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Two sets of finite-temperature relativistic fluid equations are obtained by taking moments of the Vlasov

equation, using equilibrium and monoenergetic distribution functions. The closed sets of fluid-Maxwell equa-

tions are reduced to a simple set of equations under steady-state conditions, using two Auid constants of the

motion derived for each set. The set obtained using the monoenergetic distribution is parametrized in cylin-

drical coordinates for high-current diode studies. The radial scale length for a radial equilibrium superpinch is

obtained in terms of macroscopic diode parameters, and radial profiles of the pinch are obtained by solution
of the one-dimensional system. It is found that high-current superpinches are characterized by a hot uniform-

density core surrounded by a hollow current sheet, and that there is a limit to the current which can be propa-
gated for a given pinch radius, given the macroscopic diode parameters. The minimum pinch radius obtainable
in a diode in the steady state is obtained from the hot pinch limit, and diode scaling laws are presented, assum-

ing Child-Langmuir or parapotential flow.

I. INTRODUCTION

In seeking to characterize the behavior of a
many-particle system, we are often concerned
with determining macroscopic variables such as
particle number density, net velocity, current
density, pressure, energy flux across a surface,
and other quantities which represent some aver-
age over a distribution function that describes the
phase-spare evolution of the system. Many ex-
perimental diagnostics allow direct measurement
of these or related macroscopic fluid quantities.
Solving kinetic systems and obtaining fluid-related
information by an appropriate averaging technique
is one theoretical method of studying these systems.
However, since the kinetic information is lost in
the averaging process over momentum space, it is
worthwhile trying to obtain a macroscopic descrip-
tion that is consistent with the kinetic system,
without having to solve for the kinetic details. We
present such an approach here by obtaining fluid
equations using physicany motivated assumptions
on the analytical form of the distribution functions.
The specific applications we have in mind are to
relativistic electron beams and plasma systems,
more generally stated as collisionless Vlasov
systems.

We choose specific forms for distribution func-
tions from the general class of three-parameter
distributions. The physical meanings of the three
parameters are determined by the averages over
the distribution which define the particle number
density, average velocity vector, and average
energy. Depending on the assumed analytical form
of the distribution, the whole infinite set of mo-
ments may be nonzero, or we may reach some
moment which is identically zero. In cases where

the fourth and higher moments exist, they are
obtained as functions of the first three moments.
The advantages of using this approach will become
clearer as we consider the nature of fluid equations.

The first three moments of a kinetic equation,
such as the Vlasov equation, express conservation
of charge (or mass), momentum, and energy.
These can be derived for an arbitrary distribution
function and are exact. ' However, they cannot be
solved, since they contain more unknown fluid
parameters than there are equations. The standard
approach is to make certain assumptions on the
form of the moments, so that the number of un-
knowns are reduced to obtain a closed set of fluid
equations. The degree of success that solutions
to these equations have in describing the macros-
scopicbehavior of a physical system depend on the
shrewdness of the choice leading to closure. The
alternative approach which we use is to specify the
form of the distribution function a priori. For
example, consider a collisional system where a
choice of a local nonrelativistic Maxwellian dis-
tribution for closure leads to the zero-order
equations of nonviscous hydrodynamics, whereas
the extension of this distribution to a nonlocal one
(which depends on spatial gradients as well as
local values) leads to the first-order equations of
viscous hydrodynamics. ' In both cases the only
parameters entering into the fluid equations are
the density, velocity, and temperature, although
the latter description is clearly more complete.
More generally, by incorporating known physical
aspects of a system into a choice of a distribution
function, we can incorporate relevant transport
properties into the conservation equations.

Nevertheless, since the kinetic system contains
more information than the fluid system, situations
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could arise where the two descriptions would not
lead to the same results. For example, collision-
less plasmas can exMhit multistreaming of a
single species or anomalous transport due to
turbulence generated from kinetic instabilities.
In such cases the kinetic systems must be studied
to obtain the appropriate transport parameters to
be included in the fluid analysis. However, the
applications which we are principally interested
in here (electron beam dynamic behavior in diodes)
are situations where we expect that kinetic tur-
bulence and single-species multistreaming effects
should be negligible in general. In fact, the steady-
state kinetic orbits obtained from particle simula-
tions" of high-current diodes do not depend on or
result from kinetic turbulence.

The two forms of the distribution function which
we will consider are monoenergetic and equilib-
rium. ' In high-current diodes of interest (MA,
MV), the applied voltage is so large that the energy
of an electron is principally a function only of its
position in the gap (under steady-state conditions).
Thus a monoenergetic distribution function incor-
porates a known kinetic constant of the motion,
and should produce fluid equations which describe
the macroscopic properties of high-current diodes
better than a set obtained from the equilibrium
distribution. On the other hand, the fluid equations
derived from the equilibrium di.stribution are ex-
pected to have better application to beam-plasma
transport problems, where a scattering formalism
such as Fokker-Planck can be incorporated.

The derivation of the general time-dependent
fluid equations is presented in Sec. II, and they are
reduced to steady-state sets incylindrical geometry
in Sec. III. Radial equilibrium flow is examined in
Sec. IV, using the equations obtained from the
monoenergetic distribution function. A minimum
pinch radius r, is found, and its scaling in terms
of diode parameters is given. In Sec. V, we dis-
cuss properties of radial flow in pinching diodes
to obtain the minimum radius at which purely
radial flow can occur. The fluid-Maxwell equations
are cast in a dimensionless form in Sec. VI, using
scale parameters obtained from the considerations
of Secs. IV and V. It is shown here that there is a
maximum current density and beam density ob-
tainable in a pinching diode. From the dimension-
less parameters which appear in the scaled form
of the fluid equations, we are able to argue that
the minimum steady-state pinch radius obtainable
in a diode is r, , as obtained in Sec. IV. A neces-
sary condition for a diode to be able to achieve the
minimum pinch radius is also established. Solu-
tions to the radial equilibrium equations are ob-
tained in Sec. VII, and profiles of beam density
and magnetic field are presented for low- and

high-current pinches. Incorporating Child- Lang-
muir and parapotential flow with the necessary
condition for optimum pinching allows us to pro-
duce diode scaling for existing and conceptual
accelerators in Sec. VIII.

II. DERIVATION OF FLUID EQUATIONS

—(nP)+ V S+ en (E+ cP xB)= 0
Bg y

1 gg——+ V ~ (npe)+enP E=0,at (4)

with the particle number density n, dimensionless
fluid velocity P, fluid momentum P, fluid energy
density 8, and stress tensor S defined by

n= d se, nP= —d'u,

yd~,

S=me' w fd'la-
y

The conservation equations are exact, and can be
generalized to study collisional transport by ad-
dition of an appropriate collision term in Eqs. (3)
and (4). However, Eqs. (2)-(4) are unsolvable,
since they are not closed. In order to obtain a
closed set of fluid equations, we approximate f
by equilibrium and monoenergetic distribution
functions,

f = [nt/4vt'K ($)] exp [- (I'(y —TI w)]

where $
' = ksT„/me' is the rest-frame tempera-

'tlll'e (ks ls Boltzmann 8 co11stall't), I = (1 —p )
and K,($) is a modified Bessel function of the sec-
ond kind of second order with argument $; and

The relativistic Vlasov equation for electrons
can be written

Bf ew sf e ew sf+ ~ ~ —-O
Bt y ex mc y Ow

where c is the speed of light in vacuum, m is the
electron rest mass, e is the magnitude of the elec-
tronic charge, E and 8 are the external and self-
consistent electric and magnetic fields, w is the
dimensionless particle momentum, and y= (1+
lv')'~' is the dimensionless particle energy.

The conservation equations obtained by multi-
plying Eq. (1) by l, w, y and integrating over mo-
mentum space are
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na exp(ap w/pw„)
( )4mc', sinh(a)

with the parameter a determined by the ratio of
fluid speed to particle speed,

fp= P y, /w, = coth(a) —1/a .

(6)
where Ee—-K, (g)/K, ($), and 1 is the unit dyad.

For the monoenergetic distribution function we
find

8 nPzv,——(ny P)+&' ' 1+n&eyoPP

It should be noted at this point that we depart
from the usual Vlasov equilibrium type of ap-
proach, ' ' since Eqs. (5) and (6) are taken as local
distributions whose parameters can be spatially
and temporally changing (subject only to macro-
scopic self-consistency), so that the distributions
in general do not identically satisfy the Vlasov
equation. Indeed, for the systems we are inter-
ested in studying (high-current diodes), not enough
kinetic constants of the motion have been deter-
mined to obtain, a Pro~i, a distribution function
which satisfies the Vlasov equation, and kinetic
studies have to be performed by computer simula-
tion. '" However, it is unnecessary to impose such
a severe restriction on the distribution function to
obtain self-consistent macroscopic solutions, since
the solutions obtained from the coupled fluid-Max-
well equations are valid macroscopic equilibria
for a corresponding Vlasov system. There is an
irreversible loss of information in going to the
macroscopic description, so that the solutions
may be consistent with a whole set of distribution
functions. Note that it is not permissible to take
the macroscopic solutions alone, and substitute
back into the forms of the distribution function
given in Eqs. (5) and (6), since they then would
imply a specific set of kinetic orbits which may
not be the correct ones for the particular system
under consideration. In addition to the macro-
scopic solutions, one needs outside kinetic infor-
mation to reconstruct the particle orbits. How-

ever, we will never have need to do this in this
paper, since we are seeking only macroscopic
information. Thus by utilizing a more general
class of distribution functions than that restricted
to satisfying the Vlasov equation identically, we
can solve for self-consistent macroscopic equilib-
ria relevant to Tlasov systems.

Proceeding with the development of the fluid
equations, we use earlier results' for the evalua-
tion of the fluid parameters for the distributions
in Eqs. (5) and (6). Using the equilibrium distri-
bution, Eqs. (3) and (4) have the explicit form

1 8 n——(nF I'p) + V ~ —1 + nE I'p pc at

+, (E+cPXB)=0, (3b)mc'

8 n——(ny)+~ ~ (ny p)+, p E=o (4b)

with I' n=(1-35/a)/O'. Equations (2), (3a), and
(4a) describe a relativistic ideal gas (isotropic
pressure tensor}, whereas the monoenergetic set
of equations (2), (3b), and (4b) have an essential
anisotropy4 in the pressure tensor. In addition to
these equations we need to include Maxwell's
equations to compute the self-consistent fields:

V" B=O,

—+ VxE=O
Bt

(9

(6)

1 BE———p cenP (1 f) —V x B-= 0c2 gt o

V ~ e,E + en(1 —f, ) = 0.

(10)

In these equations, f, gives the degree of charge
neutralization and f gives the degree of current
neutralization. 'The choice of a model for back-
ground electron and ion dynamics determines the
complexity of these two factors.

III. REDUCTION OF THE STEADY-STATE
EQUATIONS

t}.v(EeI' —ey/mc') =0,

p ~ V(y, —ey/mc') =0,
gx B+pe nt(}l .f) =0, -
V'y = e, 'en (I f, ), -

(14a)

(&4b)

(15}

(i6)

We consider the steady-state behavior of systems
which are described by neglecting the time deriv-
atives in the fluid-Maxwell equations

V ~ (nP)= 0 (12)

V (n/I' g ) + n p ~ V (&el't}) + (en/m c ') (E+ cp x B)= 0,
(13a.)

V(nPgg, /a}+nt} ~ V (Fey,))+ (en/mc ') (E+ cPx B)=0,
(i3b)

+, (E+cpxB)=0,
1 8 n en——nf I-—+V (nZ ip)+ p E=o (4a)c Bt @ I'E mc'

where we have used the steady-state form of Far-
aday's law to set E = -Vp. The set of equations
derived fxom the equilibrium distribution has
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been used by Toepfer'" to develop a one-dimen-
sional fluid envelope model by introducing further
approximations and radially averaging over the
two-dimensional cylindrical representation of

these equations. However, the steady-state
equations may be simplified considerably mithout
introducing any approximations. The fluid equa-
tions can be combined to give the equivalent set

1 e5 P 1—Vlnq -t)x Vx(F rt)) —,+ —,x —Vlnq +VW =0
P
' I'] ~ 8 mc' P' I'( (17a)

p~.' vtnq -3x vx(F y 0) — + —x ' vtnq +vW =0e& P pu,
p2 M M ' mc P2 M M (17b)

t) ~ vw, =o,

t) ~ v w„=0,
with

(18a) equations reduce to

eB/mc= Vx(F,rp),
eB/mc = V x(F~yop).

(21a)

(21b)

W@=Fer —eQ/mc

W„=yo —e&f&/mc ',
q, =[n&/rZ, (t)] e-"e,

qe = (ne j'Lcoyo) e jslllh s .

(19a)

(19b)

(20a)

(20b)

The momentum equations have been separated into
two parts, parallel and transverse to the fluid
flow. From these equations me see that W and Q
are constants of the motion along fluid stream-
lines for a collisionless system. " The constants
W~ and Q~ were identified and used in deriving
Toepfer's fluid envelope model. ' The constants
W are macroscopic energy constants of the mo-
tion, whereas the constants Q can be considered
as determining the equation of state for the fluid.
In fact, Q~ is a constant of the motion in the gen-
eral time-dependent problem, " and it is the rela-
tivistic generalization of the adiabatic ideal-gas
lam. ' However, Q„ is only a constant inthe steady-
state case. Indeed, the monoenergetic assumption
itself breaks down for situations where the time
variation is too rapid to allow a succession of
steady- state solutions.

To further simplify the equations, we consider
cylindrically symmetric systems with no azimuthal
velocity component. Since we are interested in
diode problems, me assume that the fluid stream-
lines emanate from the cathode surface (or cath-
ode plasma). Since this is an equipotential sur-
face, and fluid elements are born at this surface
with the same initial energy, the energy constants
W have the same value on all streamlines. There-
fore W is a constant everywhere in the diode gap.
Similarly, the factor Q is related to the state of
the electrons at the cathode plasma (such as den-
sity, temperature, etc.}and can be taken as con-
stant everywhere in the diode, since all stream-
lines intercept the cathode surface.

Thus except for trivial solutions the momentum

The cold-fluid equations used in other work" are
readily obtained from these equRtlons by taking
$ =mc'/ksT» I in Eq. (2la) and a» 1 in Eq. (21b),
where y, = I' in the limit. In both cases I" 1, and
we obtain the cold-fluid expression

e 8/m c ' = V x (I'p) . (21c)

For the cold fluid, Ws- W„- r —eP/mc', and the
constants Q~ and Q„do not enter into the problem.

Finally, we note that Q and B can be eliminated
from the equations to give

V'(Fer}= (e'n/e~c') (1 f, ), -
V xV x(Ferp)= —(e'n, 'e~c') (1 -f„)p,
v'y, = (e'n/e, mc') (I f, ), -

(23a)

(22b)

vxvx(F„y, p) = —(e'n/e, mc') (1 f)p, (2&b-)

and that by eliminating n from these equations me
can obtain a single differential equation for each
system mhose solution, along with the constants
Q and W, give steady-state configurations for
specified boundary conditions.

In the remainder of the paper, we mill consider
only the set of fluid equations obtained from the
monoenergetic distribution, since me mill be con-
centrating on physical properties of high-current
diodes. The monoenergetic assumption is very
good everymhere in the diode gap, except at the
cathode emitting surface where the electrons are
assumed born with some thermal distribution, and
possibly at the anode surface mhere backscattering
from the anode material can introduce an energy
spread. %'e are ignoring the latter effect, and
the boundary condition at the cathode just becomes
a. matching condition to the parameters in the
monoenergetic distribution. In this paper we as-
sume that a thermal flux of electrons feeds the
cathode emitting surface from a reservoir at tem-
perature T, , and the parameters in the mono-
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energetic distribution function are matched to
this thermal flux condition at the cathode.

dpi'

= eCSpg +@i (24)

where' p~=mc'npw, /a is the pressure transverse
to the beam flow. Ampere's law (15) reduces to

——(rBe)+ p,ecnP, = 0,

and the combination of these two equations leads
to the pressure balance condition'

B,'(r) 2
P, (r')r' dr' -P~{r).

0 0

We define the beam radius x, as that radial posi-
tion where the kinetic pressure becomes vanish-
ingly small. Solutions of the radial equilibrium
equations obtained in Sec. VII give the necessary
radial pressure profiles to determine r~ from

Eq. (26). However, we can obtain a minimum

pinch radius by noting that the high-current
pinches {I&I„)are characterized by a uniform

density core surrounded by a thin current shell.
This configuration gives the highest transverse
beam pressure, and hence the smallest beam
radius for a given current. Thus the minimum

pinch radius is obtained by putting in a step func-
tion for p and using the hot-beam (a«1) limit, '
so that Eq. {26)becomes

Bg{ry) p, ol
( )

mc nw o

2/Lo ag2y'~

Setting y =@~ and ggo=u„{va1ues at the anode),
we obtai. n

2 3Por &~
Bg mc AALU J

The number density in the stagnant core, n„, can
be related to the density at the cathode through
Eq. (20b), which, in the hot-beam limit, gives
n, /wy, =n„/w„y„ for a. thermal electron flux at
the cathode. Assuming that the current density

1V. RADIAL EQUILIBRIUM

Vfe now consider the steady-state pinched flow
of a relativistic electron beam in a high-current
diode, where we expect that the fluid equations
derived from f„should apply. In particular, we
address the question of scaling the compressed
state of the beam, and subsequently, the structure
of the fully pinched beam.

Restricting attention to the tightly pinched region
near the anode where space-charge neutrality
should hold, we assume conditions of z-independ-
ent radial equilibrium, which reduce Eq. (13b) to

is uniform at the cathode,

I=V', A, =eon~ P, A~,

where A., is the cathode emitting area, and taking
thermal flux values for w, = (kT, /mc ')' ' and P,
=(kT, /2amc')'~', we obtain the maximum beam
compression ratio for a high-current hot pinch
from Eq. (2'l):

(29)

where we have defined an Alfvdn-Lawson critical
current in terms of the diode voltage I„=4 am cw„/
p, oe. The dependence r~ - I'~' clearly shows that
the equilibrium propagation of an arbitrarily large
current within a fixed radius is not possible. This
is an important result of the warm-fluid theory,
which says that the density compression is limited
by the constant Q, while the random particle energy
is limited by the diode voltage. Since this implies
a maximum achievable beam pressure, the beam
radius must increase as the current increases
to maintain the equilibrium pressure balance with
the magnetic field. For nominal diode pars;neters
of 2 MV, 10 MA, kT, -3 eV, A, —3&&10' cm' (ap-
propriate for one side of a high-current double
diode), we find r, = 1.3 mm. Since this is essen-
tially the radius used in a previous pellet calcu-
lation" using even larger currents, we see that
it may be necessary to modify present pellet de-
signs to accommodate beam-pinching limits.

V. RADIAL FLOP( IN PINCHING BEAMS

ln the large-aspect-ratio [(cathode radius)/
(diode gap)] diodes of interest for electron-beam-
driven fusion implosions, there must be a region
of almost purely radial flow for strongly pinching
beams. Such a region is characterized by relative-
ly cold flow, P, =0, very strong gradients in z,
and weak gradients in ~. Under these conditions
the fluid equations reduce to an x-independent set,

(30)

BB
cp oen

8 r e
0

together with the constant of the motion Q~. Note
that since beam self-fields can play an important
role in radial flow solutions (the beam space
charge bunches the equipotential lines near the
anode), the scale length of the a variation, z„
can be much shorter than the gap spacing (a, ~ d),
where equality holds for the charge-neutral con-



FINITE- TEMPERATURE REI ATIVISTIC FI UID EQUATIONS. . .

dition f, = 1.
Multiplying E(l. (31) by 8, we obtain

d 8'
= cenP„B

CfZ 2P o

ol

E2 (+) (( d

«en„c p„Bdz =en„(E, id@, (33)
2@o o o

TABLE I. Physical parameters and their scales. Here
pgA ——I~AyA(ef.-A, p, m y, )

' is the maximum beam density
obtainable in the diode, as will be seen from the discus-
sion following Eq. (4i).

Scale

where we have used the fact that the integrated
axial I orentz force must vanish for radial flow,
and that n ~ n„, which is shown in Sec. VI.

This result can be written in the form

p, ,I'/8 v'~' «en„V,

a', „~ += = P= —6 — n(1 -f, }=0,2By 1 B By I
Bz I W BJ IA

with g~ = F(, /zo ~ t() /d, and

(40)

where V is the diode voltage. This expression
gives the minimum radius at which purely radial
flow can occur:

rr2 1w'Y mi()
(6 } )/2 'y~+ 1 I wz

A yA IA u

which shows that r;, has essentially the same
scaling and is of the same order as the minimum
pinch radius r, given by Eq. (29}. This result will
be used together with the results of Sec. IV to
argue in Sec. VI. that x~ is the minimum pinch
radius achievable in a steady-state diode.

~ =rv+(~. —1)=~v, (36)

where y„ is the (dimensionless) energy of an elec-
tron which was born with y, = (1+u,' )' ' = 1 and
has fallen through the diode potential. Table I
lists the physical scales which will be used. The
dimensionless set of equations then becomes

Guided by the considerations of the previous
sections, we normalize the quantities in the fluid
equations to order unity in the region of the hot-
pinch solution, as discussed in Secs. IV and VII.
The cathode parameters which enter into theboumI-
ary conditions are the total current I, the cathode
area A, , and the cathode plasma temperature
kT, =me'se,'. The potential is assumed to be zero
at the cathode emitting surface and is equal to the

gap voltage V at the anode plasma surface. De-
fining yv = 1+e V/mc

xi= (yw/f)) G(a) . (41)

The function G(a) = (f)/a) e' 'I' sinha is shown in
Fig. 1. It has a maximum value of 0.51V at a
=3.05. Recall that a cold beam has a» 1 and a hot

beam has (2«1. The fact that G(a)/fh)as a maxi-
mum at a= 0 implies the maximum beam density
attainable in the diode is n„(n= 1). This fact,
coupled with the energy constant of the motion,
implies that there is a maximum beam compres-
sion (or pressure) which cannot be exceeded. Also,
since G(a) has a maximum, there is a limit to the
current density obtainable anywhere in the diode.
If the current density at the cathode is J, , then
E(l. (41) implies

For a 3-MV diode with a cathode plasma tempera-
ture of 3 eV, J & 10'4, , which gives Z& 10"A/cm'
for a reasonable value of Z, = 10' A/cm'.

From E(ls. (37)-(40) we see that there are two
dimensionless parameters which characterize the
flow. The beam self-magnetic-field is important
when the current exceeds the critical current
(I ~ I„), although pinching may not occur if the
aspect ratio is too large. The parameter a~ gives

B - B
a —, (&„7P„)——, (&„yP, ) 2I a= 0, —

A, 10
'

B&
a, = —3—np„(1 —f ) =0,

A 10

10
"

I

10

1 B - I= = ra+3—sP, (1-f )=0,
Bf A FIG. 1. Isotropy Amction appearing in current density.
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the relative importance of the r and z variation
in the flow. For ab «1, the equations reduce to
the z-independent set in Sec. IV, which are solved
in Sec. VII.

That the hot-pinch radius rb is the minimum
attainable may be seen from considerations of
the balance of forces near a minimum in beam
radius. For magnetic Lorentz force and kinetic-
pressure force balance, the z-independent flow
of radius xb is obtained in Sec. VII. For any
other minimum in beam radius, the kinetic-pres-
sure force must exceed the magnetic Lorentz
force, resulting in a positive radial acceleration.
Under these conditions, Eq. (26) becomes an in-
equality which leads to x&rb for any minimum in
beam radius other than obtained for z-independent
equilibrium.

The scaling used in Eqs. (37)-(40) is such that a
sufficient condition for the flow to be pinched to
radius r, can be expressed as r-1 (strong pinch-
ing occurs in the diode}, I» f„(to produce hot
stagnant pinch), and a~ «1 (neglect z derivatives).
In Sec. VII, we solve the radial equations under
the last two conditions, and verify that our scaling
is correct, so that the beam edge occurs at r = 1.
Now, since P„-0at a minimum inthebeam radius,
and since a, -0 as P„-0by Eq. (38) (because
sB/sF-1), we see that a, «1 is a necessary, but
not sufficient, condition that the flow approach the
minimum pinch radius rb. Therefore rb «~, ~ d
gives us the criterion that a necessary condition
for a diode having a planar anode to produce a hot
maximally pinched beam which approaches z-in-
dependent equilibrium is that the scale factor rb
be much smaller than the gap spacing. Neverthe-
less, it maybe possible to get close to rb at a
local minimum in the two-dimensional flow region
without requiring rb «d.

VII. SOLUTION OF THE EQUILIBRIUM PINCH EQUATIONS

8= (+~P. ) = -2
A

1 8 - I——(rB)= -3 nP, -,
i' Br IA

n= f(sinha)/a]e' '~',

(43)

(44)

(45)

where y= 1, se = 1. These equations can be solved
analytically in the hot (a- 0) and cold (a- ~)
limits, but the transition from hot to cold must
be solved numerically. %e have obtained solutions

%e assume charge neutralization in the anode
plasma (f, = 1), and no current neutralization (f
=0}. For a, «1 and for the current contained with-
in y- I, Eqs. (37)-(40) reduce to the one-dimen-
sional set

1.0—

0.9—

I I I I I I I I I I I I I
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0. 2

0. 1
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(b)
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Q. 4—

I
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FIG. 2. Solutions to the radial equilibrium equations
&or (a) I =5kA. , V=2OokV, (4) ~ =~08kA, V =750kV.

to Eqs. (43)-(45) for r & 0, using boundary condi-
tions specifying p, (0) = p„B(0)= 0. Figures 2(a)
and 2(b) show solutions for low-current and high-
current pinches. The values of current and volt-
age used in obtaining these solutions were taken
from experimental data from pinches obtained
on electron beam machines currently in use at
Sandia Laboratories.

In the low-current case of Fig. 2(a), we find
basically a cold pinch with current and particle
densities peaked on axis. For the high-current
[Fig. 2(b)j case, however, the equilibrium con-
figuration consists of a region of stagnant flow
(tI, «1) surrounded by a current density shell.
Note that the scaling of the beam radius, magnetic
field, and density as chosen in Sec. VI is seen to
be correct in Fig. 2(b).

The macroscopic equilibria obtained here are
consistent with the many axial-current Vlasov
models which have been previously constructed, ' '
especially that of Hammer and Bostoker. These



FINITE- TEMPE8ATU8E 8ELATIVISTIC FLUID EQUATIQNS. . .

solutions serve as a further justification that our
fluid approach gives essentially the same macro-
scopic results as the corresponding Vlasov solu-
tions. Moreover, our formalism can be readily
extended to study cylindrical pinching in diodes,
in cases where it is no longer possible to use the
Vlasov distribution function approach, because the
necessary kinetic constants of the motion are not
known a priori.

I= 2.34 X 10'V'/'(A, /d') y

and the parapotential" 1am„

I= 8500yv (It/d) ln(y„+ ruv),

(46)

VIII. DIODE SCALING

The parameters which enter into Eqs. (37)-(40)
are I/I„and a, . We clearly want I»I„ for self-
magnetie-fields to cause strong pinching in the
diode. ln particular, we need" I&I, =I+/2d,
where If/d is the diode aspect ratio. The param-
eter g~ gives the relative importance of the r and
z dependence of the f lorn. Although it ~s possible
to evaluate g, for a given diode geometry and op-
erating condition, it is worthwhile for sealing
purposes to eliminate some of the geometrical
aspects by considering tmo cases where the cur-
rent and voltage are governed by the Child-Lang-
mlllr lamq

By expressing the cathode area as A, = em&',
where n depends on the degree of hollowness of
the cathode (Ix = 1 for a solid cathode), Eq. (46}
gives the diode aspect ratio R/d from the operating
load line of a given diode. The parapotential as-
pect ratio is obtained from the load line by Eq.
(47). The operating load line is the current-volt-
age curve along mhich a, diode can be operated by
changing the load impedance. For the Child-
Langmuir lam, the aspect ratio is

Ii/d~ 11 71'/'V '/' (48)

where equality holds for n = 1, and me have ex-
pressed the current in MA and the voltage in MV.
The parapotential result is

It/d= [118 I /(1+ 1 96V)l

&[in[1+ 1.96V+ 1.98V'/' (1+0.978V)'/ g

(49}

with I in MA and V in MV. Equations (48) and (49)
can be used to determine the critical current I,
for a given diode, and also can be used mith Eq.
(29) to determine the value of r, /d from the diode
load line, assuming a value for the cathode plasma
temperature. Again using units of MA and MV,
and assuming k7.; = 3 eV, the Child-Langmuir
result is

mhere the voltage is expressed in MV and current
in A. A nonpinching diode should be close to the
Child-Langmuir law, whereas a strongly pinching
diode may be closer to the parapotential lam.

6.02 x10-9
d V'/'(1+ 0.978V}3/' '

and the parapotential expression is

(5o)

0.608I '~'e 1
d V'/'(1+ 0.978V)'/' (1+ 1.96 V) in[1+ 1.96V+ 1.98V'/'(1+ 0.978V)'/'] (51)

By taking the ratio of Eqs. (50) and (48) or Eqs.
(51) and (49), the maximum compression ratio can
be obtained for the appropriate impedance law.
%e note that the choice of an effective cathode tem-
perature T, -3 eV is an arbitrary one, and me do
not discuss the effect of this parameter in this
paper.

The Child-Langmuir sealing is shown in Fig. 3,
and the parapotential scaling is shown in Fig. 4,
along with the design load lines for one side of
several existing and proposed double-diode elec-
tron beam machines. As an example of the inter-
pretation of these figures, me discuss Fig. 3. The
minimum aspect ratio for a given voltage and
diode load line is given in the lower right-hand
corner. This determines whether or not the diode
mill be operating above the critical current for
pinching. Three critical current lines have been
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FIG. 3. Diode scaling using Child-Langmuir lair. Ac-
celerators {one side): (1) Hydra, (2) proto-I, {3) Proto-
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celerators as listed in Fig. 3.

drawn in Fig. 3, labeled by aspect-ratio values of
1, 10, and 100. The load lines indicate what cur-
rent and voltage the diode will operate at, with
the matched load point indicated by a circle.
From a point on the load line we obtain the current
and voltage to evaluate Eq. (50) and determine the
size of r~/d. Two curves of constant r„/d are
plotted in Fig. 3, for r~/d=0. 1 and 0.01. The
important result is that an operating point for a
given diode must fall far enough above the appro-
priate critical current line to be able to show
appreciable pinching, but it must be below the
appropriate r~ /d curve to be able to achieve the
minimum pinch radius r~. The interpretation of
the parapotential scaling in Fig. 4 is the same as
in Fig. 3. The necessary condition for optimal
pinching, ~, «d, is seen to be more stringent for
parapotential scaling than for the Child- Langmuir

case.
The conclusion which comes from these figures

is that going to higher current at constant voltage
not only increases the minimum pinch size (as
discussed in Sec. IV), but also makes it increas-
ingly harder for a diode to approach the minimum
pinch limit.

IX. CONCLUSIONS

In this paper we have derived sets of finite-tem-
perature relativistic fluid equations for studying
macroscopic electron beam behavior, using gen-
eral equilibrium and monoenergetic distribution
functions. The equations have been reduced to a
simplified steady-state form, and two fluid con-
stants of the motion have been obtained. The for-
malism was checked by obtaining solutions to the
axial current radial equilibrium problem, and a
scaling of hot-beam high-current pinches was ob-
tained which shows that there is a limit to the
current which can flow within a given pinch radius.

It has been found that there is a maximum cur-
rent density obtainable in a diode, and that there
is a minimum pinch radius. A necessary condition
for a diode to be able to attain the minimum pinch
radius x~ has been determined to be r~ «d, where
d is the anode-cathode gap spacing. Parapotential
and Child-Langmuir laws have been used to obtain
diode scaling information for existing and concep-
tual accelerators.
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