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Three-body bound-state problem with Coulomb forces*
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The three-body bound-state problem with Coulomb forces is solved in the Feshbach-Rubinow approximation.

Analytical expressions for the ground-state energy and wave function are obtained, and numerical results are

presented for heliumlike atoms.

The nonrelativistic bound-state problem of three
charged particles interacting via the bare Coulomb
potential has a long history and still continues to
be of current interest. There have been two types
of approaches: the variational method and the
hyperspherical or K-harmonics method. The ac-
curacy of the former method depends on the choice
of the trial wave function, and usually one
has to deal with a very large number of variational
parameters. ' In the latter method the Schrodinger
equation for the three-body system is reduced to
an infinite set of coupled differential equations of
one variable.

There has been a surge of interest in the K-har-
monics approach in recent years. ' ' It has been
found, however, that the convergence of the K-
harmonies expansion is quite slow, and a very
large number of coupled equations have to be
solved numerically to achieve good accuracy. '
The method that we adopt in this note is a com-
bination of the variational and the differential-
equation approach. We assume at the outset that
the three-body wave function depends only on a
single appropriately chosen variable containing
a fezo variational Parameters. The three-body
bound state problem then reduces to the solving
of a single second-order differential equation.
Moreover, the solution of this equation can be
found analytically. As an illustration, we apply
the method to the two-electron atomic systems
like H, He, Li', etc. , and obtain the wave func-
tion analytically. Our numerical result for the
ground-state energy of He atom is comparable in

accuracy to the more elaborate computer calcu-
lations of Ref. 3.

The method that we outline here was originally
proposed in its simplest form in the three-body
nuclear problem by Feshbach and Rubinow, ' and
was later generalized by other authors. ' " Here
we apply the formalism to the pair-wise Coulomb
interaction, where the resulting formulas become
particularly simple. Consider three particles of
masses m; and charges Z&e (i =1, 2, 3) interacting
through Coulomb potentials alone. Assume that
the wave function of the three-body system is a
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Explicit forms for (, &, and W;(A) are as follows:
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The expressions for W, and W3 are obtained by
cyclic permutations of the indices in Eq. (8). Al-
though the equations are formidable looking, the
main point to note is that Q; W;(R) still varies as
A '; so Eq. (2) is simply a one-body Schrodinger
equation with a Coulomb potential and a centrifugal
potential term corresponding to the orbital quan-
tum number l = 2. The expressions for eigenen-
ergies and eigenfunctions in terms of the varia-

function of the single non-negative variable A,

4 =4 (R), R = —,
'
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Here r, is the interparticle distance between par-
ticles 2 and 3, and likewise for r, and r„while
Qy T/2 and g3 are variational parameters, with
the restrictions" that q, + g2 )0, g2 + g3 )0, and

g3 + gl )0. The expectation value of the three -body
Hamiltonian H, (4]H]4), may then be reduced to
a single integral over the variahle A, and applica-
tion of the condition &[(4]H]4)j(C ]4)j=0 yields
the Schrodinger-like equation' "
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tional parameters g; may therefore be analytic-
ally expressed.

As an example, consider a two-electron atomic
system with a nuclear charge Ze, and for sim-
plicity assume the nuclear mass to be infinite.
Designating the two electrons as particles 1 and

2, define the variable R by the equation

e' 8[(16Z—5) +4@(Z—1) —rP]
3 (1+q)'

A little algebra yields the differential equation for

(9)

R =-,' (r, +r, + qr, ), with the restriction that 1 +q & 0.
For this situation, using Eq. (8), we obtain
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where m, is the electron mass. Since this is just
the wave equation with a Coulomb potential for an
effective orbital momentum state l = 2, we can im-
mediately write down the energy and eigenfunction
for the ground state (with the principal quantum
number n = -', ). In atomic units of m,e'/8', the
ground-state energy is

(1+q) [(16Z —5) + 4q(Z —1) —q ']'
4(8+ 5@+r)')(8+7q+4q'+ q')

and the ground-state wave function is

C (R) =R i'u (R)

= exp—(16Z —5)+4q(Z —1) —q' R
(12)8+7q+4q +q a

where a=h'/moe2 is the Bohr radius. For a given

Z, g should be varied in the range -1 & g & ~ to find
the minimum in E, from Eq. (11). Using this pro-
cedure for H, He, Li', and Be", we find -E, in
atomic units to be 0.508 (0.528), 2.890 (2.904),
7.267 (7.280), and 13.643 (13.656), respectively,
where the numbers in parentheses are the best
nonrelativistic estimates, "which we have rounded
off to three decimal figures for comparison. The
optimum values of q's which minimize the ground-
state energies for Z =1 to 4 are -0.264, -0.138,
-0.092, and -0.070, respectively. Our results are
consistently better than the simplest conventional

one-parameter variational calculation, where H

is not found to be bound. The latter method" gives
E, = —(Z ——„)', which is what we would obtain from
Eq. (11) on setting g=0. Our method, which is
also variational, yields better results because the
interelectronic distance r, is taken explicitly into
account in the wave function. Taking this variable
in the exponent, as we do, may be an efficient way
to parametrize the wave function, as the work of
Radi' shows.

Finally, in comparing our method to the hyper-
spherical or K-harmonics calculations, note that
if only the K=0 component of the wave function is
retained, the problem also reduces to solving a
single differential equation in the variable
p—= (r', +r,'+r', )'~', instead of our R. This equa-
tion, in the nuclear problem of the model triton,
was first solved by Morpurgo. " McMillan, "
comparing the Morpurgo and the Feshbach- Rubi-
now equations, showed that the latter yielded sig-
nificantly better numerical results in the triton.
The Morpurgo equation, however, has the advant-
age that it can be systematically improved through
the K-harmonics formalism. Since in our method
already the zeroth-order results are reasonably
good, it would be worthwhile if a similar system
atic way of improving it could be found.
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