; now these single scatter-
ing terms may be evaluated in closed form using
the analytic methods to be described in Sec. III ~

In the derivation of Eq. (10) it was assumed that
the target ion was positively charged. As long as
only inelastic transitions are considered, the unit
term in I', does not contribute. Under these cir-
cumstances it can be shown easily that Eq. (10)
also is the Coulomb-modified Glauber-amplitude
formula when the target is a negative ion, i.e. ,
when the number of bound electrons M is greater
than the nuclear charge Z„. Thus Eq. (10) may be
employed to compute the Glauber predictions for
excitation and detachment of negative ions l:ke H

and Cl by charged-particle impact.
In a quantum-mechanical treatment of the scat-

tering of a charged particle by an ionic target, an
exact treatment of the asymptotic final state of the
system is one in which the outgoing scattered par-
ticle is represented by a Coulomb wave in the field
of the excess ionic charge. In such a treatment the
scattering amplitude A(i —f ) is found to diverge
as Kf ' as the final momentum SKf of the scattered
particle approaches zero at threshold. This be-
havior of the scattering amplitude leads to the
generally expected theoretical prediction that the
integrated excitation cross section for a bound-
bound transition will be finite and nonzero at
threshold. Of course, this expectation is general-
ly borne out by the results of experiments. On the
other hand, in the foregoing Glauber treatment of
this scattering problem the final state of the out-
going charged particle has been treated in the
derivation of Eq. (10) [as in the derivation' of Eq.
(1)] as a plane wave rather than as a Coulomb
wave in the residual Coulomb field. Moreover, it
should be clear from the structure of Eq. (10),
wherein K& appears only implicitly (via q = K; —Kf),
that these Glauber predicted inelastic scattering
amplitudes will be finite at an inelastic threshold
since K; and q will be nonzero and q and n„are
bounded. Thus the integrated cross sections ob-
tained via Eq. (10) will not be finite and nonzero at

an excitation threshold, as generally expected, but
rather will go smoothly to zero. This result poses
no serious limitation upon the utility of the Glauber
predictions to be obtained from Eq. (10). The
Glauber approximation is, on general theoretic
grounds, ' expected to be valid only for incident-
particle speeds greater than the average orbital
speed of the bound electron to be excited, and not
at threshold as the extant Glauber applications to
the excitation of neutral atoms demonstrate. '

Equation (10), or an equivalent rearrangement
thereof, has been employed by Narumi and Tsuji4
and Ishihara and Chen' to obtain Glauber predic-
tions for n =2 excitation of He' by incident elec-
trons; in such applications of Eq. (10) to the exci-
tation of hydrogenlike ions, there is only one bound
electron (M =1), of course, and

I', (b, r) =1 —((6- s(/b)"".

We remark that the 1s -2s and 1s-2p Glauber
predictions shown by Narumi and Tsuji4 are clear-
ly finite and nonzero at threshold. In view of the
previous paragraph, these results for the Glauber-
predicted e -He'(n =2) excitation are suspect near
threshold.

Further limitations on the applicability and utility
of the Coulomb-modified form of the Glauber ap-
proximation are imposed by a seemingly unphysi-
cal, overly restrictive, symmetry of the conven-
tional Glauber formalism first discussed by Gau
and Macek. " Recall that in the conventional Glau-
ber approximation the profile function I'(b, r) of
Eq. (1b) is to be evaluated' by integrating along
the direction v perpendicular to q. Thus, as long
as V;(r', r) in Eq. (1b) [or V, in Eqs. (4) and (5)] is
a sum of pairwise purely Coulombic potentials,
I'(b, r) (or I', =1 —e'"~) will be symmetric under
reflections in the plane perpendicular to v. It is
easily shown that this reflection symmetry leads
directly to the Glauber selection rule' described
in Sec. III; for 1s-nlm transitions in hydrogenic
targets the selection rule states that the Glauber
amplitude will vanish identically when / —m is odd
and the target bound states are quantized along v.
The physical consequences of this selection rule,
and therefore of the reflection symmetry of I'(b, r),
are twofold. Firstly, the limitations of the selec-
tion rule will be manifested in the Glauber predic-
tions of wide-angle inelastic scattering. In, for
example, n =2 excitation of hydrogenic ions the
selection rule (with quantization axis along v) im-
plies that the m =0 contribution to the dominant
1s-2p excitation vanishes identically. As we show
in Sec. VA, at large K& and large momentum
transfers q (i.e., large scattering angles) the abso-
lute squares of the nonvanishing 1s-2p amplitudes
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are proportional to q
' and not the q~ character-

istic of pure Coulomb scattering. The effect of
this large-q behavior is to cause the conventional
Glauber approximation to underestimate the ob-
served absolute e -H(1s) n = 2 angular distribution
at wide scattering angles" even at moderately high
incident-electron energies (-200 eV), where the
Glauber predictions at scattering angles S30' and
the Glauber-predicted integrated cross sections
are in quite good agreement with the data. ' " Sec-
ond, and perhaps more significantly, Gau and
Macek" have argued that the symmetry properties
of I'(b, r) preclude reliable Glauber predictions of
some of the expected properties of line radiation
emitted subsequent to collisional excitation and ob-
served in coincidence with the inelastically scat-
tered particle. In particular, Gau and Macek have
shown for electron-hydrogen-atom collisions that
the Glauber approximation —like the first Born ap-
proximation —predicts the emitted Lyman-n radia-
tion produced by direct (nonexchange) excitation of
the 2p levels and observed in coincidence with the
scattered electron is purely linearly polarized
perpendicular to v, corresponding to the radiation
of a single electric dipole lying along the momen-
tum-transfer vector q."" The arguments of Gau
and Macek are easily generalized so that the same
result is obtained for the Coulomb-modified Glau-
ber prediction of n = 2 excitation in hydrogenlike
ions and for the conventional Glauber prediction
of direct 2 'S-2 'P (and 3 'P) excitation in neutral
helium atoms. This latter result is of particular
significance because measurements by Eminyan
et al."of electron-photon angular correlation in
helium 2'P (and 3'P) excitation cannot be ex-
plained solely in terms of the excitation of a sin-
gle electric dipole lying along the momentum
transfer q.

Despite the limitations the foregoing considera-
tions place upon the utility and applicability of the
Glauber approximation, we again stress that the
presently available evidence' indicates that the
Glauber approximation is a reasonably reliable
predictor of the angular distributions for inter-
mediate- and high-energy charged particles
inelastically scattered at angles S90' by neutral-
atom targets and of the integrated cross sections
for these same collisions. Similarly, the Glauber
predictions of the polarization fraction of the radi-
ation emitted in electron-neutral-atom collisions
appear to be in good agreement with experi-
ment. ""'" In this context the very recent Glauber
applications to e -He' excitation"' suggest that
the Coulomb-modified form of Glauber approxima-
tion will be an equally reliable predictor of these
same properties of the inelastic scattering of
charged particles by ionic targets.

III. REDUCTION TO CLOSED FORM OF THE GLAUBER
AMPLITUDES FOR HYDROGENLIKE IONS

In this section we consider the Coulomb-modi-
fied Glauber amplitudes for the excitation of hy-
drogenlike ions by charged-particle impact. We
shall show, in particular, that these Glauber am-
plitudes for the general induced transition 1s
-nlm can be reduced to closed form; nlm are the
usual quantum numbers specifying the bound states
of a hydrogenlike atom, neglecting spin effects.
For the special case under consideration Eq. (10)
reduces to the simple form

A(ls -nlm; q)

iK.
b dreiq bb «~n

2r

with A.; = Z„/a„Af =Z„/na„and YP(r) is the con-
ventional spherical harmonic as defined by Rose."
Rather than use the expansion of the Laguerre
polynomial L'„++, ' given by Schiff, we use a con-
venient alternative, namely, '

[(n+ l)!]'
(n —1 —1)!(2 l+ 1)!

x,P, ( n+ l + 1; 21+2; x), — (14)

where, E, is the usual confluent hypergeometric
function. " Thus we have

1 2)+1) 3/2) 3/2 «(n+l) t.:...,.=~a .. ., , , „,)
1

(21+1)!

l 1
(2A ) r~+ e ~" (15)

Now r is simply the coordinate of the bound elec-
tron relative to the nucleus and s is the projection
of r onto the plane containing q and b. Recall that
the z direction in Eq. (1), and therefore in (12), is
to be taken along a direction v perpendicular to the
plane containing q and b. Of course q = -Z;e'/hv,
and a„=-Z, (Z„—1)e'/hv, .

The bound-state wave functions appearing in Eq.
(12) are known exactly; quantizing along the direc-
tion v ~~

e they are given by"

2,~, ,~, n —1-1)!
V 7T nj(n+l I

'
x f,""(2z,r)e-&"~"~!"Y, *(r), '

(13)
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where A. =A.(+A& and (a)I is pochhammer's symbol. '3

After inserting Eq. (15) into (12), we find that the
amplitudes of (12) can be written as

A(ls -n()m)

I+ lg3/3g3/2+ I (n + 1) }

1fII
' / n(n —l —1)} (21+1)!'

(16c)
1-1 g /+1

= &%(23Im Q &; — (fIm(I) q)
)=0 X= X.)+ Xy

(16a)

(-n+ 1+1)I
(2 ~( 1)/dl (16d)

where the generating function 81 (r)., q) is given by

S (~ q)= — d'bdre"~b-" 3rd-'e-"
2m

rr C, (I) 1 —( ) (llb)

We now proceed to show that the generating func-
tions defined by Eq. (16b) can be evaluated in
closed form. Unlike previous evaluations' of
integrals like those in Eq. (16b), we introduce
spherical coox dinates for r with the z direction
along v&q and polar coordinates for b. Thus

2F ib
g (g q) Q (1$ Q

3II13 d~ e(33 cod((dr) (d3) d ~Idle )rc dfl Ylllr)r(j)

0 0 2m
" '

g b

where y, and fIt), are the azimuthal angles of q and b in the plane perpendicular to v, and s is specified by
s =r sin8 and the azimuthal angle y.

The integration over solid angle 0„ is described in Appendix A. Using Eq. (A13) of that appendix, we

have

d,.(,, (()=d( r)l--rr* ldll-*" f"d„."-r"- »C- ( id, ) f d«- -"
0 0 0

If) () dt at

ln Eq. (18) we can exploit the elementary properties of spherical harmonics to extract the CI, dependence

of the integrals and obtain

II (l )=1(-l)r "rr C" ( /3 l ) f )dill "f dl d ' "' ' "f ddd"'d

~

~

0

Note that the spherical harmonic YI (n/2, ()3,)
vanishes if l-m is an odd positive or negative in-
teger (see also Appendix A}. Thus Eq. (19}incor-
porates in a succinct way the Glauber selection
rule, namely, that the Glauber amplitudes of Eq.
(12) vanish identically for l —m odd when the
bound-state quantization axis is along v 4q. In
Eq (19), the inte. gration over y yields'3

r
2%

d~ eI((() col(d+ I It)(d 2+3 ll)g (~b)

As for the x integration, the integral stemming
from the first term in curly brackets is trivial;
in the second term we assume interchanging or-
ders of integration and differentiation is valid and
fin(P

d+ +1+1+-X t'

—211'($+] ))If)I+3(f3 + g3f)3)-I -I

Consequently, Eq. (19) reduces to
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8, (A. , q)=4si'Y(*(n/2, q), ) dbb ""&J (qb)
0

dt t'+ A,
'b')'+'

In view of the remarks following Eq. (A13) in Appendix A, we need to consider two separate cases of Eq.
(20}, namely, I &0 and I=0.

First the case l&0: When I&0 the first term in curly brackets in Eq. (20) does not appear and the second
term may be integrated once by parts on t. Since" J (x) =(-1) J„(x), J (x)J (y) =JI I(x)JI I(y) and

8,„(zg)=4 i'Y, "( /2q, )(2)))2"" " )'() ))f dbb """""J)
)
(qb)

t l7 0

x d t-t"'-)"' JI(t) (t'+&'b')
0

(21)

We now observe that the rational function (t A+.'b') ' ' is a special case of the hypergeometric function;
in particular, "

g2b2 -1-1
(t 2 + g2b2) ( -) t-2(-2 I + 2t

g2 b2
=t ' F, l+1 c c;— (22)

where c is an arbitrary complex number. Since l+1 is not a negative integer, the, F, in Eq. (22) has the
Mellin-Barnes integral representation"

(23)
—6+5~ S

(t'+&.'b') ' '=t " 'r I 1}2 dsI'(l+1+s)r(-s)1 I+ I) 2vi t 2

provided Iarg(A, 'b'/t )I&v. The path of integration in (23) is a straight line parallel to the imaginary s
axis; 6 is real and satisfies 0&5&I+1. We now use Eq. (23) in (21). Furthermore, we assume that there
exists a range of 5, bounded by the limits 0&&&i+1, for which both the t and b integrations in (21) are
well defined and convergent for each and every value of s on the contour, so that we may interchange the
order of integration over s with the integrations over b and t. With this assumption we obtain

t), (Z, q) =4si 'YP*(s/2, q), )i@2""+'+'I'(1+ i ) 1
r(1 —tq) 2vi

-6+ 3~ ~O c)o

x dsr(l+I+s)r(-s)A" dbb " "'"'"'J I(qb) dtt "~ ' ' "JI I(t),
$ ao 0 0

(24)

wherein the b and t integrations have been sepa-
rated. In Eq. (24), the b and t integrals each are
of the form"

l r(k(~+ t ))
r I+-,'(v-t(, )

subject to the restriction -Rev& Re@, &-,'. Thus in
Eq. (24) the b integration will converge if

,'(l Im I }+1&—6&--,'I+ r7 . (27b)

—,'l+ & & 5 & —,'l+ & (28)

Recalling that 0& Im I
& l, we see that —,'(I —Im I)

+1& —,'l+ g and that &l+&& —,'(l+)m ~)+2. There-
fore, the inequalities (26b) and (27b) combine to
yield the condition

—
I m I

& Re(-2i a„+i+ 4+ 2s) & —,',
l.e.,

—,'I+r «&-.'(I+ImI)+2.

(26a)

(26b)

for convergence of both the t and b integrations.
But l&0 and 6 also must satisfy 0&5& l+1 in
order for (23) to be valid. Since i+1&-,'i+a for
all l&0, we must have

Similarly the t integration will converge provided

—Im I
& Re(-2i)7 —2 —I —2s) & s, (27a)

—,'l+-,' &5&min(l+1, —,'l+r) (29)

or in order for the b and t integrations in (24) to be
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well defined and convergent for each and every
value of s on the s contour when (23) holds. Thus

if (29) holds, Eq. (24) is equivalent to Eq. (21).
Having determined the required condition (29)

on 5, we may proceed to evaluate the b and I; inte-
grals in (24) via (25}. It is easily seen that Eq.
(24) reduces to

8 (X q) =4si'Y '(s/2 q )i2/2
" ""'q" n ' ' r 1+1 )

lm y f y q I'(1 —i1/)

-"'"d,I (/+I+s)1(s+2+-.'(/+ Imj}- a„)r (-s)1(-', (jmj-/)-I -iq- s) ~'

2vi, ;„ I'(-2(jmj —l)-I+in„—s)i'(s+2+2 (l+ jmj) +i2/)
(30)

provided l&0 and (29) holds. Note that the condition (29) on 5 is sufficiently strong to ensure that the poles
of I'(l+1+s) and I'(s+2+ —,'(l+ jm I)-ia„)lie to the left of the contour, and that the poles of I"(-s) and
I'(-,'(jmj- l}-1 —ir/ —s) lie to the right. Indeed, the weaker condition

1 + 2 (l —
I mj )& 0 & min(/+ I, 2 + ~2 (l+ I m I ))

is sufficient to guarantee the separation of these poles. We now change variables in (30) via t
= s+1+-,'(l- jml)+i1/ so that

(31)

(p q) = 41T2
1 Y~n(7f /2 + )ir/2

+11- 2+1n qi2+ n1- nI i1+s )
I"(1 —i1/)

X dt
I'(t in+2-(/+ jmj))i'(/+I+ Iml-in-ia. ) I'(1+2(/- jml)+f2/ t)1'(--t) ~' ' '""' j j"' '

2 7TE I'(i1/ + i n„—t) I (t +I+ jmj)

where the inequality (31}implies that

0&e& min( —,'(/+ jmj), 1+ Imj) .

(32a)

The integral on the right side of (32a) can be identified directly as the standard Mellin-Barnes representa-
tion of a Meijer G function; in particular, we note that the function G2, (2;) can be defined via."

I'(1 + s —a)I'(1 + s —b) I'(d —s)I'(e —s)
I'(c —s)I'(1+s —f )

(33)

provided Iargxj& s. In Eq. (33) the integration path runs from -i to +i~ so that the poles of 1(1+s—a)
and I'(1 +s —5) lie to the left of the path, while the poles of 1 (d- s} and I'(e —s) lie to the right of the path;
in other words a, h, d, and e are restricted so thatnoneof thepolesof I'(1+s —a} and I'(1+s- 5) may coin-
cide with the poles of I'(d —s) and I"(e —s).

Since (32b) holds, we may apply (33) directly to (32a) and find, when /&0, that Eq. (20) reduces to

t/ (~ q) 4s21 Ymn(v /2 + )/~2\+1 21 an -/ ~-2in-1+jmj-2I'(1 +i )
1 hl 1 1 t n I (] '~)

I+1 1)- (/+ I mI) jg, 1 I}+ g a„-|mi, 3 Ij+ 1 0/„

X 2 i a„+8 iy}-~m)-3 m22Xg " ~ G33
O, j. +11}+(r-( ~I~&,- ) ~I

provided I arg(~2/q') I& w. The G function in (34)
will be disc~seed below. Note that I + jmj must be
an even integer in (34) since Y„*(v/2, 92, ) vanishes
otherwise.

We now consider the special case of Eq. (20)
when /=0. As we remark in Appendix A following
Eq. (A13), when /=0, integrating Eq. (20) once by
parts on the variable t is no longer valid; the in-
dicated differentiation must be performed. N'hen

l =0, the terms enclosed by curly brackets in (20)
reduce to But

I'(1 i2/), -dt t'+&'h'

„,I'(I +i2/}
I'(I - i2/)

djt ""d J, t
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/f252(/2+X252)-' =1 —/'(/'+&2'")-',

so that
n

1 2210 ~ d// 2f0J (/)I'(1 - if/)

„„r(1+ii/}
r(1- if/)

0O

df/ 2-..~ (,) 2-2;, —n}
r(1+if/) '

and the unit term in (37) is canceled exactly. The
remaining term in (37) may be integrated once by
parts. Thus when l =0, the term in curly brackets
in Eq. (20) becomes

/
-222f0+1 r( i l}

r(1- ii/)

dt0 X dt t i"'iJ t t +A252
0

(38)

where we have used Eq. (36) in (35b), together with
the relation" dd0{t)/dt =-J,(/), to obtain Eq. (37).
The 5-independent integral on the right side of
(37) may be evaluated via (25); it is easily seen
that

Equation {36}now may be used directly in Eq.
(20); the subsequent reduction of 800(X, q) to closed
form employs the same methods used to reduce
Eq. (21) to the form (32) when /&0. Indeed we find
that

8 (/ q)= 4vt *(v/2 y)iq2'-"" " /-'"-'q" ""'"-'r(1+i )
00 f 0 f a I (1 if/)

r(/+I iq)r-(f+I in„ iq)r {iq —/)r(-/) /' '
x . dt2' r(ii/+in„- /}r (1+/) (39)

where 0& e& 1 and the straight-line integration path separates the poles of r(/+ I —if/) and I'(/+1 —ii/ —if2„)
from those of I'(-/) and r{ii/ —/). Finally, we again employ (33) and obtain

I' I +i } i /) 2i I)+i 0/ff 2i 7)+i ~
8 (/ q) 4vy. ag(v/2 ~ )2021-2fan / y 2i'0-2 iian+2f0-2 G22

00 f 0 f 0 r(1 )
33

g
2

Oii I) 20

provided (arg(X2/q2) (& ff.

It should be noted that Eq. (40) cannot be ob-
tained from (34) simply by setting /=0 and m =0:
the G function so obtained from (34) is different
from that in (40). This difference is a manifesta-
tion of the presence of the term X 5»5~0 in (20)
when /=0 and m =0. On the other hand the func-
tions 6323 do satisfy the relation

(1 + 5)G22(
~

n, f0+1 an, f0+ i a„)
2

~22/ 1 /I Qi'/+i c/r/2'f7)+ i cx/7 ) ~22 ( I ff 2i7}+ i cff2$7)+i off )

(41)

When a =1+i' and b =iq, the Q functions on the
right side of (41) are just those appearing in (40)
and in (34) when /=0. But 1 —fi+b would then van-
ish. If one naively assumes that the left-hand side
of (41} therefore vanishes, one is led to the er-
roneous conclusion that for /=0 (34} is the same
as (40). On the contrary, it can be shown that the
left-hand side of (41}does not vanish when fi = I +if/
and b =ig. From the standard expansions of the
G function in terms of convergent generalized hy-
pergeometric functions ' (about which more shall
be said later), one can show that

(I fi y /f)G22(X( n. f0+fan f0+fan }
2 ~ '5=i'

in other words,
~22 i l 1+f0,f0+fan, f0+\ an )

r(-iq)r (I —ia„),.„
r(l+iq)r (i~„)

g22(
(

f0 f0+fan 10+1a„)+ r( 1 1)r(l 1 f2n) 10

I'(1+ii/}r(i cf )

(43)
Of course, the relation (43) may be proved direct-
ly from the integral representation (33}. However,
the foregoing remarks serve to emphasize suf-
ficiently strongly the fundamental differences be-
tween the 800 obtained by improper usage of Eq.
(34) with /=0, and the correct result (40).

One may legitimately ask what would be the con-
sequences of using (34), rather than (40), in Eq.
(16a) to compute the Coulomb-modified Glauber
amplitudes for the excitation of s states. Equation
(43) with x= a2/f/2 makes clear that the 8„obtained
from (34) would separate into the sum of two
terms, one of which would be proportiona. l to A. ',
with the other term given by (40). As long as we
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are considering the excitation of s states in a
hydrogenlike ion (i.e., n & I), for which the prod-
uct of the wave functions u&u; is given exactly by
(13), wherein A,.=Z„/ao and X/ ——Z„/nao (X= X;+ &/),
one can show that the differential operator of Eq.
(16) acting upon X 2 yields a term

(44)

only if X//X,
—= I/n. Equation (44) may be proved

directly by performing the differentiation and sum-
ming the series using the standard transformation
formulas" for the hypergeometric functions 2F, .
On the other hand we may simply observe that the
X ' term of Eq. (20) stems directly from the unit
term in square brackets in (16b); thus aside from
multiplicative factors, X is the generating func-

tion which yields, via the left side of (44), the
integral Jdru„*,(r)u„(r) in Eq. (12). But u„, and

u„are exactly orthogonal; hence (44) must be
true. Despite the fact that the A.

' term implicitly
contained in (34) cannot finally contribute to the
1s-ns inelastic scattering amplitude, there is no
guarantee that the direct use of (34) in (16a) will
not lead to spurious results when the amplitudes
are computed numerically. Thus (40) should be
used for these transitions to avoid this possible
source of numerical error.

To summarize the results obtained in this pres-
ent section, we have shown, for a hydrogenlike
ionic target, with nuclear charge Z„e, that the
Coulomb-modified Glauber amplitudes for the
direct excitation of the transition 1s -nlrb by a
structureless particle of charge Z,.e can be re-
duced to closed form. With quantization axis
along v&q, these amplitudes have the form

1 i 1~3/2y3/2 I (n+ I)! ' ' 1

' (-n+ I+ I)/ / 8x,
( )

'
(2),/)' — 8, (x, q)

~o ~ + )t=)t i+)ty y (45a)

where, for l 10,

g /y Q 4 l Yml //2 %2l+1-2i sz ( 8) y-2 le l+ I m I - -2

l + i I) - ( l +
I

tft I)//2 ~ i I) + i &n l
m

I i I) + i an
2i ~g+2in-~m j-2G22

33 2
0 j. + i '9 + ( &

-
I
~

I )//2 —
I

fft
I

(45b)

if l=0
I' ] + Z~$ y iI), if) i&„,iy)+i&&

8 (A. q)= —iq4vY'*(7//2 cp )2' " ~ ' "X""' "~~"'"'G"
~"

with

(45c)

g = —Z;e'/gv, , a„=—Z, (Z„—I)e'/hv„X, . = Z„/a„X/ = Z„/gaga, ,

and G33 is the Meijer G function. We again emphasize that the Glauber selection rule for these transitions
is contained within the spherical harmonic Y, (w/2, y, ), which vanishes identically if I sm is an odd inte-
ger.

Although the Meijer G functions in Eq. (45) appear formidable, they are actually comparatively trivial
to compute. In fact the functions G33 have standard absolutely convergent expansions in terms of the
generalized hypergeometric functions 3F„. these expansions are obtained directly from the integral rep-
resentations (32) or (40). As long as n„40, the poles of the integrand in (32) or (40) are simple. Thus
when A.'/q'(I we close the contour at infinity in the right half plane and obtain, via the residue theorem,
a power-series expansion for G,", in powers of A'/q'. When X'/q &1, the contour is closed on the left,
which yields an expansion in powers of q /A. '. Now the G functions in (45) have the general form

[ if)-P, if1+i af -lml, ig+i aft)
33% I Oy SQMQ I St I I y

where p and r are integers such that p, r & 0; of course
~

m
~

& 0. It is found~ that when ~x
~

& 1
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~22( [ if' Pp ff7+g Qg I fftls CfI+&atff)~33&+ l Os i q+r, - I ml

F(ii} + r)I'(1+p —ii})F(1+ Im I
—irI- in„) 2~2(l+p-iq, I+ lml-i&-in„, I-2&-in„;I-r 2&, I+ lml;-x)F(1+ Im I)F(iq+ in„)

I'(-iq —r)I'(1+p+r)I'(1+r+ Im I
—inn)

I'(1+ r+ Im I+it})F(in„r-)
xx"™,E,(I+ r+p, 1+r+ lm l

—in„, 1+r in„—; 1+r+irI, 1+r+ lm l+irI; —x); (46a)

when lxl&l

G22iX I in p, i +inalnml, in+lan)
33% ( Ot ff)+t's ) ml

1'(I m I
—p —inn)I"(1+ p —ii})F(I+p+r)

F(1+p+ in„)I'(I m I —p+ iq)

x x*n~-'g, (I+p iq, 1+p+r, 1+p - lm l
ii};I+p lm i+ in„, 1+p+in„; —I/x)

F(p- Im I+in.)r (1+ 1m I-it}-in.)F(1+ Im I+r-in„)
1 (1+ I m I)I'(ii}+in„)

x '"*""'.&.(I+ lml- i~- in., 1+lml+r - in. I -i~-in. 1+ lml- p- in. , 1+ lml; -I/x}.
(46 )

The functions 2E2 appearing in Eq. (46) are abso-
lutely convergent in the specified range of x pro-
vided e„and q are both nonzero. ~~ Of course, the
amplitudes themselves are constructed from the
function 8, by differentiation according to (45a).
The G functions may be differentiated via the
relation'4

G22( I
in-p, in+ ian Iml, indian)

33& I os in+f's -)m)

G22/X I in-P-if indian-I mliy indian)
( 0, ffI+y, -)~)

Ii w IlQ22IX I in pin+fan-f-lml ~ in+inn)

(47}

Since (45a) involves only a finite number of dif-
ferentiations, the amplitudes A(ls-nlm; q) may
be expressed using (47) as a finite sum of G func-
tions, each of which may be computed via Eq.
(46). Although this procedure always may be car-
ried out in principle, in actual practice it may
prove excessively tedious to do so, especially if
n —l 2 5. Alternatively, we may take useful ad-
vantage of the absolute convergence of each of the
series in Eq. (46); the differentiation required by
(45a) may be performed by explicitly differenti-
ating the series expansions obtained by using Eq.
(46) in (45b} or (45c). Even though the resulting
series will no longer be readily identifiable as
simple functions like 3E, or G33y these series will

be absolutely convergent and of simple enough
structure so that numerical evaluation of the am-
plitude is straightforward and rapid.

IV. SPECIAL CASES

The Coulomb-modified Glauber amplitudes for
the two transitions 1s-2s and 1s-2P have been
discussed by Narumi and Tsuji' and Ishihara and
Chen. ' As mentioned previously, these authors
are only able to compute these Glauber amplitudes
from one-dimensional integral representations
which must be evaluated numerically. From Eq.
(45) these amplitudes have comparatively simple
closed-form expressions which are useful exam-
ples of the general result.

Consider first the 1s-2s transition amplitude
for which n=2 and I =m =0. We have from (45a}

A(ls-2s; q) = —iK; ~ X,'~'Xpi'

with 8«(X, q) given by (45c}. Performing the in-
dicated differentiation in (48a} via (47), we make
use of the fact that X; =Z„/a, „kf -—21,, and
A. = &A., to collect terms and obtain
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A(ls-2s; q) = —K, t)2' — 2 "~" ':"q"~~+"" 'p. ""r&1+z.,&

3 r(1 it))

~2 i g.«7)+ if)fff, «7)+ «&f1 ~2 jul-l, i 7)+ j&„,i7)+ja„+2 iyl-2, «7)+ jf)(„, «'f) + j&„
4 22 8 22 2 22x Q„~ —-G33 ~ + 3G„

o, jg,o o, «7).o 'O, i &,0

for arbitrary Z„& 1.
For the 1s 2p transition we now have

(48b)

A(ls-2p; q) = —iK; ~X,'. ~'Xz~' ~ —tf, (&, q) (49a)

where 8, is given by (45b). Now Y', *(v/2, y, )—= 0; thus the m=0 transition amplitude vanishes and we are
left with

~ m w ~ g2 j g ) j 7)+ j(X~ -1
~ i 7)+ i Cuff

tf (y q) q zt)(3v) / e 1 f0+2 i g @2ltÃg+2%\I 3 y 2lll 2Q22
v2 I'(1 —it)) "

q o. +&q, -i (49b)

Again we use (47) to perform the differentiation
required in Eq. (49a). Now, however, the result
is the sum of two G functions which may be com-
bined via the generalization" of Eq. (41). We find
that 1s-2p amplitudes are given by

amplitudes in the limit of large nuclear charge
Z„, i.e. , as Z„-~. Throughout this section we
usually shall require O,'„W 0.

A. q dependence

and

A(ls —2p, ; q) = 0

v2A(ls-2p a)=+ e""eK—r) —X. 2' "~~
vY ' 3

'f I
y 2 j'Q 2« 0~+2 jff 3

I'(1+&~)

r(1 iq)

y 2 j 7), j 7)+ jan -1, i 7)+ j&n
X G22

q 0, 2+ «7), -1

(50a) In this subsection we consider the behavior of
the amplitudes A(ls-nfm) of Eqs. (45) in the limits
of large and small momentum transfers q. Since q
is defined by q =K,. K&, q =K,.++f 2K«Kf cosg,
where 8 is the center-of-mass scattering angle.
For a bound-bound transition 1s-nlrb, energy
conservation in the center-of-mass system re-
quires that

O'K,'/2p+e, . =O'K~./2p+sf,

(50b)

where X&
——Z„/2a, and X = 3Z„/2a, and the z axis is

along g&q.
It should be noted, that each of the G functions

appearing in (48b) and (50b) may be computed via
Eq. (46).

V. ASYMPTOTIC FORMS

In this section we discuss the asymptotic behav-
ior of the Coulomb-modified Glauber amplitudes
A(ls —nlm; q) in various limits of both physical
and general theoretic interest. First we shall de-
tail the behavior of A(ls-nlm) for large and small
values of the momentum transfer q; these limits
are of practical interest since they determine the
general shape of the Glauber-predicted angular
distribution for the scattered particle in these in-
elastic collisions. We then shall examine these

where f j and Ef are, respectively, the initial and
final bound-state energies of the target atom.
Thus, for fixed K; and fixed final excited state f
with Ef &&«, K& is fixed and Kf &Kj. Consequently,
at each Ki the physical momentum transfer obeys

K; —K) &q &Kj+Kf, (51)

where q =K; -K& corresponds to forward scattering
(8 =0) and q =K;+K& corresponds to backward scat-
tering (8 =180'). The asymptotic behavior of the
scattering amplitude at large and small values of
q is of practical interest when these limiting val-
ues of q are contained within the physical range of
q specified by (51). Since we do not consider elas-
tic scattering (for which Kj —-K&), q & 0; however,
K; -K& can be small if K; is sufficiently large.
Correspondingly, K,. +K& is large, when Ki is
large. Thus at large K;, the asymptotic behavior
of the amplitude at small q determines the scat-
tering at small angles near the forward direction.
Similarly, the large-q asymptotic behavior of the
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6 (y ~) A y 2itl 2q2ill+2iRg 2 +p 2q2iag 2

where A, and A, are independent of ~ and q. The
asymptotic expression for 8, must then be dif-
ferentiated with respect to X according to Eq.
(45a) and the leading q dependence extracted.
[Thus the large q dependence of the ls-ns transi-
tions is determined by differentiating Spp via Eq.
(45a); for these transitions the term proportional
to A2 does not contribute since Eil. (44} holds. ] In
this way it can be shown easily that for fixed K,-
and lofg8 q

A(is nfm) ~q&iu~+2i~lml-2 (52a)

amplitude determines the scattering at wide sca,t-
ter lng angles.

Since the amplitudes A(ls-nlm) are obtained
from the generating functions 8,„(X,q) of Eils.
(45b)- and (45c) by differentiation with respect to
A. , the q dependence of the amplitudes, at fixed
K& and K&, is determined not only by the q depen-
dence, but also by the A, dependence of the functions

8, . When q and a„are fixed and nonzero, the G

functions in Eils. (45b) and (45c) have absolutely
convergent expansions given by Eil. (46a), when
X'/q'&I, and by Eq. (46b), when X'/q'&1. Thus,
the procedure for determining the asymptotic q
dependence of amplitudes is straightforward.
When q is large, X'/q'«1; therefore, to obtain
the asymptotic behavior of the C functions, we
expand each of the hypergeometric functions, E,
in Eil. (46a) in powers of X'/q', retaining for each

,E, onl.y the leading-order terms. When this ex-
pansion for the G function is used in Eq. (45b) [or
(45c)], 8, reduces to a sum of two terms, each of
which is a product of powers of A, and powers of
q"', e.g. , when q is large

now, however, Eil. (46b) is used to expand the 6
functions in Eels. (45b} and {45c) in powers of
q'/X'. Again each of hypergeometric functions

appearing in Eq. (46b) is expanded, retaining only

the lowest-order terms in each, E,. The resulting
small-q asymptotic form for 8, is then differenti-
ated according to Eil. (45a). In contradistinction
to the large-q behavior of the amplitudes described
by the relations (52), the small-q behavior is found

to depend explicitly upon the orbital qua, ntum num-

ber /, as well as m. Three separate cases now

are required to describe the behavior of the am-
plitude:

(i} if I -
I
m

I
& 2 but l v 0, as q - 0 at fixed K,.

IA(ls-nfm) I'o-q2i '. (53a}

(if) if I lml =2, » I=O,

I
A(ls -nlm) I'~q2™f(q'), (53b)

where f(q'} is bounded but does not approach a well
defined limit as q-0.

(iii) Finally if I —lm I
~2, then as q-0

A(ls-nl ) I

q""'. (53c)

Again these relations are supplemented by the

Glauber selectio~ rule & —Im I
even. We stress

that the relation (53b) does not apply to the elastic
scattering Qlauber amplitude which is not given by

Eil. (12). Moreover, these results do not hold, in

general, when a„=O because (46b) does not then

hold;" indeed, it has been shown"' that the 1s-ns
Glauber amplitudes for an atomic-hydrogen target
diverge as ln(q} in the limit of small q. On the
other hand, the relation (53a} implies that the non-

zero 1s-nP Clauber predictions for arbitrary
Z„& 1 diver ge as q

' as q-0, as do the corre-
sponding e H(ls) ls -nP Glauber amplitudes. '

(52b)

Consequently, the only transitions for which at
large q I

+{i-f) I' behaves like pure Coulomb scat-
tering are those for which the magnetic quantum
number of the excited state is zero. But the scat-
tering amplitude vanishes identically when I —

I
m

I

is an odd integer. Thus while the absolute squares
of the ns and nd (m =0) amplitudes are propor-
tional to q

' at large q, the only surviving nP
transition amplitudes are those for m =+ 1 for
which IA I'~q '. Since Eil. (46a) also is valid
when o.'„=0 [whereas Eil. (46b) is no longer val-
id"], the foregoing conclusions hold when a„=0,
i.e. , even when the target is atomic hydrogen.

The procedure for determining the asymptotic
behavior of these amplitudes for small momentum
transfers q is similar to that described above;

B. The limit Z„~

We now consider the limiting form of the Cou-
lomb-modified Glauber amplitudes specified by

Eil. (45) as the nuclear charge Z„of the target
atom is aQowed to become infinitely large. We
shall not discuss the limiting form of the general
1s-nlm amplitudes; in what follows we shall only
consider the large-Z„behavior of the 1s-2s, 2P
amplitudes described in Sec. IV. For these transi-
tions the initia, l and final nonrelativistie bound-
state energies of the ion are given by e, = —Z2s2/2a

and &~ =- &„'s /6ao, thus energy conservation in
the center-of-mass system implies that

Since the physical reduced mass p. remains finite
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as Z„-~, Equation (54} implies that the threshold
value of Kj for inducing an inelastic transition to
the m=2 level is proportional to ~„, so that Kj-~
as Z„-~. Because X; = Z„/a, and &» = y, /»», we
now introduce scaled quantities via K, = Z„K„
K& =S„Kf and, holding the center-of-mass scat-
tering angle fixed, f'=Z„»q»=K +Zz —27f»ff&cos8
Similarly Xj =Z„Xj and & =&j+~&=&„~. Moreover,

%'e emphasize that all barred quantities remain
finite as +~

gince X'/q'=X»/q' and 8/SR= {1/Z„)(S/SX), it can
be easily shown from Eq. (45) that in general

A(ls-nfm;q)=Z„"v~' '~ "' X(ls-nfm;q),
(55)

where the scaled amplitude X(ls-nlm} remains
finite and, in general, nonzero as Z„~. In
particular, from (48a) and (50b) we have

X{18 28 ~

q ) 17»}23 2»»(l. 1/g~)(y y )3/» ' 7/ N»jul »I'!1+1!Z) —-
I'(1 fff/Z„)~

(56)

and

A. {is-2p q) =+ e""K—»} —a.
-'2""""-'"'» . M2 ' - I'(1+if}/Z„)

W2 ' 3 ' I"(1»»}/Z )

jR/+f1 » j ) 1»
2 jQ 3 ) 2jg I+If @22 0

33
,
0»2+ j g/+f1 » 1 )t=3/2@0

(5V)

recall that A(ls-2P) =0 and the quantization axis is along 0 &q. To determine the limiting behavior of
A(ls-2s, 2P) as Z„-~ we need specifically to consider the limiting forms of the G functions appearing in
Eqs. (56) and (5V); the limits of the remaining terms in these equations are clearly evident since all
barred quantities remain finite as Z„-~. The behavior of the 6 functions is most easily established by
directly examining the Mellin-Barnes integrals of Eq. (33) which represent these functions.

We consider first the limit of the G function in (56): from (33)

1 '"" I'(1+s)1 (1+s —i»})I'(-s)I'{ s),
I'(ff}-s)1"(1+s)

~a/+ jOO

1+jg

~Q~ joo

I'(u + 1 - i»})I'(m + I —i'll) I'(- »v)
I"(I +»v)

where (58b) is obtained from (58a) by the change of variable —»v = 1+s —i»t; since 0&@&1 in (58a), 0& 5& 1
in (58b). Now the contour integral in (58b} is simply the Mellin-Barnes integral representation" of the
standard hypergeometric function, E„ i.e.,

r(s)1'{5) 1 *-„r(&+s}1'(s+b)1'(s)

where ~arg(-z) ~&v and the contour separates the poles of I'(s+n) and I'(s+b) from those of 1"(-s). Thus

y2 jq/g~» jg»jI} q
2 1 jg

q
2

lim G3»3» —v = =, [1(l—if1)]',E, l-i»i, 1 —»ff;1; —=
g „~ f 0»jl}/~yf »~ X2

lim X(ls -2s; q ) = —I7»y(2~'"(X,. Xq )'~ » I (1 —if))I'(1 —i»i)
g W44

n

x $ + g A, +| 1 ~ Kgb l ~ ggy ly
BX 9X
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The standard differentiation formula~

05—2E2(a, b; c;x)= —,Fr(a+ 1, f}+1;c+ 1;x)

together with X}/X/ ——3 may be used to evaluate Eq. (60). We find that

3
1' X(}4-24;i})=—l7, I}2' "'-,'. (—1'(1—'il}1'(1 2)P'" ''
g WCO

t

)2( ii 1)'('1}—- 2),P, (1 —'2, !—'ll; 1;—=,
A.

—2

+4(ifI- 2)(1 —if')2 —,,E, 2 —iT), 2 —if'; 2; —=,
4J

+(1 ift)2(2 —ifl)2 =,E, 3 —i&, 3 —iP; 3; —=,
'

)t=3/2co

We now consider the G function in (57): again from (33) we have

1 -' '" I'(1+s)I'(2+s —ift)r(-s)r(2 —s)

fl

where 0&& &1. But

r(1+s)r( s) r( s)
r(2 +s) 1+s

Thus letting -se =2+s —iQ,

(;2(/s„, ;-„2,p~ „,-„1 '"" I'(1 + ii} —if))I"(4 + u} —if))
(

g w 420
n

71 E ( +K)

where 1&6&2. Although the integrand in (63) has the same form as (59), the integral in (63) cannot be
directly identified as a, F, because a pole of r(1+go —ii)) at u}0 = —1+ii) lies to the right of the contour.
I.et C, denote the straight-line path in (63) and C, a closed counterclockwise contour solely about the
simple pole of r(1+ti) —if)) at n},= —1+iT). Then

(62)

1 1 1
dm ~ ~ ~ = . dao ~ ~ ~-

27t l 2gZ Q 2gl C

where C, is a straight-line path from -c -i~ to -&+i~ with 0& e & 1. The integral along C, now may be
identified as a,F, via (59) while the integral around Co may be evaluated simply via the residue theorem.
Thus

/

]im Q22(x
~

2n/z)}, in-, ii) x 2424) ( 9) ( 0) E ] if4/ 4 &7). 2.
g woe x

1 r(1+m —iq)l (4+i// —ir))r(-zv)
chal x"

2zs Q I'(2 +n})

——* ""r(1—'2)r(4 — 2},zl —'l}, 4 —}12'; ——
),.

I'(1 —ii)) 2

r(1+i(7) x

Using (64b) in (57) we finally obtain

3
limX(ls -2P q) =+ e""eK.f) n-224 2("

/(. 'q"" 'r(1 —if))+ 19
~2 j 3 O

2
—2 j.-ff) —2

I'(4 ift), F, 1 ift, 4 haft;2;r(1+ in) )t=3/2co
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Equations (61) and (65) together with Eq. (55)
complete the specification of the Z„-~ limiting
behavior of the nonvanishing 1s- 2s and 1s- 2P
Coulomb-modified Glauber amplitudes. Similar
methods may be employed to determine the more
general result for arbitrary 1s -nlm excitations.

APPENDIX A: USEFUL INTEGRAL REPRESENTATION

In this Appendix we describe a generalization of
an integral representation developed by Thomas
and Gerjuoy' in their reduction of e -H Glauber
amplitudes to closed form. Thomas and Gerjuoy
showed that

1 21f

dfp e( ('(I +s' —2s cos(t))'"
27T 0

=-2"" ". dt t ""—[8 (t)J (st)]I'(1 —iq), dt

(Al)

for s &0, q real, and arbitrary (positive or nega-
tive) integers m. The functions I'(z) and Z„(z)

are, respectively, the Gamma function and Bessel
function of the first kind. The generalization of
(Al} we consider here is the integral

I= — dQ„F, *f 1- b-s (A2)

Note that the generalized Legendre polynomials
Pf" of Eq. (A3) are defined consistent with the con-
ventional definition" of the Legendre functions.
With (A3), Eq. (A2) becomes

where b is an arbitrary vector in the x-y plane,
s is the projection of a three-dimensional vector
r onto that plane, and q is real. The reduction,
presented here, of the integral (A2) to an equiva-
lent one-dimensional integral representation of
the type (Al) was first described by Thomas. '

%'e employ the Rose" convention for the spheri-
cal harmonic F, so that

„(,) (e) f)''( f — ))) ',„( )

(A3)

2l+l t~ (l-m)l 2m

I=
47t (k+28 J! 2F

sin8d8P)"(cos8) d(t)s ' ~ 1 — 1+———cos((t) —ft))
0

(A4)

and fp are the azimuthal angles of b and s (i.e., F) in the x-y plane. We make use of the periodic
properties of the trigonometric functions to remove the y~ dependence from inside the integrals; after in-
tegrating over fp and using (Al) for s/5 &0 we have

2)+1 ' 2 ~l-m)! I.t'1+. i

dt t "" d(t)d-—
fN fft (A5)

In Eq. (A5) we have removed the absolute value
signs on the order of the Bessel functions, be-
cause" for integer m, J „(z)=(-1) 2 (z), so that

Z)„)(z)J( ((y) =Z (z)Z (y). We now note that s =r sin8
and assume we may interchange the order of inte-
gration over 8 with the integrations and differen-
tiation with respect to t. Thus we need only con-
sider the remaining integral

( 1) (2m+1} 2-
r(m+1)

s ee(sf. e)- f:;!(esse)e. —s.e).
0

(AB)

But the integral over 8 in (A6} is the special case
of a known result, "which yields

I' = sin8dg P, (cos6})J —sin8
0

If l ~ m~ 0 in (A6) we may use the relation"

(A6) Z/2

ff (
1)mr(2m 1} 2-m( I/l-m)/2

r(m +1) rt

Pf (cos8}=(-1) 2 (sin8) gf '~'(cos8),I'(2m+ 1) f', " '(e)e„,f, (
—

)
'f f — 's es tees)

(A7) =0 if / —m is odd. (A9b)

where C„ is the Gegenbauer polynomial. There-
fore, for m~0

Since" Pf (0) =0 if l —m is odd, we may again use
(AV) to write Eq. (9) in the compact form
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ft ( I)o -ttt)/aP (0) d (AIP) )! ! F(I + I —
i m

i )
( )! !

r(I+ I+ [m [)

where m ~ 0. If in Eq. (A6) m & 0, then m = —
~

m
~

and

P) (cosg) =P, !!(cosg)

Z(I+I —(m))
( I)!!P!!( )r(I+ I+ }m[}

(All)

again" d (x) =&!!(x)=(-1)l !d!!(x).Therefore
when m&0

td6P 't tlzti t

—'

t) .
0

Now apply (Alp) wherein m ~ 0, to obtain

y]ft ( I)( )+!m!) /2 Pm (P)

after again employing (All). Since m&0,
(-1)" ' = (-1) ' ' Therefore, for all m

satisfying -l & m & l,

~ ~

~

'II

singdgP) (cosg)j —sing = (-I)!' 'P) (0) d),/2
0

With the foregoing result, Eq. (A5) reduces to

2 l+1 '/' (I —m)!
4v (I + m)!

~

II+ I)
" d rt

II (-t/' 'P (0)2'" ' . dt t "'—J tt) Z — }.r(I - fq) y] &+&/'&

0

(A12)

Finally, we may pull the P) (0) outside the curly brackets since P, (0) =1 and use Eq. (A3) to simplify the
result. We obtain for arbitrary integers I and m (-I &m & I)

2( I)O-m)/2Ymtt(v/2 @ )

5r 05 0+2 . dt t '"—J t) Ji+u'2 . A13

We stress that Y) (v/2, p, ):—0 if l —m is an odd
(positive or negative) integer. When l&0, (A13)
may be simplified further: the first term in the
curly brackets vanishes, whereas the second term
may be integrated once by parts. When I =0 (m =0)
the partial integration is no longer valid for real
q, and the indicated differentiation with respect to
t must be carried out directly. The failure of
partial integration in this case reflects the fact
that in (A13) the integral over f contains a term
which ultimately leads to the exact cancellation of
terms stemming from the first term in the curly
brackets in (A13}when (A13) is integrated over r
as in Eq. (17) of Sec. III.

The utility of the result (A13) is twofold. Unlike
previous treatments"' of integrals like (A2), the
foregoing reduction of (A2) to the form (A13) has
employed spherical coordinates for r, rather than
cylindrical coordinates, thereby ensuring the full
exploitation of the properties of the functions
Y) (r). When cylindrical coordinates are used,
the detailed properties of the radial wave functions
multiplying Y) *(r) [as in Eq. (17)j become impor-
tant and the integrals can be evaluated only after

I

explicitly expanding the P, in a power series. The
result (A13) is clearly more compact and versatile
than any such power-series expansion. Second,
(A13) preserves the explicit r dependence of the
integrals in Eq. (1) or (10), so that analytic forms
for the radial functions need not be required;
these wave functions now may be numerically tabu-
lated (as, e.g. , the close-coupling wave functions
for an ejected electron in the field of its parent
ion) and the integral over r performed numerically
after first explicitly integrating (A13) over t

APPENDIX B: GENERATING FUNCTION Pt (X,q~ FOR
TRANSITIONS IN ATOMIC HYDROGEN

Here we consider the generating function for the
Glauber 1s —num amplitudes for excitation of
atomic hydrogen. Although the general Qlauber
transition amplitudes have been considered else-
where by Thomas and Gerjuoy, these results have
not been generally published heretofore (see foot-
note 14 of Ref. 7). Moreover, these previous re-
sults are especially awkward to employ in actual
practice.
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The Glauber amplitudes for ls —nlrb transitions
in atomic hydrogen still are specified by Eq. (45)
after setting Z„= j. and e„=0. Now, however, ex-
pressing the generating functions 8& in terms of
Neijer 6 functions 6,", is no longer convenient nor
practical. Indeed Thomas and G~rjuoy' have shown
that these ls -ns and 18 —@P Glauber amplitudes
may be expressed in terms of hypergeometric
functions, E, rather than the functions 6'„' of Eq.
(45). Since Thomas and Gerjuoy have already ex-

amined the 1s - ns transitions in general, ore con-
sider here only those transitions for @which the
final angular momentum quantum number I &0.
Moreover, since (45a) holds we shall consider only
the special case of the generating function 8& for
these transitions. The amplitudes themselves are
to be constructed in the usual way (see Ref. 7)
from the generating function.

For E &0, the generating function 8&~ is given by
Eq. (32); setting cr„=0 ln (32) we have

8, ~(&, q) =4((i'FP*(v/2, y, )iq2'+'q ' '
r(1-iq) 2&;

x "'"„,&' ' '""' I I'" '1(t-i@+-'(1+lntl))f'(t+1+ I~I-in)f(1+-'(f- I~I)+i~ t)1-(-t}
1'(iq —t)1 (t+1+ ~(nl)

whe e 0«&mtn(-'(f+ Int I), 1+ lntl). Since f- lntl is even [otherwise &, (&/2, q' ) =01 we may w «
r(1+-,'(f —

( m( ) +i@—t) =(«- t)i.((-I l~t.

where (a)„ is the Pochhammer symbol. ' But

x '=(-1)'(a) x ' ';
ex

y+(r-)m))/a ~-th)
f-sy)-(l-Imj)/a-z r ~ i&+(l-)mI)/2 z

tt(l (g q} 4 i/ytÃg(v/2 ~ )2l+ lq ( 4 I
( 1)1+(l It'll(/21"(1+i )

(m l I & a Z(1 i~)

~

~

z '" "'" 1 (t —i77+z($+ )n( ~))r(t+1+ [m )
—iq)f'(-t)

g (Bez 2mi 1 (t +1+ [ m()

where z =X'/q'. Because f& 0 and 0&a & min( —,'(l+
) pn (), 1+ [m() the integral in (B2) may be immediately

identified as a hypergeometric function via Eq. (65). Therefore, with z =X'/q',

. . r(1+i') 1'(k(t (m+)) -i )f(I(1 (m+)- iq)

1+((- I ~I ( t3
x —— z '"2I', —iq, j. + m —iq,'1+ m, —z'

Although the differentiations specified by (B3) together with those required by (45a) still need to be per-
formed, in actual practice all these differentiations may be performed algebraically by fully exploiting the
numerous differentiation formulas and recursion relations which the hypergeometric functions satisfy.
Furthermore, we wish to point out that Eq. (B3}remains valid when i=0, as can be shown explicitly. The
validity of (B3) when t =0 is a reflection of the fact that the second term on the right-hand side of Eq. (43)
vanishes identically when a„=0 so that (45b) and (45c) are then equivalent.
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