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and time correlation functions
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A study of the dynamics of a discrete two-dimensional system of classical particles is presented. In this model,
dynamics and computations may be done exactly, by definition. The equilibrium state is investigated and the
Navier-Stokes hydrodynamical equations are derived. Two hydrodynamical modes exist in the model: the
sound waves and a kind of vorticity diA'usion. In the Navier-Stokes equations one obtains a transport coeAi-
cient which is given by a Green-Kubo formula. The related time correlation function has been calculated
in a numerical simulation up to a time of the order of 50 mean free flights. After a short time of exponential
decay this time correlation behaves like t, the exponent being compared to theoretical predictions.

I. INTRODUCTION

This paper is devoted to the dynamical proper-
ties of a simple model of classical particles
moving on a two-dimensional. lattice. Some exact
properties of this model have been already in-
vestigated'; however, we have not yet been able
to obtain any exact result concerning the long-
time behavior of the time corre1ation functions.
At the pre~ent time, the investigations on the
convergence of the Green-Kubo formulas are rea1.-
ized only by approximate methods such as the
mode-mode coupling theory' or the data derived
from numerica1. simulations.

The problem of the long-time behavior of cor-
relation functions involves the dynamical. proper-
ties of many-body systems at a very detailed
level. ' It is then. meaningful to focus attention
on very simple models for which one can expect
to find exact results. The present work takes
place in this direction; in particular, computa-
tional results are compared with two kinds of
theoretical predictions obtained from exact and
approximate methods. '

Section II is devoted to the description of the
model. . In Sec. III the equilibrium properties and
the hydrodynamical laws (Euler and Navier-
Stokes) are reviewed. The Navier-Stokes hydro-
dynamical equations are derived from a phenom-
enological point of view, and the Green-Kubo
formula giving the transport coefficient of the
model is obtained through the Landau-Lifshitz
fluctuating hydrodynamics. We give in Sec. IV
the details of the numerical processes; owing
to the special. nature of the model presented here,
many simplifications have been used for both
dynamics and boundary conditions.

The results show explicitly that the long-time
behavior of the correlation functions is propor-
tional to t; the experimental values of 8 are
compared with the predicted ones.

II. DESCRIPTION

The model. described in this section has been
partly studied in a previous paper. ' For practical.
reasons, we shall modify a l.ittle bit the definitions
given there.

At time t =0, all particles l.ie on the vertices
of a square lattice. They are indistinguishable,
which means that particles do not carry a label
through time. In other words, we can say that
at a given time a particle I.ies at some place with
a. given velocity, but we are unable (at least with-
out some modification of the model) to say surely
where this particle was at a given previous time,
even if' the complete dynamics are exactly known.
This point will. appear more clearly after the de-
tailed description that follows. The mass of each
particle is the unit mass, and their kinetic energy
is 2. The velocity of any particle points toward
one of the four directions of the square lattice.
We chose to avoid "molecles" on a vertex (i.e.,
situations where two particles with identical vel-
ocities coexist at the same place}; in fact, col-
lision laws should be given, in this case, between
all kinds of molecules, which complicates the
dynamics.

If at time t =0 there is no molecule, the laws
of the motion can be chosen so that such molecules
never appear at any time. Thus at most four
particles can 1.ie on the same vertex, provided
they have different velocities. We then have six-
teen possible situations at a vertex, as given in
Fig. 1.
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An allowed set of positions and velocities of
the particles on the lattice will. be called a con-
figuration, defined by a matrix E with integer
elements E,, We have in binary scale

E,, =d, , c,, b, , a, ,
Denoting by T the evolution operator of one time
step, by definition

0 =E,, ~ 1111. (2.1)
T = TOC. (2.5)

The indices i, j denote a site on the lattice at
the intersection of the ith column and the jth row.

Let us remark that in Fig. 1 the sixteen situa-
tions at a vertex are labeled by an ordered set
of four digits equal to zero or one,

E,, =dt, ~„b,, a, , (2.2)

(CE),, =

0101, if E,, =1010,

1010, if E;, =0101,

E ... otherwise.

(2.3)

The second step of the time evolution may be
called free motion; each particle makes one step
forward in the direction of its velocity. The free
translation operator To describing this procedure
acts on E as follows:

The binary notation is the most natural way to
define situation at a vertex, since 1 represents
a particle and 0 a hole, the rank of this digit in

the four-digit number E,, being devoted arbitrarily
to one of the four velocity directions (see Fig. 2).

Let us now define the procedure which, if a
configuration is given at time t, enables one to
build up the configuration at time t +1. We shall
divide this procedure into two steps, a col.lision
(velocities may change but particles stay at the
same place) and a free translation (particles move
from one site to a neighboring one, but their
velociy remains unchanged). The first operation
is performed by exchanging on every vertex of
the lattice the situations 0101 and 1010 (see Fig.
1), the other situations remaining the same. De-
noting as above by i and j the column and row
indices, the effect of collision on the matrix E
may be described by the operator C such as:

The conservation of the number of particles and

of the momentum are fulfilled by this evolution

law; the conservation of the kinetic energy follows

obviously from the conservation of the number
of particles. Furthermore, situations where on

a vertex two particles have the same velocities
(i.e., "molecules, " according to our previous def-
inition) can never appear, since neither C nor
T create separately such molecules.

The simplicity of the model makes some proper-
ties appear which makes it quite different from
fluids with continuous velocities and positions.
Some of these qualitative differences are obvious,
but we shall consider in more detail two of them
which are of some importance. First the dy-
namics do not have the property of microrevers-
ibility. In fact, denoting by Q the operation of
reversing all velocities,

(QE), , =b, , a, , d„c„, for every J, ,j; (2.6)

thus, for example, Q((1001),, }=(0110),, The
microreversibility should imply, in terms of Q,

QT= T 'Q. (2.7)

r(t) =r(to)+(t —to)[r(to+1) -r(to)]. (2 6)

It can be seen that this is not the case for our
model; a counterexample is given in Fig. 3.

However, by extending the definition of the
model to incorporate intermediate real times
(instead of integer ones), one recovers the proper-
ty of microreversibility. Let us suppose that be-
tween two neighboring integer values of time,
particles have a rectilinear motion with a con-
stant velocity. Denoting by r (to) the position of
a particle at an integer time t„one can define
the position of the same particle at any real time
to~t ~t 0+1 by

(T,E),, =d, J+, c,.+» b. . .aJ J J,
with

(2.4) The free motion operator To describes the trans-
lation between two neighboring integer values of
time; let us denote the translation defined by

110 111 1000 1001

t
1 J $ ~

1100 1101 1110 1111

1010 1011

1 10 11 100 101 ) c=0

I

i
b=o

FIG. 1. Possible situations at a vertex. FIG. 2. Situation 1001; two particles, two holes.
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(2.8) by the operator T,' 'o. The evolution opera-
tor between f, + $ and I,+ (+1 ($ real, 0&5~1)
r'eads

(2 0)

and verifies the relation

set of the allowed configurations on a finite lat-
tice. Writing as above the values of E;, in binary
notation, we may define for a given measure
P(E) four quantities which are, roughly speaking,
the probability of finding a particle at point (i, i )
with a velocity tn the ~ direction (QE (1, 2, 3, 4I'),

@K=K ~Q, (2.10)

which means that the model is microrever'sible
for any real. noninteger times.

Let us consider now another pecularity of this
model. The impact parameter is always zero in
collisions; thus the total vel. ocity is not only con-
served on the whole lattice but its horizontal com-
ponent is conserved on each row and its vertical.
component on each col umn.

The asymptotic time behavior of the Green-
Kubo integrand (to be defined in Sec. III} is re-
lated in a crucial way' to the dimensionality of
the system, and owing to the pecularity explained
above, the Green-Kubo integrand behaves as-
ymptotically as in a one-dimensional model. .

III. THERMODYNAMICS AND HYDRODYNAMICS

g P(Z)=I,
zc$s)

with P(&) -0, for every &, where (Zj is the finite

(3.1)

In this section the model. is supplied with an
equilibrium measure and the Navier-Stokes hy-
drodynamical equations are derived. %e tried
to give a simple approach to the transport phenom-
ena in the model. , the derivation of rigourous re-
sults being not within the scope of this paper. Let
us begin our study by the definition of a positive
measure I whrch assigns to any conf lguratlon
& a probability of existence P(&), where

(3.2b)

(3.2c)

(3.2d)

As the quantltles ~ii s ~iso cits di j are equa
or 1, then 0~+„~1for 1 ~n ~4.

From the N we may define the mean density
n(i, i ) and the mean current density at a given
vertex,

0 ~ N„-=l, for each (r PI 1, 2, 3, 4I, (3.4)

l.ead to some restrictions in the range of varia-
tion of the density and of the current density,

(3.5b)

(3.3b)

(3.3c)

J„and J, may be considered as the Cartesian com-
ponents of a vector J in the plane of the lattice.

The inequalities

E

QTE

It can be shown' that for every (n, 3) satisfying
the inequalities (3.5) an equilibrium or invariant
measure I'0 exists.

Because the impact parameter is always zero
in coll. isions, there exist for this model. equi-
librium sta'tes verifying (3.6), so that average
quantities such as the + 's, for instance, may
depend on the space coordinates. However, we
have restricted our investigation to the homoge-
neous equilibr'ium states. Thi.s impl. ies that

I

QE
(3.0)

FIG. 3. Example of two colliding particles in an empty
lattice. (3.7}
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does not depend on i .
Since Po is time invariant [which means that

Po(TE) =Pa(E), for each E j, the properties (3.6)
and (3.V) will be conserved during the evolution.
When these conditions are fulfilled, the equi-
librium measure P, is

P.(E) = II p, (;, )p.(t;, )p,(;, )p, (d;, )
(I,i) e A

(3.8)

where A represents the finite domain of observa-
tion and

p (~)=-ZN'„+(I-~)(I-ND„), (3.9)

the No„being defined by (3.2), where P is replaced
by Po.

Let us remark that there is no correlation be-
tween different sites. Inserting (3.8) and (3.9)
into (3.6), the four quantities N can be expressed
in terms of n, J„, and J, ,

~, (i,j; I ) =N. (i, j; I ) N—,(i,j; I ) (3.14c)

The dynamics lead to local conservation relations,

n(t,j; t +1)=N, (i —1,j; t)+N, (i,j —1; t)

+N, (i+1,j; t)+N, (i, j+1; t),
(3.15a)

2, (i,j; t+ 1) =N, (i —1j;t }—N (i+1j; t),

(3.15b)

4, (i,j; t+1) =N, (i,j —1; t) —N(i, j+1;t).
(3.15c)

Equations (3.15) give the laws of evolution for the
hydrodynamic field. But under this form, they
are just formal relations, as the exact nonequi-
librium measure P is unknown; we shall give only
an approximation of P in the case of weak gradients
in space and time of the density and momentum
density. In this hydrodynamical l.imit, we may
approximate P by a pseudoinvariant measure P,'

N', =-,'no+-,' J, + qo,

4

No =-4no- -, 8 +gx

No=-'no--'J -qo
4 4

(3.10a)

(3.10b)

(3.10c)

(3.10d)

Pl(E) = II p,'(;,(E)}p.'(I;, (E))
(t,i ) &A

xp.'(c;,(E)}p.'(~;,(E)),

where

(3.16)

No No No No ~o
2 4 3 4 (3.12)

After having defined the equilibrium we shall
investigate the dynamical behavior of the model.
We introduce first the idea of a time-dependent
hydrodynamical field. It is defined from a time-
dependent "one-body distribution function"

the quantity g' being itself a complicated function
of n', Jo, and J, . In the computer experiment,
we have taken the macroscopic current to be zero;
in this case,

(3.11)

and

an zJ„aJ, (3.18a)

p'„(A) =1 —A+ (2A. —1)N'„(i,j; t), (3.17)

and where the quantities denoted by N'„(i,j; t)
are defined as in (3.10), but here the number den-
sity and the momentum density depend on time
and position.

The measure P,' is the so-called local. equi-
librium measure. Replacing P by P', in (3.15),
one finds the Euler fluid conservation equations,
which take a rather unusual form in our model,
the derivatives being replaced by finite differenc-
es,

N, (i,j; t)= Q P(E)a, , (T'E),
EE-JEST

(3.13a) ~J„1~n
Af, 2 Dx' (3.18b j

(3.13b)

N, (i,j; I)= 2 P(E)c&,(T'E),
E~(s)

N, (i,j; t) = Q P(E)d, ,(T'E},
zg jz}

n(i, j;t)= g N„(i, j;t),
fX= ].

J„(i,j; t ) =N, (i,j; t ) —N, (i,j; t ),

(3.13c)

(3.13d)

(3.14a)

(3.14b)

In these equations, the second derivatives of the
hydrodynamical field are neglected. As usual,
the transport coefficients appear to next order
in the development with respect to the gradients,
namely, at the Navier-Stokes order. A number
of methods exist for deriving these equations:
the Green-Kubo' method, which is more system-
atic, but owing to the complicated dependence
of g' with respect to the hydrodynamical field
we prefer to use the Landau-Lifschitz' ftuctuating
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bJ, bJ,
+bx by

1 ~ ~J„bJ,—

~t 2 bx b Ay

bJ, 1 b. bJ,

(3.19a)

(3.19b)

(3.19c)

The transport coefficient 6 accounts for the ir-
reversible behavior of the many-body system, and
it must be positive (if it exists) from elementary
stability considerations. If 8 exists (and it turns
out that it does not), Eq. (3.19}are valid in the
Enskog expansion up to the second order in the
gradients of the hydrodynamical field.

As explained above, the long-wavelength fluct-
uations of the hydrodynamical. field obey the l.inear-
ized equation (3.19), with an added random stress,

hydrodynamics. According to this theory, one
assumes that the long-wavelength fluctuations obey
the usual linearized hydrodynamic equations,
where a random strain is added in order to main-
tain at a constant level the static fluctuation;
similarly, in the well-known Langevin theory a
random force is added to the equation of motion
of a smal. l Brownian sphere in a viscous fluid,
in order to assure that the velocity fluctuations
of the sphere have at any time the Maxwell-Boltz-
mann distribution at the constant fluid tempera-
ture. The relation which then exists between the
correlation of the random strain and the damping
coeffic ient of the macr os copic equation yields
the Green-Kubo formula. Near the state without
average velocity, the only possible phenomeno-
logical equations are, owing to the symmetries
of the system,

where A is the domain defined in (3.8) and

( G(r; t )), is the equilibrium value of G(r; t ). In
the long-wavelength limit

k = (k„, k, ) = k(cosy, siny), k-0,
we get

An/6t = —2ik(cosyJ, +sinyJ, ),

AJ, /Dt = —ik cosyn —2k' cos'yBJ,

+ 2k' sing cosyeJ, + 2ikF cosy,

(3.22a)

(3.22b)

hJ, /At = —ik sinyn+ 2k' siny cosyBJ„
—2k' sin'yBJ, —2ikF sing. (3.22c)

This linear set of equations looks like a Langevin
equation connecting the three fluctuating variables
(n, J„J,); it is equivalent to three Langevin equa-
tions describing separarely the evolution of the
normal modes. The first two modes are the sound
waves with the amplitude u„

u, = e n/W2 + J„cos y + J, s iny + O(k), (3.23)

+ 2ikF cos2y. (3.24)

The ampl. itude of the mode of vorticity diffusion
1s

u„= —J„sing +J,cosg, (3.25)

and the corresponding Langevin equation is

with & =+1. The Langevin equation for thefluctuat-
ing sound waves is

&u, /&t = [ —ikey 2 —k'cos'2yB+O(k )]u,

bn aJ„~J,
b,x &y

(3.20a)
&u„/ot =[ —6k si 2n2yB+( 0)]ku„—2ikFsin2y.

(3.26}

1 b. - aJ„bJ,n+8 "- '+F,bt 2 ~x bx (3.20b}

aJ, 1 b, bJ,n+8 ' — " —F . (3 20c)bt 2 4y i &y bx

G (k; t) = g e "" ' [G(r; t)-( G(r; t))0],
(3.21)

These phenomenological equations are solved at
once by use of the Fourier transform of the space-
dependent fluctuations, defined as

As expl. ained above, in any Langevin-type theory
the friction coefficient e and the autocorrelation
function of the fluctuating force F(t ) are related
to each other.

In the long-wavelength limit u„varies slowly
with time and

Su„/at ,'[u„(t +1-=)--u„(t —1)]

may be replaced by u„(t + 1) —u„(t) for simplifica-
tion, the difference between the two expressions
being of order k at least. Solving then (3.26),
one finds

t-
u„(t) =(1 —8k'sin'2yB)'u„(0) —2iksin2y (1 —Sk sin'2yB)' ' 'F(t').

=0
(3.27)
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At equilibrium, the static fluctuations are time
independent, so that

( u'„(f )),=(u'„(0)),. (3.28)

Furthermore, as usual. in any I angevin-type theo-
ry, one assumes

(F(t)u„(f'))o=0, for all t~ f'.

From (3.27)-(3.29) we get the mean quadratic
fluctuation

9=n 4t.
t=o

(4.2)

Actually, according to the arguments presented
by de Pazzis, ' the series g,"oq(-f) do not con-
verge, except perhaps for n =2 (i,e., when two
particles he on the average at each vertex).

We also measured the time correlation functions

which shouM be related to the trallsport coefflclent
by

(u'„(0))0= —Q ( F(f' =0)F(f))o. v, (t ) = g P (E)[a,,(T'E) —n] [a,„(E)—n]

Evaluating then the fluctuation on the left-hand
side of (3.30), from (3.25),

(u'„(0)),= lim ((-Z„sinip+Z„cosy)') =nL'.

(3.31)

By comparison of (3.31) with (3.30),

v, (t}= P P (E)[a,, (T'E) —n] [a,,(E) pg]
EE' fSj

(4.3)

e=, Z (F(f'=0)F(t')),1
(3.32)

e 2'" ' 'S' t' =0

xP -*''s(i
)
(3.33}

4„~2 Q (F(0}F(f)&o. (3.34)

F(t ) = ~ (a;, —5;, + c,, —d, ,)(T'E).1

i,i cA

The fluctuating pressure can be expressed in
a microscopic form; from (3.20) F(f) changes
its sign when the axes (x, y} are rotated ~v; the
only possible expression having this property
ls

because there are theoretical predictions about
their asymptotic behavior. ' The computational
method is explained in Appendix A.

The computations have been done on the Univac
1108 computer at the Orsay University; we mea-
sured 4'(&} and the velocity time correlations de-
fined in (4.3)-(4.4), the number density being
equal to 3, 1, and 2 and the macroscopIc velocity
being set to zero.

A run for a given density required -10 h. The
results given in Figs. 4-11 in logarithmic scales
show explicitly that the time correlations take
the form At ' at long times.

Each of these functions have been fitted by min-
ImlZIng

(f(~)-E~ ')' (4.5)

In fact, we observed that the Bt ' behav'ior begins

Replacing (3.35) in (3.34) the Green-Kubo ex-
pression for the transport coefficient 6, we get

6= —
~ P g (a,, —5,, +c,, —d, ,)(E)

t=o '', aFA

~i~ —~i~ + ~ f.~
—&z~ ™ 0

0

10

IV. RESULTS

(3.36)
't0

l i i t

't 0 30 t 00 300 t 000
(t+1)

The main object of this paper is to evaluate the
time correlation function

4'(f) = + P.(E)F(E)F(T'E),
E&)Sj

I IG. 4. g (t) as a fnnction of t on a log-log scale for
n =3. For the lowest values of time, the experimental
points are represented by circles, but when time in-
creases these are so concentrated that we draw only the
boundary of the area containing them,
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10 -10

10 10

0 oooaoo

1 3 10 30
(t+1 )

-10

10

100 300 1000

Oo OOOO
0

1 3 10 30
(t+'I)

10

-10

10
1

100 300 1000

FIG. 5. && as a function of t on a log-log scale for
n =3. Note the anomalous amplitude at t =2K(L —1).

FIG. 7. qt (t) as a function of t on a log-log scale for
n =1.

at t =10 at least (a mean free flight time). As we
derived from a single set of data the two quan-
tities A and S, the errors on 8 and S are not in-
dependent.

To give an idea of the accuracy we have plotted
in Figs. 12-19 in the plane A, S the curve for which
(4.5) equals twice its minimum value. The area
inside this curve may be taken as the domain of
adequate values of R and S. The best values of
the two parameters are given in Tabl. es I-III.

We have not yet obtained any definite result
concerning the behavior of 4(t) at the density
& = 2; in fact, this function of time decreases very
rapidly and its amplitude becomes of the order
of the noise at times of order of or larger than a
few units. Actually the theoretical analysis which
was performed by de Pazzis' proved that @(t) is
exactly zero at times 1 and 2 and that 4(t) de-
creases at this density as t ' ' at long times.

This situation is quite unfortunate, since 8
should exist in this case. We believe that the best
way to study 4(t) at density 2 is to compute its
value exactly, if possible. The calculation should
be probably quite similar to (but more complicated
than) the high-temperature expansion of the free
energy of an Ising system on a square lattice.

Let us remark that for the results of densities
3 and 1 the value of the exponents S are larger
than &. This may be explained as follows: As-
suming that 6 exists, a Landau-Placzek-type
calculation given an asymptotic law' as (Bt) 't'
for 4(t), but this is self-contradictory and shows
that 6 is infinite. It is then more natural to ex-
pect that the actual value of S is larger than 2.

It should be noted that one can derive from the
microscopic equations the exact values of 4'(t),
v, (t), and v, (t) for t =0, 1, 2. As an example,
let us calculate v, (0). From (4.3),

v, (0) =((a —n)') =(a' —2an+n')o.

From (a) = —,
' n and a' =a(a =0 or 1),

v, (0) = —,
'

n(1 ——,
'

n)

(4.6)

(4. I)

The exact values of 0'(t ), v, ,(t) at t = 0, 1, 2 are
listed on Table IV and are compared in Tables
V-VII with the experimental ones.

In Figs. 5, 8, and 10, giving v, (t) at different
densities, one can observe at times t =2(L —1),
t = 4(L —1), t = 6(L —1), and t = 8(L —1) an anom-
alously large amplitude of the time correlation
function v, (t) This can. be explained by the form
of the periodic boundary conditions. In fact, in

-10
-10

-10

10
0 0 000

10

10

ocPoo

1 3 10
I

30
(t+1 )

100 300
-10
1000 1 3

I I

10 30
(t+1)

-10
100 300 1000

FIG. 6. &3 as a function of t on a log-log scale for
n=3 ~

=2
FIG. 8. v& as a function of t on a log-log scale for

n =1. Note the anomalous amplitude at t =2&(L —1).



1956 J. HARDY, O. DE PAZ Z IS, AND Y. POMEAU

-10 -10

10

oooo
0 0

I I

3 10 30 100 300
{t+'I)

10

1 3

0
Qo

oo
0

I I I

1C

—3.10

10 30 100 300 1000
(t+1)

FIG. 9. && as a function of t on a log-log scale for
n =1. FIG. 11. v3 as a function of t on a log-log scale for

n =2.

the torus A the points [i + h(L —1),j+h'(L —1}]
are identical (for h and h' integers) to [i,j ], and
the velocity correlations obtained from a system
on the torus are the same as the ones which could
be obtained in a larger domain A'»A, except
that it contains the contribution of the image points
in the torus A,

v*,(h, h'; t) = P Po(E)[a,, (T'E) —n][a, (E) —n],
sc (s}

(4.8)

where

i = l +h(L —1), j = m +h'(L —1).

Generally, the contribution of the image fluctua-
tions is quite small, but as it has been proved, '
v*, (h, h', t) decreases very slowly in the domain
{i—l I+I j+m[ =t.

At t = 2(L —1) the velocity correlation function
v, (t) takes a value very different from that in a
greater domain A', but for t &2(L —1) the differ-
ence disappears. The vf(h, h', t) being proved to
behave like t ' ', on the logarithmic scales of
Figs. 5, 8, and 10 the points representing v, (t)
at t =2(L —1), 4(L —1), 6(L —1), and 8(L —1) are
expected to lie on a line, denoting a behavior like

t 't' (approximately); this point can be verified
and the line is (approximately) parallel to the one
where the values of v, (t) are represented at dif-
ferent times. In some sense, the anomalous be-
havior of v, (t) arises from the fact that there is
no damping of the sound waves (in the Navier-
Stokes approximation} if the direction of the wave
vector k is parallel to one of the bisectors of the
lattice.

The same anomalous behavior holds for v, (t),
but as shown in Ref. 1,

v+(h, h'; t) = P (E)[a,,(T'E) —n][c, (E) —n],
EC S)

(4.9)

where

i = l+h(L -1), j =m+h'(L —1),

decreases as t 't' when 2h(L-1) = t and v, (t)
decreases as t '~' (approximately); the steps at
t =2(L —1) are not appreciable.

From Ref. 1, the values of v*, (1, 1; t) can be
written

(4.10)

10

o ooo

I I

10

-10

0.50 070

S

10 30 100 300 1000
(t+1 }

FIG. 10. &g as a function of t on a log-log scale for
n =2. Note the anomalous amplitude at t =2K (L. —1).

FIG. 12. Accuracy domain of R and S for I}t (t), the
density being equal to 3.
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FIG. 13. Accuracy domain of R and S for 1 &(t), the
density being equal to 3.

FIG. 15. Accuracy domain of R and S for |t (t j, the
density being equal to 1.

The values v, (experimental) + v*,(1, 1; t ) (theoreti-
cal) are compared with (v, + vf) (experimental)
in Table VIII.

As a conclusion, let us stress that this model
allows one to check with good accuracy various
theoretical predictions about the asymptotic be-
havior of time correlations in a classical two-
dimensional fluid. In our opinion this model could
also serve to generate random numbers; for in-
stance, the fluctuations of a random variable such
as the quantity denoted by F(&) have been shown
to be almost completely uncorrelated at different
times. We intend to explore this point in the fu-
ture.

APPENDIX A

This appendix is concerned with computation,
and the discrete nature led us to develop rather
unusual methods. The notation used in (2.2) sug-
gests the construction of four vectors A, B
C, and D whose components are equal to zero
or one and are obtained by setting the microscopic
velocities (a„,h„, c... d„) in alphabetical order.

Since the observation domain A chosen is a
square on the lattice with its sides of length L
approximately parallel to the directions of the
lattice, the components of the vectors A„, B
C, and D are related to a configuration of the

system by

A~ = A,.+,I, ——ac, , Bm=B]+,~ = 6), ,
(A1)

with 1 ~i, j ~L and 1- s=i+j L ~ L'. Any vector
of the set (A, B,C, D j records the position
of particles moving in a given direction.

Instead of recording positions and velocities of
each particle separately, we recorded the whole
space of configuration E, particles as well as
holes. Since inFORTRAN the words are made of
36 bits, we recorded the A, for example, by 36L'
words, any binary digit denoting a particle or a
hol. e according to whether it is equal to 1 or zero,
respectively. For a reason given below the ob-
servation domain A has been chosen to be the
largest one which is compatible with the capacity
of the computer memory cells. The length of the
square sides is 108, so that the number of vertices
is (108)'=11664; at the density n =2, 23328 par-
ticles are in the system.

Before we describe the process of time evolu-
tion, let us explain how the initial condition is
constructed. We have chosen the case where the
average velocity is zero [if there are macroscopic
currents, the Navier-Stokes equations and the
Green-Kubo formula are no longer valid in the

00
S

FIG. 14. Accuracy domain of R and S for v3(t), the
density being equal to p.

FIG. 16. Accuracy domain of R and S for v&(t), the
density being equal to 1.
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FIG. 1.7. Accuracy domain of R and S for v3(t)
density being equal to 1 ~

FIG. 19. Accuracy domain of R and S for ~&(t), the
density being equal to 2.

form given in (3.19) and (3.36}; they must be re-
placed by other, more complicated expressions].

To simplify the construction of the initial con-
dition we took

In order to define the result of a collision we have
introduced 8 and 6 as

8(A„,B )=A B, for every A, B H(0, 1],

I & I ~I 2

A. = g B.= g C.= g D„=", (X2)
and

(A4)

(A B C„D ] = 1010 or 0101. (A3)

so that the initial fluctuation I"(E) is just zero
The initial configuration is constructed as follows:
One takes a strictly positive random integer (r}
smaller than 12; if there is no particle at point
(r) (the bit A„equals zero) a particie is put there
(the bit is changed to 1); if there is a particle
(the bit equals 1) another point is chosen at ran-
dom and the process is continued for as long as
+=,A = 4nL2; the initial vectors B, C, and D
are constructed similarly. From this initial con-
figuration E, one can get successively
TE, T'&, . . . , T "E by applying the evolution laws.
In doing this, it is important to remember that
the evolution operator T is the product of a col-
lision operator C and of a free translation operator
To; thus we shall. describe separately the two
processes.

There are only two dynamical situations at a
vertex for which a collision occurs,

1, if A„B =10 or 01,
0, otherwise.

Thus one can express the collision law by

C(A „B,C, D )

= (8(A, U ), 8(B,U ), 8(C, U ), 8(D U )),

for every m &(1,2, 3, . . . , L J, with

U„=Q[Q(8(A, B ), 8(C„,D )j, 8(A, (1 —C„)j].
Since the logical operations are performed simul-
taneously between bits of same ranks in the
FOR~RAN words made up of 36 bits, the nine l.ogi-
cal operations required in (A6) allow us to per-
form collision on 36 sites in parallel; for the
whole system the construction of CE from E then
requires 9(—„L') (=2926 if I =108) logical opera-
tions.

Before defining the translation law we have to
set boundary conditions, l.caving invariant the
dynamically conserved quantities (i.e., the num-

TABLE I. Best values of R, S, where 4'(t), v&(t), &3(t)
= Rt-' kf. Eq. (4.5)], for n=-', .

0.0452 0.0262

FIG. 18. Accuracy domain of R and S for ~&(t), the
density being equal to 2.

Accuracy for S 8%
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TABLE II. Same as for Table I, but with n= 1. TABLE IV. Exact values for +, v1 3 at t = 0, 1,2.
1 1=gn(]. —4n).

Accuracy for S

0.0224

—0.578

9%

v1(t)

0.0425

-0.568

8%

v3(t)

0.0507

-0.593
] (1 —4V)

I (1-4V)'

V1 v3

W'(1-) )

ber of particles and the mean velocity). We have
chosen helicoidal boundary conditions, so that
the laws (2.4) are translated by

p m ((m-2+L2) mod L "+].f y

Tp Baft =B((haft-L, 1++ )mod L,2+1) &

0 i j {(t-2+L ) modL+1) j & Tp 5 t j = 6i((j -2+1 ) mod J, +].f s

Tp Ctj = C(i modl. +1)j & Tp d)j dt(j modL, +1) ' (A8)

With our helicoidal boundary conditions, the di-
rections of the sides of the torus of observation
A and the direction of the lattice are not exactly
parallel, the angle between them being tan '(1/L)
(see Fig. 20).

A particle escaping the domain A toward the
right-hand side wil. l. be reintroduced on the left-
hand side a line below, although under the bound-
ary conditions (A8) it should be reintroduced at
the same line. However, we have done a few
computations with the boundary conditions (A8);

0 m fmmod& +1) & 0 m f(m+L -1) modI +1) r

for every m&(1, 2, 3. . . L'). To give an idea of
the meaning of these boundary conditions, one
may imagine that the system is made of four
ordered sets of L bits, namely, fA, B,C, D ],
which are arranged on four circles. During the
free translation the circle A turns one computer
bit clockwise, the circle B turns L bits clockwise,
the circle C turns one bit counterclockwise, and
the circle D turns L bits counterclockwise. The
boundary conditions defined implicitly by (4.9)
are a little different from the usual periodic
boundar y conditions, which should be, for every
(i, j)eA,

there is no marked difference in the final results
except that the boundary conditions (A8) are more
time consuming than (A7).

Practically, 4(t), v, (t), and v, (t) are not com-
puted from their initial definitions (4.1), (4.3),
and (4.4); one replaces the ensemble average by
an average over a single trajectory of the system
at different times,

4(1)=li —g E(7 Slap''" E),
'

Af~~ ~ t =1
(A9)

v, (t ) = lim — [a,,(T'" E) —n] [a„(T' E) —n].3
N .M =1

sJ

(A11)

The definitions (A9)-(All) are equivalent to
(4.1), (4.3), and (4.4), provided that the system
has good ergodic properties, as we shall. show.

The method for calculating the velocity time
correlations v, (f) and v, (t) follows at once from
(A10) and (All); however, there are some tricks
which save computational time in calculating
@(t). As F(t) changes only when collisions occur,
we have

TABLE V. Comparison of theoretical and experimental
values of +.v1;, for t=p. 1, 2, with density of 3.

Theory Expt.

v, (t ) = lim — [a„(T"'E) —n] [a&,(T' E) —n],„M
(A10)

TABLE III. Same as for Table I, but with n=2.

4 (0)
~(1)
~(2)

0.14
x10 2

2.7 x 10

0.14
67 x10
3 2 x1p-2

Accuracy for S

v1(t)

0.0650

—0.478

v3(t)

0.0668

-0.486

3lp

v1(P)
vi(1)
v1(2)

v3(p)
v3(1)
v,(2)

1 4 x10-1
0
2.67 xlp

0
0
1 66 x1p-2

1.2 xlp '
0
2.03 x 10

5 ~ 0 x10
0
1.17 xlp
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and experimenson between +e y

1, and 3'

but for density ofTABLE VI. Same as for Tab e
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Theory Expt.

~(0)
~(1)
~(2)

v, (0)
vt(1)
v&(2)

v3(0)
v3(1)
v3(2)

0.19
4.7 x10 '
1.2 x10 '

0.19
0
6.59x10 '
0
0
2.8 x10

0.19
4.3 x1p.
1.0 x 10

0.18
0
6.2 x1Q 3

3.9 x10 '
0
2.5 xlp 2

Theory

Exper iment

1.p2 x1Q

1.40x10 '
4.79x10 '

6.40 x1Q

of (A9) is

F(T'E)F(T"'E),4( Mt) =—

3.81 x10

3.21 x10

(Bi)

F(T'E) F(E)—

=2n [8[A (E), U (E)] —8[Be A, . — B E, U„(E)]}.
m= 1.

(Ai2)
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—D T'E)[A, —B,+C, —(A. -B„+C.-D.}4'(M, t),
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}(T'E)fA, —B, +C, ——D (T"' E)fA„—B +C —D

VI but for density ofe as for TableTABLE VII. Same a
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Theory Expt.

v)(0)
v, (

v&(2)

vs(Q)

v3(].)
»(2)

0.25
0
1.5 x 10

0
0
4.7 x 10-2

0.24
0
1.52x10 '

6.2 xlp '
0
4.66 xlp helicoidal bound-f the peri icI"IG. 20 Visualization o

ary conditions.
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may be considered as a random variable, since
t tends to infinity and its mean quadratic fluctua-
tion is small, er than 4. The law of large numbers
shows that

x {A,—B, +C~ —D~'f(T'+' E)

is a random vaxiable with a variance proportional

to I.. From our numerical results E(F)E(T'&)
behaves approximately as t '/' for large times;
thus

(85)

Since the computational time is proportional to
M and L,', it is mox'e efficient to increase L, than
to increase M for minimizing fluctuations of
+(M, f). This pecularity arises from the fact
that the Green-Kubo integrand is not integrable.
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