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A study of the dynamics of a discrete two-dimensional system of classical particles is presented. In this model,
dynamics and computations may be done exactly, by definition. The equilibrium state is investigated and the
Navier-Stokes hydrodynamical equations are derived. Two hydrodynamical modes exist in the model: the
sound waves and a kind of vorticity diffusion. In the Navier-Stokes equations one obtains a transport coeffi-
cient which is given by a Green-Kubo formula. The related time correlation function has been calculated
in a numerical simulation up to a time of the order of 50 mean free flights. After a short time of exponential
decay this time correlation behaves like ¢ ~5, the exponent being compared to theoretical predictions.

I. INTRODUCTION

This paper is devoted to the dynamical proper-
ties of a simple model of classical particles
moving on a two-dimensional lattice. Some exact
properties of this model have been already in-
vestigated'; however, we have not yet been able
to obtain any exact result concerning the long-
time behavior of the time correlation functions.
At the present time, the investigations on the
convergence of the Green-Kubo formulasarereal-
ized only by approximate methods such as the
mode-mode coupling theory? or the data derived
from numerical simulations.

The problem of the long-time behavior of cor-
relation functions involves the dynamical proper-
ties of many-body systems at a very detailed
level.® It is then meaningful to focus attention
on very simple models for which one can expect
to find exact results. The present work takes
place in this direction; in particular, computa-
tional results are compared with two kinds of
theoretical predictions obtained from exact and
approximate methods.!

Section II is devoted to the description of the
model. In Sec. III the equilibrium properties and
the hydrodynamical laws (Euler and Navier-
Stokes) are reviewed. The Navier-Stokes hydro-
dynamical equations are derived from a phenom-
enological point of view, and the Green-Kubo
formula giving the transport coefficient of the
model is obtained through the Landau-Lifshitz
fluctuating hydrodynamics. We give in Sec. IV
the details of the numerical processes; owing
to the special nature of the model presented here,
many simplifications have been used for both
dynamics and boundary conditions.

The results show explicitly that the long-time
behavior of the correlation functions is propor-
tional to ¢ ~5; the experimental values of S are
compared with the predicted ones.

1I. DESCRIPTION

The model described in this section has been
partly studied in a previous paper.! For practical
reasons, we shall modify a little bit the definitions
given there.

At time ¢ =0, all particles lie on the vertices
of a square lattice. They are indistinguishable,
which means that particles do not carry a label
through time. In other words, we can say that
at a given time a particle lies at some place with
a given velocity, but we are unable (at least with-
out some modification of the model) to say surely
where this particle was at a given previous time,
even if the complete dynamics are exactly known.
This point will appear more clearly after the de-
tailed description that follows. The mass of each
particle is the unit mass, and their kinetic energy
is 3. The velocity of any particle points toward
one of the four directions of the square lattice.
We chose to avoid “molecles” on a vertex (i.e.,
situations where two particles with identical vel-
ocities coexist at the same place); in fact, col-
lision laws should be given, in this case, between
all kinds of molecules, which complicates the
dynamics.

If at time ¢ =0 there is no molecule, the laws
of the motion can be chosen so that such molecules
never appear at any time. Thus at most four
particles can lie on the same vertex, provided
they have different velocities. We then have six-
teen possible situations at a vertex, as given in
Fig. 1.
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An allowed set of positions and velocities of
the particles on the lattice will be called a con-
figuration, defined by a matrix £ with integer
elements E,;;. We have in binary scale

0sE,; <1111, (2.1)

The indices ¢,j denote a site on the lattice at
the intersection of the ith column and the jth row.
Let us remark that in Fig. 1 the sixteen situa-
tions at a vertex are labeled by an ordered set

of four digits equal to zero or one,

E,j=d;jcijb;5a4;. (2.2)

The binary notation is the most natural way to
define situation at a vertex, since 1 represents
a particle and 0 a hole, the rank of this digit in
the four-digit number E;; being devoted arbitrarily
to one of the four velocity directions (see Fig. 2).
Let us now define the procedure which, if a
configuration is given at time ¢, enables one to
build up the configuration at time { +1. We shall
divide this procedure into two steps, a collision
(velocities may change but particles stay at the
same place) and a free translation (particles move
from one site to a neighboring one, but their
velociy remains unchanged). The first operation
is performed by exchanging on every vertex of
the lattice the situations 0101 and 1010 (see Fig.
1), the other situations remaining the same. De-
noting as above by i and j the column and row
indices, the effect of collision on the matrix E
may be described by the operator C such as:

( 0101, if £,;=1010,
(CE);; =< 1010, if E,;=0101, (2.3)
E;;, otherwise.

The second step of the time evolution may be
called free motion; each particle makes one step
forward in the direction of its velocity. The free
translation operator T, describing this procedure
acts on E as follows:

(ToE);j =0 juy Cinrjbi 1 Qimy s (2.4)
with

L
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FIG. 1. Possible situations at a vertex.
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E;j=djc;ib;jay;.

Denoting by T the evolution operator of one time
step, by definition

T=T,C. (2.5)

The conservation of the number of particles and
of the momentum are fulfilled by this evolution
law; the conservation of the kinetic energy follows
obviously from the conservation of the number

of particles. Furthermore, situations where on

a vertex two particles have the same velocities
(i.e., “molecules,” according to our previous def-
inition) can never appear, since neither € nor

T create separately such molecules.

The simplicity of the model makes some proper-
ties appear which makes it quite different from
fluids with continuous velocities and positions.
Some of these qualitative differences are obvious,
but we shall consider in more detail two of them
which are of some importance. First the dy-
namics do not have the property of microrevers-
ibility. In fact, denoting by @ the operation of
reversing all velocities,

(QE);;=b;;a;;d;; ¢y, for everyi,j; (2.6)

thus, for example, @((1001);;) =(0110),;;. The
microreversibility should imply, in terms of @,

QT=T71Q. 2.7

It can be seen that this is not the case for our
model; a counterexample is given in Fig. 3.

However, by extending the definition of the
model to incorporate intermediate real times
(instead of integer ones), one recovers the proper-
ty of microreversibility. Let us suppose that be-
tween two neighboring integer values of time,
particles have a rectilinear motion with a con-
stant velocity. Denoting by T (t,) the position of
a particle at an integer time f,, one can define
the position of the same particle at any real time
toststy+1by

T(E)=T(tg)+(t =t )[T(ty+1) =T(2,)]. (2.8)

The free motion operator 7, describes the trans-
lation between two neighboring integer values of
time; let us denote the translation defined by

FIG. 2. Situation 1001; two particles, two holes.
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(2.8) by the operator T% %o, The evolution opera-
tor between ¢,+£ and ¢ +£+1 (£ real, 0<E<1)
reads

K=TE'TT (2.9)
and verifies the relation
RK=K™Q, (2.10)

which means that the model is microreversible
for any real noninteger times.

Let us consider now another pecularity of this
model. The impact parameter is always zero in
collisions; thus the total velocity is not only con-
served on the whole lattice but its horizontal com-
ponent is conserved on each row and its vertical
component on each column.

The asymptotic time behavior of the Green-
Kubo integrand (to be defined in Sec. III) is re-
lated in a crucial way' to the dimensionality of
the system, and owing to the pecularity explained
above, the Green-Kubo integrand behaves as-
ymptotically as in a one-dimensional model.

III. THERMODYNAMICS AND HYDRODYNAMICS

In this section the model is supplied with an
equilibrium measure and the Navier-Stokes hy-
drodynamical equations are derived. We tried
to give a simple approach to the transport phenom-
ena in the model, the derivation of rigourous re-
sults being not within the scope of this paper. Let
us begin our study by the definition of a positive
measure P which assigns to any configuration
E a probability of existence P(E), where

2. PE)-=1, (3.1)

with P(E)=0, for every E, where {E} is the finite

TE QTE

QE 1-qE

FIG. 3. Example of two colliding particles in an empty
lattice.

set of the allowed configurations on a finite lat-
tice. Writing as above the values of £;; in binary
notation, we may define for a given measure
P(E) four quantities which are, roughly speaking,
the probability of finding a particle at point (7,j)
with a velocity in the a direction (e {1, 2, 3, 4}),

N(i,j)= 2 PE)a,E), (3.2a)
Ec{E}

Ny(i,i)= 2 P(ED,(E), (3.2b)
E€{E

N(i,i)= 2o PE)cy(E), (3.2¢)
E<{E}

Ni,j)= 2 PE)d,E). (3.2d)
Ec{E}

As the quantities a,;, b;;, ¢;;, d;; are equal to 0
or 1, then 0sN_ <1 for 1 sa s4.

From the N, we may define the mean density
n(i,j) and the mean current density at a given
vertex,

nG,0)= 30 Nalini), (3.32)
a=1

Je(8,J)=N(E,)) = Ny(i, j), (3.3b)

Iy 1) =Ny, J) = NG ). (3.3¢)

J, and J, may be considered as the Cartesian com-
ponents of a vector J in the plane of the lattice.
The inequalities

0sN_<1, for each ae{1,2,3,4}, (3.4)

lead to some restrictions in the range of varia-
tion of the density and of the current density,

0sn<4, (3.5a)
|1 <1, [J,]=1, (3.5b)
|Jx l +‘Jyl s min(n9 4 —71), (3.50)

It can be shown!® that for every (z,J) satisfying
the inequalities (3.5) an equilibrium or invariant
measure P, exists.

Because the impact parameter is always zero
in collisions, there exist for this model equi-
librium states verifying (3.6), so that average
quantities such as the N,’s, for instance, may
depend on the space coordinates. However, we
have restricted our investigation to the homoge-
neous equilibrium states. This implies that

2 PE)Y. (@ -cy) (3.6)
Ec{E} i
does not depend on j and

2 PAEYY by - dyy) (3.7)
E€{E} 7
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does not depend on ¢.

Since P, is time invariant [which means that
P (TE)=P,(E), for each E], the properties (3.6)
and (3.7) will be conserved during the evolution.
When these conditions are fulfilled, the equi-
librium measure P, is

PoE)= TI  pu(@s; )00, )04(c. 04(diy ),

(i,4)eA
(3.8)

where A represents the finite domain of observa-
tion and

PoM)=EAN%+(1=21)(1=N9), (3.9)

the N9 being defined by (3.2), where P is replaced
by P,.

Let us remark that there is no correlation be-
tween different sites. Inserting (3.8) and (3.9)
into (3.6), the four quantities N can be expressed
in terms of #° J?, and J9,

NO=5n®+3J, +X° (3.10a)
NO=int+iJdo—y°, (3.10b)
NO=1n0—LJ, +x°, (3.10c)
NO=in®=3d, —x°, (3.10d)

the quantity x° being itself a complicated function
of #° J?, and J9. In the computer experiment,
we have taken the macroscopic current to be zero;
in this case,

x°=0 (3.11)
and
Ni’:NQ:NQ:N;’:;‘;n“. (3.12)
After having defined the equilibrium we shall
investigate the dynamical behavior of the model.
We introduce first the idea of a time-dependent

hydrodynamical field. It is defined from a time-
dependent “one-body distribution function”

N(i,j;t)= 2 P(E)a,(T'E), (3.132)
Ec{E}

Ny(i,i;t)= 2. P(E)b,(T'E), (3.13b)
Ec{E}

NyGi,j;t)= 2. PE)c,(T'E), (3.13¢)
ec{E}

NyGi,j;t)= 2. PE)d,(T'E), (3.13d)
Ec{E}

and

4

ni,jyt)= 3 Noli,j;t), (3.14a)
a=1

I (@,J;t)=N(i,j;t)=Ny(i,j; t), (3.14b)

Jy(iyj ; t)zNz(Zy]; [)—Nq(l,_’; t)'
The dynamics lead to local conservation relations,

n(i,j; L +1)=N(GE-1,j;t)+N,(,j-1;¢)

(3.14c)

+N,(i+1,j;t)+N,(,j+1;¢),

(3.15a)
o (@,758+1)=N(GE=1,j;8)=N(i+1,j;¢),

(3.15b)
Jy@,0;t+1)=N,(6,j = 1;¢)=N,(i,j+1;¢).

(3.15¢)

Equations (3.15) give the laws of evolution for the
hydrodynamic field. But under this form, they

are just formal relations, as the exact nonequi-
librium measure P is unknown; we shall give only
an approximation of P in the case of weak gradients
in space and time of the density and momentum
density. In this hydrodynamical limit, we may
approximate P by a pseudoinvariant measure P,

PYE) = IIAp;(aij(E>>p;(bi,-<E>)

(i, j)€
xps(ci;(E))pi(d;;(E)), (3.16)
where
PN =1=x+(2Xx=1)N%i,j; t), (3.17)

and where the quantities denoted by N%(:,/j; ¢)
are defined as in (3.10), but here the number den-
sity and the momentum density depend on time
and position.

The measure P is the so-called local equi-
librium measure. Replacing P by Pj in (3.15),
one finds the Euler fluid conservation equations,
which take a rather unusual form in our model,
the derivatives being replaced by finite differenc-
es,

An A, A,

an__ (AX . Ay), (3.18a)
ad, 1 An \
NI (3.18b)
AJ, 1 An

N _Ay . (3.18¢c)

In these equations, the second derivatives of the
hydrodynamical field are neglected. As usual,
the transport coefficients appear to next order

in the development with respect to the gradients,
namely, at the Navier-Stokes order. A number
of methods exist for deriving these equations:

the Green-Kubo* method, which is more system-
atic, but owing to the complicated dependence

of x° with respect to the hydrodynamical field

we prefer to use the Landau-Lifschitz® fluctuating



hydrodynamics. According to this theory, one
assumes that the long-wavelength fluctuations obey
the usual linearized hydrodynamic equations,
where a random strain is added in order to main-
tain at a constant level the static fluctuation;
similarly, in the well-known Langevin theory a
random force is added to the equation of motion
of a small Brownian sphere in a viscous fluid,

in order to assure that the velocity fluctuations

of the sphere have at any time the Maxwell-Boltz-
mann distribution at the constant fluid tempera-
ture. The relation which then exists between the
correlation of the random strain and the damping
coefficient of the macroscopic equation yields

the Green-Kubo formula. Near the state without
average velocity, the only possible phenomeno-
logical equations are, owing to the symmetries

of the system,

An AJ AJ

ar__ (2<%, 29,

i~ <Ax + Ay>, (3.192)
AJ, 1A [ AJ,  AJ

AL -3 ax n+e<M - Ay)]’ (3.19b)
AJ 1 A AJ AJ

—_—Y - D e " —

%7 2 Ayl:n+6<Ay Ax)] (3.19¢)

The transport coefficient © accounts for the ir-
reversible behavior of the many-body system, and
it must be positive (if it exists) from elementary
stability considerations. If © exists (and it turns
out that it does not), Eq. (3.19) are valid in the
Enskog expansion up to the second order in the
gradients of the hydrodynamical field.

As explained above, the long-wavelength fluct-
uations of the hydrodynamical field obey the linear-
ized equation (3.19), with an added random stress,

An A, AJ
2 _ (24 2Yy
At <Ax " Ay ) (3.20a)
AJ 1 A Ad, AT
X — o = — x .
NI {H+G<AX _XA_\'>+F:I’ (3.20p)
ad 1 a A, AJ
29y __ 2 2 29y 29
N 2 2y l:rz+6 <Ay Ax) F] . (3.20c¢)

These phenomenological equations are solved at
once by use of the Fourier transform of the space-
dependent fluctuations, defined as

GE;t)y=_ D

T=(id)eA

e—zii T [G(;; £)—( G(;; [»o]a
(3.21)

J

.-
i, () =(1 - 8k sin?2¢0)* &, (0) - 2ik sin2¢ 2 (1 - 8K?sin?290)! "t "L F(¢').
t’=0
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where A is the domain defined in (3.8) and
(G(f; t)), is the equilibrium value of G(?; t). In
the long-wavelength limit

k=(ke, k,) = k(cosg, sing), k=0,

we get
Al /At = = 2ik(cospd , +singd ), (3.22a)
AJ, /At = =ik cos@R — 2k cos2pOd,
+2k? sing cosOJ , + 2ikF cos g,
(3.22b)
Ad, /At = —iksingh + 2k sing cos@OJ
- 2k?sin?90d, — 2ikF sing. (3.22¢)

This linear set of equations looks like a Langevin
equation connecting the three fluctuating variables
(#,d,,d,); it is equivalent to three Langevin equa-
tions describing separarely the evolution of the
normal modes. The first two modes are the sound
waves with the amplitude #,,
iiy=€n/N2 +J,cosg +J, sing +O(k), (3.23)

with € =+1. The Langevin equation for the fluctuat-
ing sound waves is

Afig /AL =] —ikeV2 — k? cos?200 + O(K?))ii,

+2ikF cos2¢. (3.24)

The amplitude of the mode of vorticity diffusion
is

fi,==J,sing +J ,cosy, (3.25)

and the corresponding Langevin equation is
A, /At =[ - 8K sin%2¢0 + O (k) @i, — 2ikF sin2¢.
(3.26)

As explained above, in any Langevin-type theory
the friction coefficient © and the autocorrelation
function of the fluctuating force F(t) are related
to each other.

In the long-wavelength limit #, varies slowly
with time and

AR, /At=3[0, (8 +1) =7, (t = 1))
may be replaced by #, (¢ +1) =%, (¢) for simplifica-
tion, the difference between the two expressions

being of order k* at least. Solving then (3.26),
one finds

(3.27)
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At equilibrium, the static fluctuations are time
independent, so that

CH(E) o =(T(0)o- (3.28)

Furthermore, as usual in any Langevin-type theo-
ry, one assumes

(F(t)aa, (t"),=0, (3.29)

From (3.27)-(3.29) we get the mean quadratic
fluctuation

for all t=1¢'.

(2 (0) -%Zj Fer =0)F (1Y, (3.30)

Evaluating then the fluctuation on the left-hand
side of (3.30), from (3.25),

(12 (0, = lim ((=J, sing +J, cos@)?),=nL?
R—0

(3.31)
By comparison of (3.31) with (3.30),
1 , ,
O= %l | 2 (F(L'=0)F(t"), (3.32)
=tm (57 2, <Ze'2'k (' =0)
XZ e-ZiK‘?F(I> >
(3.33)
1 o
= Wiz £t (F(O)E(L),. (3.34)

The fluctuating pressure can be expressed in
a microscopic form; from (3.20) F(¢{) changes
its sign when the axes (x, y) are rotated %n; the
only possible expression having this property
is

F(t)= 7or 2 (ay=bioy = d,)(TE),

(3.35)

Replacing (3.35) in (3.34) the Green~Kubo ex-
pression for the transport coefficient ©, we get

n o
©= L2 Z<Z (@i =bi;+ci5 = di)NE)
0 iJeEA

t=

XZ (@ =bi+c;— dij)(TtE>
iSTh o
(3.36)
IV. RESULTS

The main object of this paper is to evaluate the
time correlation function

W(t) = Z Py(E)F(E)F(T'E), (4.1)
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which should be related to the transport coefficient
by

©=n) ¥(t). (4.2)
t=0
Actually, according to the arguments presented
by de Pazzis,® the series 3 ;=,¥(¢) do not con-
verge, except perhaps for n=2 (i.e., when two
particles lie on the average at each vertex).
We also measured the time correlation functions

y(t)= 2. PyE)ay(TE) -n][a,E) -n]

Ee{E}
(4.3)
and
n()= 2 PyEYay(TE) ~n) [, @) -n),
ec{E
(4.4)

because there are theoretical predictions about
their asymptotic behavior.! The computational
method is explained in Appendix A.

The computations have been done on the Univac
1108 computer at the Orsay University, we mea-
sured ¥(7) and the velocity time correlations de-
fined in (4.3)—(4.4), the number density being
equal to %, 1, and 2 and the macroscopic velocity
being set to zero.

A run for a given density required ~10 h. The
results given in Figs. 4~11 in logarithmic scales
show explicitly that the time correlations take
the form K¢~ at long times.

Each of these functions have been fitted by min-
imizing

ff (F(t)= RE-5F. (4.5)
=10

In fact, we observed that the R¢{ ™ behavior begins

{107
. 2
o . J1o
o
= o
g
o 410
— L 1 1 1 1
1 3 10 30 100 300 1000

(t+1)—

FIG. 4. ¥ (t) as a function of ¢ on a log-log scale for

=2, For the lowest values of time, the experimental
points are represented by circles, but when time in-
creases these are so concentrated that we draw only the
boundary of the area containing them.
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v, (t)

-1

1 1 1 "'10
1 3 10 30 100 300 1000
(t+1) —

FIG. 5. vy as a function of ¢ on a log-log scale for
=2, Note the anomalous amplitude at ¢ =2K (L —1).

at £ =10 at least (a mean free flight time). As we
derived from a single set of data the two quan-
tities R and S, the errors on R and S are not in-
dependent.

To give an idea of the accuracy we have plotted
in Figs. 12-19 in the plane R, S the curve for which
(4.5) equals twice its minimum value. The area
inside this curve may be taken as the domain of
adequate values of R and S. The best values of
the two parameters are given in Tables I-III.

We have not yet obtained any definite result
concerning the behavior of ¥(¢) at the density
n=2; in fact, this function of time decreases very
rapidly and its amplitude becomes of the order
of the noise at times of order of or larger than a
few units. Actually the theoretical analysis which
was performed by de Pazzis® proved that ¥(¢) is
exactly zero at times 1 and 2 and that ¥(¢) de-
creases at this density as ¢ ~¥2 at long times.

This situation is quite unfortunate, since ©
should exist in this case. We believe that the best
way to study ¥(¢) at density 2 is to compute its
value exactly, if possible. The calculation should
be probably quite similar to (but more complicated
than) the high-temperature expansion of the free
energy of an Ising system on a square lattice.

o
Jio*
—~ {10
*
o
<pO
o®
0?® I 1 1 | 10-2
1 3 10 30 100 300 1000
(t+1) —

FIG. 6. v; as a function of £ on a log-log scale for

J1g®

10

F10°

¢ (t)

1107

1 1 ! 1 1 107
1 3 10 30 100 300 1000

(t+1) —

FIG. 7. ¢ (t) as a function of ¢ on a log-log scale for
n=1.

Let us remark that for the results of densities
2 and 1 the value of the exponents S are larger
than 3. This may be explained as follows: As-
suming that © exists, a Landau-Placzek-type
calculation given an asymptotic law® as (©¢)~V?2
for ¥(¢), but this is self-contradictory and shows
that © is infinite. It is then more natural to ex-
pect that the actual value of S is larger than 3.

It should be noted that one can derive from the
microscopic equations the exact values of ¥(¢),
v,(2), and v,(t) for £ =0,1,2. As an example,
let us calculate v,(0). From (4.3),

v,(0) =((@ = n)?),=(a® - 2an +n?),,. (4.6)
From {(a) =7 and a®=a(a =0 or 1),
v, (0)=5n(1 —5n). (4.7)

The exact values of ¥(¢), v, 5(¢) at £=0,1,2 are
listed on Table IV and are compared in Tables
V-VII with the experimental ones.

In Figs. 5, 8, and 10, giving v,(¢) at different
densities, one can observe at times ¢ =2(L - 1),
t=4(L-1), t=6(L-1), and t =8(L —1) an anom-
alously large amplitude of the time correlation
function v (¢). This can be explained by the form
of the periodic boundary conditions. In fact, in

vqlt)

0 00O

1 3 10 30 100 300 1000
(t+1) —

FIG. 8. v, as a function of ¢ on a log-log scale for
n =1. Note the anomalous amplitude at ¢ =2K (L - 1).
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410
ry
-2
o J10
0% 1 1 1
1 3 10 30 100 300
(t+1) —

FIG. 9. v, as a function of ¢ on a log-log scale for
n=1.

the torus A the points [¢+h(L -1),j +h'(L - 1)]
areidentical (for % and %’ integers) to [,/ ], and
the velocity correlations obtained from a system
on the torus are the same as the ones which could
be obtained in a larger domain A’>A, except

that it contains the contribution of the image points
in the torus A,

Vi )= 20 PoB)ayy(TE) =n][a,(E) - n),
Ec{E}

(4.8)
where
i=l+h(L-1), j=m+h'(L-1).

Generally, the contribution of the image fluctua-
tions is quite small, but as it has been proved,®
v¥(h,h'; t) decreases very slowly in the domain
li—tl+]j+ml=t.

At ¢t =2(L - 1) the velocity correlation function
v,(t) takes a value very different from that in a
greater domain A’, but for ¢<2(L - 1) the differ-
ence disappears. The v¥(k, h'; t) being proved to
behave like ¢ ™2 on the logarithmic scales of
Figs. 5, 8, and 10 the points representing v,(¢)
att=2(L-1), 4(L-1), 6(L-1), and 8(L-1) are
expected to lie on a line, denoting a behavior like

_ J10
=)
=
4107
o8 1 1 1 1 1
1 3 10 30 100 300 1000

(t+1)—

FIG. 10. v; as a function of ¢ on a log-log scale for
n =2. Note the anomalous amplitude at ¢t =2K (L —1).

S _103
=
o J1c?
-°
5 0°° 4310°
O 1 1

1 1
1 3 10 30 100 300 1000
(t+1)—

FIG. 11. v; as a function of ¢ on a log-log scale for
n=2,

¢t ~Y2 (approximately); this point can be verified
and the line is (approximately) parallel to the one
where the values of v,(f) are represented at dif-
ferent times. In some sense, the anomalous be-
havior of v (¢) arises from the fact that there is
no damping of the sound waves (in the Navier-
Stokes approximation) if the direction of the wave
vector k is parallel to one of the bisectors of the
lattice.

The same anomalous behavior holds for v,(t),
but as shown in Ref. 1,

Vi I )= 2, PyE)ay(TE) —n][c,n(E) =1,
E<{E}

(4.9)
where
i=l+h(L-1), j=m+h'(L-1),

decreases as ¢ /2 when 2A(L ~1) =t and v,(¢)
decreases as [ “V2 (approximately); the steps at
t =2(L —-1) are not appreciable.

From Ref. 1, the values of v¥(1,1; {) can be
written

2V2r w2 1

vi(1,1;¢) = 2 [RA-p)7 7T (4.10)
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FIG. 12. Accuracy domain of R and S for ¥(¢), the
density being equal to %.
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FIG. 13. Accuracy domain of R and S for v,(¢), the
density being equal to Z.

The values v,(experimental) + v¥(1, 1; ¢) (theoreti-
cal) are compared with (v, + v*) (experimental)
in Table VIII.

As a conclusion, let us stress that this model
allows one to check with good accuracy various
theoretical predictions about the asymptotic be-
havior of time correlations in a classical two-
dimensional fluid. In our opinion this model could
also serve to generate random numbers; for in-
stance, the fluctuations of a random variable such
as the quantity denoted by F(E) have been shown
to be almost completely uncorrelated at different
times. We intend to explore this point in the fu-
ture.

APPENDIX A

This appendix is concerned with computation,
and the discrete nature led us to develop rather
unusual methods. The notation used in (2.2) sug-
gests the construction of four vectors 4,,, B,,,
C,., and D, whose components are equal to zero
or one and are obtained by setting the microscopic
velocities (a;;, b,;, ¢;;, d;;) in alphabetical order.

Since the observation domain A chosen is a
square on the lattice with its sides of length L
approximately parallel to the directions of the
lattice, the components of the vectors 4,,, B,,,
C., and D, are related to a configuration of the

FIG. 14. Accuracy domain of R and S for v4(¢), the
density being equal to 3.

o
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oso o 10025

40015

FIG. 15. Accuracy domain of R and S for ¢(¢), the
density being equal to 1.

system by

A,=A;1=0;, Bp=B;.;p =by,
(A1)
Cn=Cisj1=¢y, Dp=Diyjp=dy

with 1sé,jSLand 1Ss=i+jL<L? Any vector
of the set {4,,, B,,,C,,, D, } records the position
of particles moving in a given direction.

Instead of recording positions and velocities of
each particle separately, we recorded the whole
space of configuration E, particles as well as
holes. Since in FORTRAN the words are made of
36 bits, we recorded the A,,, for example, by = L?
words, any binary digit denoting a particle or a
hole according to whether it is equal to 1 or zero,
respectively. For a reason given below the ob-
servation domain A has been chosen to be the
largest one which is compatible with the capacity
of the computer memory cells. The length of the
square sides is 108, so that the number of vertices
is (108)2=11664; at the density n=2, 23 328 par-
ticles are in the system.

Before we describe the process of time evolu-
tion, let us explain how the initial condition is
constructed. We have chosen the case where the
average velocity is zero [if there are macroscopic
currents, the Navier-Stokes equations and the
Green-Kubo formula are no longer valid in the

0450 /

4107

FIG. 16. Accuracy domain of R and S for v,(¢), the
density being equal to 1.
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FIG. 17. Accuracy domain of R and S for v4(¢), the
density being equal to 1.

form given in (3.19) and (3.36); they must be re-
placed by other, more complicated expressions].

To simplify the construction of the initial con-
dition we took

2 2 L2 L2 nI?
$ 4883 ca-S 0oy
m=1 m=1 m=1 m=1
so that the initial fluctuation F(E) is just zero.
The initial configuration is constructed as follows:
One takes a strictly positive random integer (7)
smaller than L?; if there is no particle at point
(7) (the bit A, equals zero) a particle is put there
(the bit is changed to 1); if there is a particle
(the bit equals 1) another point is chosen at ran-
dom and the process is continued for as long as
S\L2 A, =%nL? the initial vectors B, C, and D
are constructed similarly. From this initial con-
figuration E, one can get successively
TE, T2E, ..., T"E by applying the evolution laws.
In doing this, it is important to remember that
the evolution operator T is the product of a col-
lision operator C and of a free translation operator
T,; thus we shall describe separately the two
processes.

There are only two dynamical situations at a
vertex for which a collision occurs,

{A,.B,C,.D,}=1010 or 0101. (A3)

9.10™ |

710°

/ 052 S

15107

0.40 044 ]
T

FIG. 18. Accuracy domain of R and S for v,(¢), the
density being equal to 2.
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]
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FIG. 19. Accuracy domain of R and S for v;(¢), the
density being equal to 2.

In order to define the result of a collision we have
introduced @ and O as

G(A,,B,)=A,_B,, for every A, B, <{0, 1},
(A4)

and

1, ifA,B,=10 or Ol,

O(An, Bn) = { 0, otherwise. (45)

Thus one can express the collision law by

é(Arrn Bm! Cm’ Dm)
= (O(Am) Um)’ O(Bm’ Um)) O(Cm!Um)’ O(DmUm)))

(A6)
for every me{1,2,3, ..., L%}, with

Since the logical operations are performed simul-
taneously between bits of same ranks in the
FORTRAN words made up of 36 bits, the nine logi-
cal operations required in (A6) allow us to per-
form collision on 36 sites in parallel; for the
whole system the construction of CE from E then
requires 9(s5 L?) (=2926 if L =108) logical opera-
tions.

Before defining the translation law we have to
set boundary conditions, leaving invariant the
dynamically conserved quantities (i.e., the num-

TABLE I. Best values of R, S, where ¥(£), v,(¢), va(f)
= Rt~ [cf. Eq. (4.5)], for n=3%.

¥ty vy(b) vy(t)
R 0.0452 0.02 0.0262
S -0.589 —0.583 -0.628

Accuracy for S 3% 8% 3%
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TABLE II. Same as for Table I, but withn=1.

() vy(t) vs(t)
R 0.0224 0.0425 0.0507
S -0.578 -0.568 —-0.593
Accuracy for S 9% 8% 4%

ber of particles and the mean velocity). We have
chosen helicoidal boundary conditions, so that
the laws (2.4) are translated by

TOAm = A{(m-2+L2) mod L2+1} »
ToBm =B{( m=L=1+L2)mod L2+1} »

Tocm =C{m mudL2+1} ’ To Dm = D{(m+L—1) muszﬂ.} ’

for every me{1,2,3... L?}. To give an idea of
the meaning of these boundary conditions, one
may imagine that the system is made of four
ordered sets of L? bits, namely, {A,,B,,C,, D,},
which are arranged on four circles. During the
free translation the circle A turns one computer
bit clockwise, the circle B turns L bits clockwise,
the circle C turns one bit counterclockwise, and
the circle D turns L bits counterclockwise. The
boundary conditions defined implicitly by (4.9)
are a little different from the usual periodic
boundary conditions, which should be, for every
(¢,))EA,

Tya;;=a{(i-2+1)moar+1}is T00ii =0i{(j-2+L) moaL+1}>
T,C; =C{i modL+1}i s T,d;;= di{i modL+1} * (A8)

With our helicoidal boundary conditions, the di-
rections of the sides of the torus of observation
A and the direction of the lattice are not exactly
parallel, the angle between them being tan™'(1/L)
(see Fig. 20).

A particle escaping the domain A toward the
right-hand side will be reintroduced on the left-
hand side a line below, although under the bound-
ary conditions (A8) it should be reintroduced at
the same line. However, we have done a few
computations with the boundary conditions (A8);

TABLE III. Same as for Table I, but with n=2.

TABLE IV. Exact values for ¥, v, ;at£=0,1,2, 4
1 1
=gn(l—-zn).

t g v

1 V3
0 " ® 0
1 B(1 - 4p) 0 0
2 B(1 —4p)? I pH1—p)

there is no marked difference in the final results
except that the boundary conditions (A8) are more
time consuming than (AT7).

Practically, ¥(t¢), v,(¢), and v,(¢) are not com-
puted from their initial definitions (4.1), (4.3),
and (4.4); one replaces the ensemble average by
an average over a single trajectory of the system
at different times,

1 ’ ’
¥(t)=lim — F(TYE)F(T'*'E), A9
(’tﬂMﬁt( )F( ) (A9)
y(t)=lim — t [ai(T**V'E) =n][ay(T*E) -n],
M—>® =1

(A10)

n(0)=lim = 3 [0y (E) =) (a1 E) =],

M- =1
(A11)

The definitions (A9)-(A11l) are equivalent to
(4.1), (4.3), and (4.4), provided that the system
has good ergodic properties, as we shall show.

The method for calculating the velocity time
correlations v,(¢) and y,(¢) follows at once from
(A10) and (A11); however, there are some tricks
which save computational time in calculating
¥(t). As F(¢) changes only when collisions occur,
we have

TABLE V. Comparison of theoretical and experimental
values of ¥. v, 5. for £=0, 1,2, with density of 2

vi(t) Va(t)
R 0.0650 0.0668
S -0.478 —0.486
Accuracy for S 6% 3%

Theory Expt.

¥ (0) 0.14 0.14

¥(1) 6.2 x107? 6.7 x1072
¥(2) 2.7 x1072 3.2 x1072
v4(0) 1.4 x1071 1.2 x107!
V(1) 0 0

v4(2) 2.67x107° 2.03 %1073
v3(0) 0 5.0 x1075
v4(1) 0 0

v4(2) 1.66 x1072 1.17 %1072
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TABLE VI. Same as for Table V, but for density of 1.

TABLE VIII. Anomalous amplitude of v,({): compari-
son between theory and experiment [cf. Eq. (4.10)], for

Theory Expt. n=2,1, and %.
¥ (0) 0.19 0.19 n
(1) 4.7 x107? 4.3 x107? 2 1 5
¥(2) 1.2 %1072 1.0 x1072
-2 - -

v,(0) 0.19 0.18 Theory 1.02 x10 4.79x107%  3.81x1073
vy(1) 0 0 Experiment 1.40 x1072 6.40x1073 3.21 1073
vy(2) 6.59 X103 6.2 x1073
v4(0 L9 x1075 .
szlz 8 2 9 x10 of (A9) is
va(2) 2.8 x1072 2.5 x1072 1 . oo

Y(M, t)= 7 F(TYE)F(T**''E), (B1)

=

F(T'E) - F(E)

=205 {G[A,8), U, E)) -G B,E), U E)}.

(A12)

Since the collision frequency is less than 1, it is
actually faster to compute ¥(¢) from (A12) than to
perform at each step, the lattice summation im-
plied in the definition of F(E) in (3.36).

APPENDIX B

This appendix deals with the problems of com-
putational errors. Although the nature of the
model itself eliminates any error in the dynamics
and in the computation of any dynamical quantity,
a source of difference between our results and
the exact ones remains, as we cannot make aver-
ages over an infinite system. An approximation

J

where M must be as large as possible.

The function ¥(M, ¢) obtained has a well-defined
part which corresponds to ¥(«, t)=¥(¢) plus some
random fluctuations. We shall see that the mag-
nitude of these fluctuations depends on M and on
the size of A. Since the correlation function ¥(¢)
vanishes when ¢ increases, ¥3(M, ©) may mea-
sure the computational error on ¥(M, ¢{). From
(B1),

WM, t) = % t 21 F(T"'E)F(T*'E)

&= 4
xF(T**'EYF(T**"E), (B2)

and then when ¢ goes to infinity,
w7 t‘: [F(T*E)F(T**VE)2.  (B3)

Coming back to the initial definition of F(E),
one can show the influence of the size of A:

L2 2
(M, t)m% ﬁ: (# > {Am-Bm+cm-D,,}(T"E){Al-aﬁcl-DJ(T‘*"E)) . (B4)
=1 m=1

Since A2, =1, |A,-B,+C, -D,| <2; the quantity

{4,-B.+C,-D, }(T"E){A, - B, +C, - D}(T***'E)

TABLE VII. Same as for Table VI, but for density of
2.

Theory Expt.
v,(0) 0.25 0.24
(1) 0 0
v4(2) 1.5 x1072 1.52 X10"2
v3(0) 0 6.2 x1074
v3(1) 0 0
v5(2) 4.7 x107? 4.66 X102

FIG. 20. Visualization of the periodic helicoidal bound-
ary conditions.
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may be considered as a random variable, since

t tends to infinity and its mean quadratic fluctua-
tion is smaller than 4. The law of large numbers
shows that

L2
Z {Am—Bm+cm_Dm}(Tt’E)
m=1

x{A, =B, +C, - D} (T**''E)

is a random variable with a variance proportional

to L. From our numerical results F(E)F(T'E)
behaves approximately as ¢ ~/2 for large times;
thus

VM, ©)~(1/L*)(InM)/M . (B5)

Since the computational time is proportional to
M and L?, it is more efficient to increase L than
to increase M for minimizing fluctuations of
¥(M,t). This pecularity arises from the fact
that the Green-Kubo integrand is not integrable.

3. Hardy, O. De Pazzis, and Y. Pomeau, J. Math.
Phys. 14, 1746 (1973).

%Y. Pomeau and P. Resibois, Phys. Rep. (to be published).

3J. L. Lebowitz, in Conference on Statistical Mechanics,
Chicago University, March, 1971 (unpublished).

43. Hardy and Y. Pomeau, J. Math. Phys. 13, 1042 (1972).

L. D. Landau and I. Lifschitz, Zh. Eksp. Teor. Fiz.

32, 618 (1957) [Sov. Phys.—JETP 5, 512 (1957)]; also
in Collected Papers of Landau, edited by D. ter Haar
(Pergamon, New York, 1965).

0. de Pazzis, Ph.D. thesis (University of Orsay, 1973)
funpublished).

'B. J. Alder and T. E. Wainwright, Phys. Rev. A 1, 18
(1970); Phys. Rev. Lett. 18, 988 (1967).



