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Addendum to "Hydrogen atoms in strong magnetic fields"*
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On the basis of a variational scheme for a trial wave function given as an expansion of the exact solutions of
the three-dimensional isotropic harmonic oscillator, we have calculated the energies for the 14 lowest energy

states of a hydrogen atom in the presence of magnetic fields ranging from approximately 10 to 10" G. We

also discuss the connection between the low- and high-field energy spectra based upon the noncrossing rule.

In a recent article one of us (HSB) proposed a
variational scheme to obtain the solutions of the
Schrodinger equation for hydrogen atoms in strong
magnetic fields. The solution assumed as trial
wave functions a linear combination of the exact
solutions of the Hamiltonian of a hydrogen atom in
the absence of magnetic fields.

The results obtained in this manner were reliable
for magnetic fields ranging from 0 up to 10' G. In
the same paper' a new trial wave function based
on an expansion of the exact solution for the three-
dimensional isotropic harmonic oscillator was pro-
posed. This procedure is convenient for the study
of the behavior of hydrogen (and hydrogenlike}
atoms for fields up to on the order of 10" G.

The present work has two main purposes:
Firstly, we are interested to show that the same
scheme, proposed in Ref. 1, can be used to study
hydrogen atoms in magnetic fields ranging from
10' to 10" G; it is only necessary to change the
basis for the trial wave function. Secondly, we
intend to verify which is the appropriate way to
connect the energy levels obtained with the two dif-
ferent bases.

The Hamiltonian for the hydrogen atom in the
presence of a uniform magnetic field in the z di-
rection, in atomic units, i.e. , energies in units of
the Rydberg (8„}and lengths in units of the Bohr
radius, is

H = —V ' —2/y+ yL, + —,'y'y ' sin'8,

where y= ps30/(R„and L, is the z component of the
angular momentum operator. '

It is clear from Eq. (1) that the good quantum
numbers are the parity and m (eigenvalue of L„
in units of h).

When y = 1 the magnetic energy is comparable
with the electrostatic energy. In order to make a
reasonable guess for the trial wave function, we
recall that in the extreme limit (y» 1) the problem
is that of an electron in a magnetic field, which
may be viewed as the superposition of a circular
motion in the plane perpendicular to the magnetic
field and of a free particle in the z direction.

Therefore we may choose as a convenient basis
set the eigenfunctions of the three-dimensional
isotropic harmonic oscillator. When y» 1, these
eigenfunctions give a correct description of the
electron in the xy plane while they fail in the z
direction. In this way, we expect that this solution
can give good results, compared to those of other
authors, ' ' for 1 ( y ( 100.

Therefore we may choose our trial wave function
as

q(r) =pa, c,.(r) (2)

where the g,.'s are variational parameters and 4 s
are the eigenfunctions of the three-dimensional
harmonic oscillator, which are given by

with

=Q„,(r)~P (tt, 0), (3)

k = —,'(n —I), n) l ) 0

(n and l must have the same parity) where

(4)

u+ Q.
A, (t) = I'(o. + 1) e ' 't 'L, (t), (5)

with

(
p I'(p+ 1)
q I'(q+ 1)I'(p —q+ 1) ' (6}

+~+@2
0

and the eigenvalues are given by

e,'."= 2 (n+ —,') .

(8)

Performing a change of variables in Eq. (1), and

and the L~~(t) are the Laguerre polynomials.
The functions given by Eq. (3) satisfy the Schro-

dinger equation

H, C,.(r) = eI"O,.(r),
where the Hamiltonian H, is given by (in appro-
priate units)
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remembering that sin'e may be written as a linear
combination of spherical harmonics, the Hamil-
tonian may be rewritten as

H = -~'+~'+ Ve I,.-(W6/y)" 2(2/~)

—(4~/45)"'r -y', (s, y).

For this Hamiltonian the energies are given in
units of (y/F6)6t„and lengths in units of (&6/y)'~'a,
(a, is the Bohr radius).

As suggested by Brandi, ' using expansion (2) we
calculate (g iH I g), which must be minimized with
respect to the a, 's, subject to the constraint (g lg)
=1.

This leads to the secular equation

Z a&» «~--&~)'»~=0

@&here g& are the energy eigenvalues, q& is given
by

(l2)

and D» is an element of the symmetric matrix B
and ls given by

Iog, B

FIG. 1. Ionization energy of the ground state of hydro-
gen as a function of the magnetic fieM. Smith et al. {Ref.
6): a; Cohen et al. (Bef. 7): b; Wallis and Bowlden (Bef.
8): c; Brandi (Bef. 1): d; Larsen (Bef. 5): a; Cabib
et al. (Bef. 2): x; and present calculations: e.

Dg, =(-&) &"[(2l,+ l)(2l, +i)]'I'

TABLE I. Comparison bebveen the present results {0), the results of' Yafet et ql. 9 ~A),
Larsen~ {L), Praddaude3 {P), Baldereschi and Bassani4 (BBv and BBa), Cabib et al. 2 {CFF),
and Brandi~ {8)for the ground-state energy {units of rydbergs or effective rydbergs).

YEA
{Ref. 1)

I
{Ref. 5)

P
{Ref. 3)

BBv BBa CFF
{Ref.4) {Ref.4) {Ref. 2)

0.1 -0.844 43 -0.99505
0.2 -0.839 56
0.3 -0.810 97 -0.958 35
0.4 -0.783 64
0.5 -0.750 54 -0.89
0.6 -0.712 52
0.7 -0.670 32 -0.81
0.8 -0.624 49
0.9 -0.575 54
1.0 -0.523 86 -0.662 1V

1.5 -0.234 16 -0.37
2.0 0.09190 -0.04
2.5 0.441 92 -0.31
3.0 0.809 11 0.68
4.0 1.579 8
5.0 2.384 2 2.243 3

0.670 95

-0.995
-0.981
-0.958
-0.927
-0.890
-0.849
-0.805
-0.758
-0.708
-0.655 -0.71

-0.37
-0.04

0.31
0.67
1.45
2.24

-0.99508
-0.980 76
-0.958 41
-0.92923
-0.894 47
-0.854 94
-0.81142
-0.764 57
-0.714 73
-0.66241
-0.370 76
-0.044 50

0.304 90
0.670 87
1.438 4
2.2392

-0.995 04
-0.980 51
-0.956 99
-0.924 82
-0.884 06
-0.834 66
-0.786 64
-0.709 88
-0.634 39
-0.55101
-0.003 52
-0.777 90

1.773 3
2.989 8
6.0864

10.067

-0.77984
-0.85543
-0.870 78
-0.861 99
-0.839 78
-0.808 75
-0.77134
-0.728 99
-0.682 68
-0.633 08
-0.349 81
-0.027 59

0.31943
0.684 02
1.450 2
2.251 0
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The quantities

(
oe ]

@n l @n lr (14)

(15)

may be calculated exactly in terms of I' functions.
Therefore, as in Ref. l, we have to diagonalize

a symmetric matrix to obtain the eigenfunctions
and energies for the Hamiltonian given by Eq. (10).
This matrix also blocks along the diagonal because
the Hamiltonian does not connect states of different
symmetries (different m and parity). Hence for
each block we obtain the energies and wave func-
tions for states with definite I and parity. This
fact enables us to study the numerical convergence
of the energies corresponding to states with the
same symmetry, independently of the states with
other symmetry. The numerical convergence was
checked by increasing the number of basis func-
tions and comparing the results for the energy with
those obtained using a more restricted basis.

In this way, in order to obtain the convergence
of the ground state energy with five digits, up to
y = 42.5 (K= 10"G) we have included in our basis
functions with l=0 (0& n- 28), l=2 (2«n& 14},
I =4 (4&n& 12), l=6 (6&n&10), l=n=8, and l
= n = 10. In a general way, to obtain the numerical
convergence with four digits of the energies of the
14 lowest energy states, up to @=42.5, we had to
include in our basis functions with l = 0 (0 & n& 28),
l = 1 (1 & n & 13), l = '2 (2 & n & 16), l = 3 (3 & n & 15),
l=4 (4&n&14), l=5 (5&n& I'I), l=6 (6«n«12),
l = 7 ('l & n & 17), l = 9 (9 & n & 19}, and l = 11 (11& n
& 17).

FIG. 2. Ground-state energy of the hydrogen atom in
magnetic field as a function of y. Brandi (Ref. 1): a;
present vrork: b; and Cabib et ul. (Ref. 2): c.

This scheme is still convenient to obtain the
energies for hydrogen atoms in strong magnetic
fields because of a fast numerical convergence (5
msec of central processor unit of an IBM 3'IO/165
to obtain convergence up to four digits of the first
four excited states).

Throughout this paper the labeling of the states
of the hydrogen atom in the presence of a magnetic
field is just an extension of that used in the absence
of the field, for the good quantum numbers are m
and parity.

Figure 1 compares results for the ionization
energy of the ground state as a function of the mag-
netic field with those obtained by several authors.
As discussed by Brandi, ' we recall that the ioniza-
tion enexgy of the ground state is given by

TABLE II. Comparison between the present results (0), the results of Larsen ~ (L), Prad-
daude~ (P), Baldereschi and Bassani4 g3Bv and BBa), Cabib et al.2 tCFF) and Brandi ~ (H) for
the energy of the first excited state funits of rydbergs or effective rydbergs).

P
{Ref. 3)

BBv BBa
P,ef, 4) (Ref. 4)

CFF
(Ref. 2)

H

Pef. 1)

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.5
2.0
2.5
3.0
4.0

-0.19614 -0.196 17

0.678 97

1.65194

2.634 63

-0.1950
-0.0954

0.006 7
0.104 0
0.200 6
0.296 7
0.392 7
0.488 9
0.5854
0.682 1

0.127
0.217
0.310
0.404
0.498 5
0.592
0.687
1.169
1.657

-0.1962
-0.097 9

0.003 3
0.1017
0.1984
0.294 5
0.390 5
0.486 5
0.582 8
0.679 3
1.163 6
1,651

-0.1930
-0.051 1

0.1723
0.480 9
0.8762
1.358
1.929
2.586
3.332
4.165
9.647

17.32
27.18
39.24
69.94

-0.153 0
-0.073 2

0.0196
0.1165
0.2164
0.3189
0.423 5
0.530 1
0.638 5
0.748 3
1.314
1.902
2.503
3.116
4.363
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where E„ is the energy of the ground state of the
hydrogen atom. From Fig. 1 we note that our re-
sults are in good agreement with those obtained
by other authors for magnetic fields up to 10" G,
and they get worse thereafter. This should be ex-
pected, because, as mentioned before, this basis
set describes exactly the motion of the xy plane,
but it is only an approximation for the motion of the
electron parallel to the magnetic field. It is clear
then that the proposed basis will describe the
system conveniently up to a certain value of y.

In Table I we compare the present results for
the ground-state energy with those obtained by
other authors, for values of y from 0.1 up to 5.0.

In Fig. 2 we show the energy of the ground state
obtained by Brandi' and in the present work, as a
function of y, and it is seen that they are connected
at y= 0.76. In this same figure we present the re-
sults obtained by Cabib et al. ,

' who integrated nu-
merically the Schrodinger equation.

From Table I and Fig. 2 it is clear that for y
&0.76 the values obtained for the ground-state en-
ergy are better when one uses the set of basis
functions defined in Ref. 1; on the other hand, for
y&0.76 the present basis functions give better re-
sults for the ground-state energy.

In Tables II and III we compare our results with
those of several authors for the first 13 excited
states. %e verify that, in general, for y&0.76
the present results are in better agreement with
those of Refs. 2-5, than the results obtained by
Brandi. '

Hence, what we suggest is to use, within the
same variational scheme, different trial wave
functions for different regions of magnetic fields,
in order to obtain the energy spectra.

As we have said, we are labeling the states as
in the case of the H atom in the absence of mag-
netic field. In Tables I to III we have associated
the levels obtained from our variational calcula-
tions with those of Brandi' using the noncrossing
rule of Von Neumann and signer, 'o which states
that levels with the same symmetry are not al-
lowed to cross each other. %hen using the nodal
surfaces criterion" there would not be agreement
between the results at all and those of Refs. 3 and
5 (who did not have the problem of connection) for
some excited states. For instance, the nodal-sur-
faces criterion would imply a larger energy for
the 2so state than for the 3do state for large values
of y." Detailed discussions about connecting low-
and high-field spectra are presented for instance,
ln Refs. 2~ 4q 11~ and 12.

In Table IV we compare our results with those
of I arsen. ' The agreement is also good for y &100.

Unfortunately the results of Smith etcl '(which.
are the most accurate) for X&10' G are only avail-
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0 0

TABLE IV. Comparison between the present results
(0) and the results of Larsen5 (L) for the ground state
and 2p& state energies (units of rydbergs or effective
rydbergs) .

able for the ground state, and we are not able to
compare the present results with theirs for the
excited states.

As a final comment we should note that a recent
work of Glasser and Kaplan" shows that a non-
relativistic treatment of hydrogen atoms in mag-
netic fields larger than 10"6 may be questioned.

5
25

100

2.243
20.267
92.543

2.251
23.677
99.871

13.28
71.8 1

294.7

13.15
71.98

300.2
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