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Since for echo formation the off-diagonal density matrix element o „bevolves from a.
&, ——ca~„ofthe previous

pulse, the eikonal y —mt reverses sign with each pulse. If the radius of curvature of the first m/2 pulse is R„
the radius of curvature of the subsequent 7r pulses R,, R,, etc. , the radius of curvature of the photon echo
which follows the second pulse is 1/R~, = 2/R, —1/Ri, the radius of curvature of the Carr-Purcell echo
following the third pulse is given by 1/RE, = 2/R, —2/R, + 1/R, , and for subsequent Carr-Purcell echoes by
1/RE& ——2/R, —2/R, + 2/R —1/R, , etc. The influence of motion, adiabatic collisions, and velocity-changing
collisions on the decay of echo amplitude is considered for curved wave fronts. Since the change in position
from the constant-velocity position is important in the decay, a statistical theory for small displacement and
its relationship to the forward scattering cross section is given. These results with r ' and r ' interactions
between colliding molecules are compared with the experimental data for CH, F and with an r " potential with
the data for SF6 and SiF,.

I. INTRODUCTION

This paper considers the focusing of Carr-
Purcell photon echoes and the effects of collision
on the decay of the echo amplitude. An earlier
paper' considered the focusing of the photon echo.
The pulse sequence necessary to form a Carr-
Purcell echo is shown in Fig. 1. The first pulse
is usually a &v pulse and at a time T later the
second pulse is a m pulse. At time T after the
second pulse an echo occurs and in the optical re-
gion is referred to as a photon echo. ' The photon
echo is analogous in the optical spectra region to
the "spin echo" of Hahn' in the nuclear-magnetic-
resonance region. Carr and Purcell observed
subsequent echoes in nuclear-magnetic-resonance
studies and the echoes following the second, third,
etc. m pulses are referred to as Carr-Pur cell
echoes. The optical analog of the Carr-Purcell
echo was observed by Schmidt, Herman, and
Brewer. These experiments are often discussed
in terms of the reversal of the time coordinate.
At optical wavelengths the reversal of the eikonal
cp —~t which includes both the space- and time-
phase components becomes important. It was this
reversal which led to the suggestion of anomalous
properties for the focusing of the photon echo. '

Successive reversals lead to further anomalous
properties for the Carr-Purcell photon echoes.

Since the decay of the amplitude of these echoes
depends on adiabatic collisions, molecular motion
across curved wave fronts, changes in molecular
velocity, etc. , some aspects of collisions are dis-
cussed. A small change in velocity between
pulses has an important effect on the decay of the
echo amplitude, and this effect was observed by
Schmidt et gl. ' in their studies of echoes from
CH, F. They also recognized that the reversal

aspect of Carr-Purcell echoes mould limit this
form of echo decay. Herman et gl. ' discuss the
effect of molecular collisions on coherent optical
transient phenomenon. I have discussed the im-
portance of the forward scattering cross section
for the decay of the photon-echo amplitude. ' The
transformation for the eikonal between the labora-
tory and molecular frames was incorrect in that
paper and the order in which velocity-changing
collisions occurred was not important. The error
is corrected in this paper, and the order in which
the collisions occur becomes important. A sta-
tistical theory to treat a sequence of weak colli-
sions is developed. Again, measurements for
large T provide a measurement of the total elastic
cross section, and measurements for small T
provide a measurement of the angular dependence
of the forward scattering cross section. This
method provides a direct relationship between the
cross section and the decay of the echo amplitude
for photon echoes and for Carr-Purcell echoes,
and should be more useful than the Keilson-Storer
velocity-jump model used by Schmidt eI gl. ' and

FIG. 1. Pulse sequence for the generation of a photon
echo and the Carr-Purcel. l photon echoes. Pulse A
starts at time to and is a +&~ pulse of duration t&-t 0. At
time T later a ~ pulse E. of duration t&—t& is applied. A
photon echo E& is generated at time t -t& = T. The Carr-
Purcell sequence begins with a n' pulse C at time t4-t&=2T
and the Carr-Purcel. l photon echo E& occurs at time
t —t5 ——T. Subsequent ~ pulses create echoes E&, E4, etc.
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Herman et a/. ' The experimental data for CH, F
are compared with the cross sections which are
expected for an x ' or a r ' interaction potential
between the colliding molecules. The large cross
section' observed by this author and Nordstrom
for SF, can be explained with the total elastic
cross section of an x ' interaction.

Although considerable care is used in setting up
equations for the formation of echoes, some fea-
tures must be either missing or overlooked in the
analysis. The large, intensity-dependent cross
section observed by Herman et al. ' for CH, F is
not explained. The very large, pressure-indepen-
dent cross section for echoes from SiF~ which
were observed by Nordstrom et gl. ' are not ex-
plained.

II. THEORY

A. General theory

The response of an atom or a molecule to a
saturating pulse of radiation is described by the
time-dependent SchrMinger equation,

zero to F. at time I,
„

is given by,

It(t, t„)=A(t)e-""-"'A'(t„),

where the operator $ is given by

$ = & '(H, + V, ) + -', 5,( j& —(o),

when j is a constant. $ is time independent and
can be diagonalized in the representation lp). In
order to simplify the discussion, only the pseudo
two-level problem of linear or of circular polar-
ization is considered. The perturbation connects
only the two states lm, ) and lm, ) where m, =m,
for linear polarization and yn, =gab a 1 for right and
left circular polarization. The matrix elements of
exp( if'-} are taken from Ref. 8, are summarized
in an Appendix, and will appear as f or g in most
of the subsequent equations. In the absence of a
perturbation or V=O, the evolution of the system
is described by

p(] It) -fN p(t-t')/h

The time dependence of the density matrix o (t)
for the eth molecule is given by

ikey/at =[H, + V(t)]y,

where the time-dependent perturbation V(t}
=-P ~ E(r, t) for a molecule at position r„(t)con-
nects the states lZ, m, ) with lZ,m, }. For a given
angular frequency (d the interaction operator can
be written as

V(t) = -p. (Ette'l"'"'-~" +c.c.),

e.(t) = It (t, t,)o„(t,)V'.(t, t,),
and the electric dipole moment of the radiating
molecule is

P.= TrPe. (t) .

Thus the quantity of primary interest after the
interaction is turned on is the matrix element

(9)

where y(r}-(ut is the phase or eikonal which de-
scribes a wave of geometrical optics. It is as-
sumed that the wave normal of the laser radiation
is primarily in the positive z direction. The op-
erator'

A(t) = exp{i-.'{},[(p(r„(t))—(ut]}

can be used to make the operator V(t) independent
of phase in the rotating-wave approximation, and
with 50 defined as the operator

7%~ SPED PPl b PS b

the phase-independent interaction operator is

V, =A'(t) V(t)A{t)

=-"& g lm. )(m&l(m. l& elm~)+H c . (4b)

50 and p(f) commute with the Hamiltonian

0, = g lm. )(m. lz( .).P lm, )(m, lz(m, ) . (5)

The unitary operator which describes the evolution
of this system when the amplitude F. changes from

o„(t)=(m, le, (t)lm, ) .

Since only two states are connected by the pertur-
bation which is used in this paper, the simplifying
notation cr„is used. Whenever necessary these
subscripts can be replaced by pg„mb and a sum
taken.

The electric field generated at a distance r from
this oscillating dipole is

(kxp )E (r t) =-v kx " e ' &' "t'&+c ca ~ 0

0

(12)

where p„is the coefficient of e '"' in Eq. (9). As
a sum is taken over the spherical waves from a
group of molecules, a new wave front pre(r) ap-
proximately describes the sum. In the subsequent
calculations the contribution of this group of mol-
ecules to the traveling wave

exp{i[(pe (r) —(ot]}

is proportional to the sum of the amplitudes over
the molecular index a,

F = P F„=g &,~(t) exp{ i[&pe(r (t)}—-&ut]}.
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The exact proportionality constant is not of inter-
est in this paper, but can be obtained when nec-
essary. '

In order to give the sequential development of
the stimulated electric dipole moment which is
caused by the pulses which are shown in Fig. 1 in

its simplest form, cr,~(t) is given for optical nuta-
tion, free induction decay, photon echoes, and
Carr-Purcell echoes. Before the start of the
pulse at time t„the density matrix o(t, ) i's re-
garded as composed of equally probable lower
states lm, ) or

ment o„(t, ,) at time t,„,and is given by

o,~(t) =(alR )lb)(bio(t, ,)la)(alR, lb). (18)

R is the operator which generates the mth echo
and

R~, = Uil(t, t ~2,)U~(t ~2„t2~,),
where U is given by Eq. (6) and U, by Eq. (8) for
the ath molecule. Direct evaluation yields o„(t)
after the mth pulse of

O.,(t) =O„(t, ,)g' ezp(i[(p (t, a }+r(t) (t, ,)

o(t, ) =(2J, +I) 'lm, )(m, l . (16)

If the upper state lm, ) is populated, the number of
molecules per cubic meter in the lower state n(m~)
can be replaced' by n(m, }-n(m, ) in the expression
for no, ~.

B. Optical nutation and free induction decay

If a pulse is turned on at t = t, =0 as shown in

Fig. 1, then the density matrix describing the ef-
fect is

a„(t)=-(alU, (t, t )o(t )U, (t, t )lb)

( l

-i ll(t tp) 'lb)-(ble i Fl(t (0) lb) i(rp--wt)

( g t' )el(rP- ld() (16)

where U, (t, t, ) is given by Eq. (6) with $ = $, or
pulse amplitude E, . Both fy and g, depend on the
strength of the interaction and on the off resonance

+(d„—(d+j, and detailed expressions are
given in the Appendix. This stimulated electric
dipole radiates, and a sum over molecular veloci-
ties which appears as different j or over inho-
mogeneous broadening which occurs as different
(l),~ in Eq. (16) yields optical nutation

The pulse is turned off at t =t, and the evolution
is described by the operator U, of Eq. (8). After
time t, the density matrix is given by

o (t) ( g f )es(9'l-vl(l)e- nab(t il)- (17)

C. Generation of echoes

The density matrix element a, l(t) which describes
the echo following the mth pulse in Fig. 1 follows
in a direct manner from the density-matrix ele-

where r, =t, —t, in f, and g„(tl,=y(r„(t)), and u,
is the pulse frequency. For a molecule at reso-
nance, a &m pulse yields a value of f, =g, = 2 ' '.
Substitution of o.,(t) into Eq. (14) and the sum over
the molecular index a yields the amplitude of the
emitted radiation. This radiation is referred to as
free induction decay and is dependent on those
molecules interacting most strongly with the ra-
diation.

(20)

where g is given in the Appendix. For a m pulse
for molecules at resonance, g =1. Iteration of
Eq. (20) with Eq. (17) for &r„(t,) yields all subse-
quent values of o„(t).The first echo, which is
usually called the photon echo, occurs after the
second pulse and follows from 0„(t,) and R, . The
second echo, which is the beginning of the Carr-
Purcell echoes, depends on a~, (t, ) and R„the
third on o„(t,) and R» and the mth echo on &r„(t, )

and R . It is this dependence of 0„(t)after the
mth pulse on

(21}

which yields the reversal in sign of the phase in
all terms prior to the time t, , It is this rever-
sal which has led to the many fascinating explana-
tions of nuclear spin echoes. In the optical region
it gives rise to the additional effects of anomalous
echo polarization which were studied by Heer and
Nordstrom, ' by Gordon et al. ,

" and by Abella et
al. ,

' and to the suggestion of the focusing of photon
echoes. '

For stationary molecules the terms cj are con-
stant. For moving molecules each q is replaced
by

(p(r (t)) =(p(r (0))+ ('t dt', (22)

and depends on the position at time t, =0 and upon
the Doppler shift q. In the absence of collisions
j is a constant, and the effect of velocity-chang-
ing collisions is introduced by writing cp as

v'(t) =a+i..t+ «'(i(t'} i..1. -(23)

y is for stationary molecule; j, is the Doppler
shift during the mth pulse and is used in g . The
integral includes both the effects of collisions and
of wave-front curvature. Collisions in the interval
between pulses can cause a shift in phase as well
as a shift in velocity, and this shift can be intro-
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duced for the interval t" —t' by the replacement
t tt

td„(t"—I')- ~„(t"-I'}+ «u. ,dt .
tt

These collisional aspects will be discussed in
greater detail in subsequent sections. In solids
different molecules experience differ ent local
fields and &u„must be replaced by ~,t(r). If Stark
splitting occurs in gases, an inhomogeneity in the
electric field will introduce another time-depen-
dent term td„(r (t)).

A good approximation for j for the molecule
with velocity v is

=v - grady

For plane waves (p = (!0/c)$ r„and ip (td/c=)ft

is the usual Doppler shift. For spherical waves y
=(id/c)R, where R is the radius of curvature of
the wave front and rj = (&t)/c)R=—(tt)/c)vR is approxi-
mately given by Eq. (25). There is a quadratic
term v~t/R which depends on the transverse ve-
locity component and on time. Even though ex-
perimental conditions favor ~~„»vR, the ratio
tp', t/tpR 8« I and this time-dependent term can be
ignored for the time intervals of interest.

Direct substitution of !T,*,(t2) from Eq. (I'I) into
Eq. (20) yields !1,2(t} for the first echo or photon
echo and the substitution of v„(f)into Eq. (14)
yields the amplitude F, of

the single collision integral,

G = exp —i 4I. ' (j(t')- j(0)+5~„.29)

This quantity is similar to that used by Gyorffy,
Borenstein, and Lamb" in their discussion of line
broadening in gas lasers, and is discussed in the
subsequent sections. For G,(I, f,) the quantity with
the square brackets in Eq. (29) is [y2(t) —jp~+«d„]
and the limits of integration are from I,, to t. It is
assumed that the pulses are short and that colli-
sional effects during the pulses can be ignored or
9)o2=cj2(t2) =jo2(t2). The echo occurs at t =t2+T,
and in forming the average the time origin can be
shifted and the integral taken from 0 to T. By the
same al'gllmell't G 2(f2, t2 T) ls-llltegl'ated fl'0111 0
to T. K, is given by the integral

t +T

K, = exp —i Qf' j, f' —j,(]')
t -T

2

(30)

2. Carr-Purcel1 echoes

and K is unity for plane waves in the z direction.
For misaligned plane waves or curved wave fronts
K is nonzero and its importance is discussed later.
The primary decrease in photon-echo amplitude
with interva. l T between pulses is given by

ln(F, /F, ) = 2 InG,

and the factor of 2 is needed to include both
G,(f, +T, I,) and G*,(t„f, T)-

(( +2 fig) t-erpt@!-2rp2+ cpt)e-tA !t-t2-T)

x G, (f, f,)G +(I„t, T}K,)„, — (26)

The second echo or the first Carr-Purcell echo
follows from Eq. (20) with!T~(t, ) and the echo am-
plitude in Eq. (14) has the form,

where b2 =!tt„—tt) +@,2 is used in g2 and [
indicates all values are for a molecule described
by r . Collisional effects are included in the G,
terms. As a sum is taken over the molecular in-
dex n, the sum is zero unless the cp's differ by no
more than a constant for the different values of
r„(0)and the first condition for a photon echo is

—2q, +q, = const.

In ga.ses the molecular velocity or j is different
for each molecule, and as the sum is taken over
!1, the amplitude F in Eq. (14) is large only when

t —fe}=T ~ {2S)

For solids ~„(r) varies with position, and again
this is the time condition for the occurrence of an
echo. In the absence of collisions the G, are unity.
%hen collisions occur, G,(I, t, ) cannot form a se-
quence with G ~2(t„t, -T) and these two quantities
can be treated as statistically independent. The
G, and subsequently the G can be replaced by

F —f( gtg t 2g f )e t!!ps 2(p2+ 2lp2 p|t)

)t&-itl2!t t T)elk-!T t2+ -tl) G-

& G &(I, +T, f,)G,(f„I, T)Z,Z*,).. -(22)
The conditions for the second echo are

q~ —2q, + 2y, —q, = const

t —t5=T . (22b)

Since T = f, —f,, the exponential with b,, is unity and
is retained to indicate the method which was used
in arranging the terms. The G's cannot be placed
in sequence and can be treated as statistically in-
dependent, and have the form of Eq. (29). Thus the
decay of the second echo amplitude is given by

ln(F, /Fo) =4 lnG .

The generalization to the ypgth echo is apparent
from these two examples and the decay in echo
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amplitude is primarily due to

ln(F /F, ) =2m lnG,

and the decay in echo intensity by

ln(I /I, )= 4m lnG .

(35a)

Equation (33R} is one of the conditions for the
formation of the second echo. The gradient of this
equation yields a relationship between the wave
normals of the first Carr-Purcell echo of

Pl+ 2Pl3 282 +Kg

The decay in the logarithm of the echo amplitude
decreases linearly in the echo number and depends
through lnG on the interval 7.' between pulses. This
dependence was recognized as a useful experimen-
tal tool in the first papers on nuclear-magnetic-
resonance echoes or spin echoes.

D. Focusing of photon and of Carr-Purcell echoes

Focusing of photon echoes follows from Eq. (27)
as one of the conditions for echo formation. Ab-
solute phase is not important as long Rs it is the
same for all molecules, and the gradient of Eq.
(27) yields a relationship between wave normals of

Ply —dtl2 —?l g,

where n =(c/(u) grady. This equation must hold at
every r for the occurrence of large-amplitude
echoes. For plane waves cp, =k, ~ r for the first
pulse, etc., and the echo direction follows from
k~ =2k, -k, . %hen k, makes a small angle 0 with

k„the echo direction k~ makes an angle 28 with
ky and this angular dependence was observed by
Abella et gl.

For spherical wave fronts y =a (~/c)R with the
positive sign for diverging waves and the negative
sign for converging waves and pg =+A can occur in
Eq. (36). A simple geometrical construction with
an off-axis point can be used to show that the radii
of curvature of the wave fronts are related by

where Q & 0 for R divergi1lg wgve front Rnd Q & 0
for a converging wave front. If Rll wave fronts
diverge for spherical waves„R~ =2R, -R, and the
scalar product with a transverse unit vector yields
sin8~ = 2 sing, —sing, . For R selected point
R, sin8, =R, sin8, =R~ sin0E and these r elationships
for 8 can be combined to yield Eq. (37). 1f both
converging and diverging waves occur, this simple
method with some care yields Eq. (37). This
method is somewhat simpler than that used in an
earlier paper, ' but it does not include diffraction
effects. The use of the eikonal approximation im-
plies the usual limitations which occur in geome-
trical optics. Thus Eq. (36) for the wave normals
is correct for small 8 and terms of order 8' are
neglected. Furthermore, a thin sample is re-
quired and this is apparent as the virtual source
location R~ is determined for various positions in
the sample.

for every r . The second Carr-Purcell echo re-
quIres

Ã@ —5l~ —283 + 2tl2 —
Ply ~

and ps~ for subsequent echoes follows in an appar-
ent manner. For plane waves the normals are the
directions of the plane waves. As a special ex-
ample one may note that if the odd-numbered
pulses Rre along ko and the even-Dumberedpulses
along', with angle 8 between ko and k, as shown
in Fig. 2, the echo angle is given as follows: for
the first echo, + 28; second echo, -28; third echo,
+48; fourth echo, -48; etc. with respect to k, .
The echo angle increases by 28 on the odd-num-
bered echoes and changes sign for even-numbered
echoes.

For spherical wave fronts the fil st Carr-Purcell
echo has a radius of curvature R~ which is given
by

and the second Carr-Purcell echo has R radius of
curvature

1!R,= 2/It, - 2/R, +2/R, -1/R, .

These relationships follow from Fq. (38) for the
wave normals and can be derived in a manner
which is similar to that used in deriving Eq. (37)
for photon echoes. The radii of curvature of sub-
sequent echoes follows in an apparent manner
from Eq. (39). ff the first pulse has a positive
radius of curvature R, and the subsequent pulses
are plane waves as shown in Fig. 3, the first echo

FIG. 2. The +2m pulse is along ko, the first n pulse is
along ~e~ the second 7t pul. se alongko, the third 71 along' ~

etc. For an angle 0 between%0 andk~, the first echo E&
is in direction k& at angl, e +26) with@0, the second echo F. 2

is in direction42 at angle -28, the third echo is in direc-
tion@& at angl. e +40„etc.
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t'

(z,

serve radii of curvature as small as -', m in the
sample region. Collisions reduce the importance
of this form of echo decay, but collisions which
are sufficiently strong to change v, by an appre-
ciable amount will destroy the state and introduce
a different form of echo decay.

Ri Ri

FIG. 3. The 2
7t' pulse has a positive radius curvature

R
&

and appears to diverge from a point at -R
&

to the left
of the sample &. The following 7t pulses are plane waves.
The radii of curvature of the Carr-Purcell photon echoes
are given by Eq. (39). The first echo is converging to-
ward a point +Ri to the right of the sample W The
second echo is diverging and -R& is the virtual source.
The third echo is converging toward +R&. The fourth is
diverging from -R&,. etc. for subsequent echoes.

is converging with a radius of curvature of -R„
the second echo is diverging with +R

„

the third
echo is converging with -R„etc.Again a thin
sample is required.

I. fVave-front curvature

for the first echo, j~ —2j,+ 2(p2 py: 0 for the
second echo, etc. and these relationships can be
used to write K, as given in Eq. (30) and K with

cp@ y (p as the integrand and t2 2 y to
as the limits of integration. If the first pulse is
in direction k, and the second pulse in direction
k„then in Eq. (30) the integrand ye(t') —(b,(t')
=(~/c)(k, -k, ) ~ v„—= (~/c)0v, . In the absence of
collisions a thermal average over v, yields

K =(exp[-i(4ee/X)v, T]) =e 'r, (4o)

where b =v'(8v/X)'. Thus for a wavelength of X

= 10 ' m and an average velocity v of 200 m/sec
the angle (9 can be no larger than 10 ' rad for
T - 10 ' sec and 10 ' red for T - 10 ' sec. Free
molecular motion can place a restriction on the
allowed angles between the wave normals of the
pulses. Since curved wave fronts have angles be-
tween the wave normals from zero to 8,„,an
average over these angles yields a somewhat
smaller value of t) and the condition is less re-
strictive. In a Carr-Purcell echo sequence this
type term increases approximately as exp(-m bT')
for the mth echo. It would seem possible to ob-

The effects of wave-front curvature are included
in Eq. (30) for the K integrals. At any time t' Eqs.
(36) and (38) imply

~ —2W, +(j, =0

III. COLLISIONS AND ECHO DECAY

A. Statistical theory for small displacements

Consider a distribution law for points on a line
where P(ql, =m) =P(m) is the probability for the
random variable q, to equal the integer m. The
characteristic function" for this distribution law
is given by

q(a) =(e""&=QP(m)e' (42)

Let the sum of a group of mutually independent
random variables with the same distribution law
be denoted by X„,

(43a)

The characteristic function for this random vari-
able X„is given by

tt)„(a)= q(a)", (43b)

and the probability of a value of M is given by the
Fourier inversion formula

1
&(X~ =M) =— dae '"'P„(a).

27r
(43c)

It was shown in the previous section that a very
important contribution to the decay of the echo
amplitude by collisions is given by Eqs. (35) and

(29). Equation (29) includes the effect of velocity-
changing collisions and the effect of adiabatic
collisions on 5(d, b. Since a given collision changes
both y and 6',b, it is not possible to arbitrarily
consider the effects separately. In the subsequent
sections the two effects are treated separately and
then their magnitude and time dependence are used
to suggest regions in which one effect dominates
the other. Velocity-changing collisions are con-
sidered first, and with 5&@„=0Eq. (29) for G for
plane waves in the ~ direction becomes

T

G~ = exp —i — 4t' &,(t' —&, 0 . 41
C 0 C

The integral is a measure of the displacement of
the molecule relative to a constant-velocity dis-
placement or z(T) —z(0) —v, (0)T. For weak colli-
sions this is a small quantity, and, in order to
consider this average, a statistical theory for
small displacements is developed.
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For the particular case in which the probability of
a particular value of W is given by the Poisson
distribution, then the characteristic function for
the compound distribution

P(X=M) = g (8-"N"/N! )P(X„=M) (44a)

follows by direct substitution of the integral re-
presentation for P(X„=M)'and is

4'(a) = exp(N[g(a) —I ]].. (44b)

The Fourier inversion formula yields P(X=M}.
If events occur at the rate of a sec ' so that,

N=aT and aP(m) =o.' is the average rate for a
process of type m, the characteristic function be-
comes

»P (Ma) = —aa'M'(m')

+(1/4! )a'M'[(m'& —8{m')']+ ~ ~ ~ .

(48 a.)

This quantity is readily summed over M to yield

ln(e" &) —= -~2 a'N (N + I)(2N + 1) (m') =——,N'—a'(m') .

(48b}
For large N the Poisson distribution is almost
Gaussian with its maximum at N, and (exp(iaS)) is
given by Eq. (48b) with N replaced by ¹

Now consider an example in which the interval
of measurement T rather than N is known. The
characteristic function of the compound distribu-
tion follows from Eg. (4V) with N= nT and

a( )=sxa(r Pa (e'"'-ll) . (4&)
(49a)

This characteristic function is usually derived
for only one o. and then statistical independence
is used to write 4'(a) as a product of the 4' (a).
This type of expression is particularly useful in
the study of the effect of binary collisions" on line
shape when the order of the events is not of im-
portance.

The order of events is of importance in the sum
S„which is defined as

M tH+1-1(I &

where q„occursN+ & -n =M times in 8„.Again
the q„aremutually independent random variables
and the characteristic function is a product of
characteristic functions

(e" ")= Q $(Ma),
hf"-0

where

/=0 4~1

{e"s)=-e 'r (!.arge Z'), (49b)

and this characteristic function yields P(S= 0)
=e r and P(S=S') =0 for S'aa 0. If P(m) is appre-
ciable for small values of m, then there is a range
of T for which g is positive and the approximation
lng= g —1 can be used. If N= aT»1 the Poisson
distribution is almost Gaussian and has it maxi-
mum near N =P, and these terms dominate the
sum. A fair approximation is

In{eaas) - g [$(Ma) I]

anT dmP m — — g, (49c

P= 1 for N= 0. In principle, P(S =S') can be found
when P(m) is given. It may be noted that as T in-
creases $(Ma)-0 and only the no-co/lision or N 0
term is important. A good approximation for large
T is

p(Ma) = g p(m) cosMma . (46c)

{e"')= g, II q(Ma).
N= 0 ~=0

(47)

The cumulant expansion is often of use and for
small Ma

P(m) is regarded as an even function of m and only
the real part of exp(iMma) is needed in this paper.
If the probability of a particular value of N is
given by the Poisson distribution, then the char-
acteristic function of the compound distribution is

and this yields the linear term in T for large T and
the T' and T' moments for small T. The T' mo-
ment is in error by terms of the order of (m')'.

If the q~ refer to a random walk in which the
probability of a step of displacement m is given by
p(m), then X„is the displacement for an N-step
walk and S„is the area under the curve when X„
is plotted as a function of R.

If the q„areproportional to random changes in
velocity which occur in time interval v, then X„
is proportional to the velocity at time nv, and S~
is proportional to the displacement in time interval

It should be noted that X„asa random vari-
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able yields (S„)linear in N and is the diffusion
condition. q„asa random variable is useful for
a sequence of small changes, but it will not yield
diffusion.

B. Velocity-changing collisions

only the binary-collision characteristic function
ls needed.

Since q„depends on the change in relative veloc-
ity from V to V,' in a binary collision, the char-
acteristic function' follows from the probability of
a change in velocity

The decay in echo amplitude by velocity-chang-
ing collisions is determined by evaluating Eq.
(41) for Q» by the statistical theory for small dis-
placement. The change in the velocity component
is due to binary collisions and the integral ean be
written as the sum

gv( )- "j-z(v )dv*f vv(vv)d(, )

and the substitution

cosma -cos«r(V,' —V,)a. (53b)

T N

dt'[t (t') -~(O)1= g nt„[~(t„)-~(O)l
0 n=o

=g~.„(v—g~(, ),

where nv„=v(t„)—v(t, ,) is the change in the veloc-
ity component in the 0th collision of an N-collision
sequence. The change in velocity in a collision is
related to the change in relative velocity by

v(V, 8) is the differential cross section for the
change in relative velocity V by angle 6, and
P(V') is the Maxwell-Boltzmann distribution for
velocities. (. ~ ~ ), is used to denote this collision
average. The characteristic function

q(a) =a~ '& V-c(V, 8) cos«~(V,'- V.)a),

can be used to find the probability of the subse-
quent change « ~(V,' —V,) which is induced by a
binary collision. It i.s convenient to transform to
angular coordinates d V = 2m sing d P V'd V, dQ
= sin8dy 8 8, (V,' —V,) = V[- sinP sin8 cosy
+ (cos8 —1) cosp], and average over' the random
variable y and P. After this average and for
small g,

no= v„',—v„,= —(p, /m„)(V,' —V,), (51) (54b)

N

Mn~+ 1-~ ~ (52)

«)}„=—((u/c) (p, /m „)(V,' —V.)

where p, is the reduced mass. In an N-collision
sequence T =—Nr„and 7~ is the average time be-
tween collisions. Kith Lt„=7„+y, the variable y„
ean be treated as mutually independent random
variables. Thus the total change in phase in a
sequence of X binary collisions in interval T is
given by

The small-angle change in a binary collision is
correctly described by this characteristic func-
tion. The relative occurrence of collisions de-
pends in greater detail on the velocities v„and v~
of the colliding moleeules, and this effect can be
neglected for small-g collisions.

The probability that the exponent in Eq. (41) for
G„has a value S follows from Eq. (49a) for
&exp(iaS)) with w in Eq. (53) replaced by v„=T/¹
This probability can be used to find G~, and this
procedure is the same as the substitution a = 1 in
the expression for &exp(iaS)). With these substi-
tutions a fair approximation for G~ is developed
by the procedure used for Eq. (49c), and echo de-
cay by velocity-changing collisions is

and «= ((d/c)(p. /I„).The n, v„orq„canbe treated
as mutually independent random variables, and in
forming the characteristic function &exp(iaS„))a
product over I can be used. A further average
over y„is needed. A good approximation is ob-
tained with the assumption that y~ = 0. Only the
average number of collisions N = n f which occur
in interval g is known in the determination of 1"~,
and since G„follows from Eq. (49) for &exp(iaS)),

lnG~= n dx Vo(V 8) (55a)

--nT&vc(V, 8)), (large T)

(55c)

~ -+i&a, )V«' T—&a,V')«'T'+ ~ ~ ~ ] (small T) .
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As T becomes large the integral over x of the
sine term is limited in magnitude to v/2K V8 and
the remaining term grows linearly in T. This
permits the determination of (Vv(V, 8)), and indi-
rectly the total elastic cross section. For T suf-
ficiently small or aVT0 & 1 in the region in which
a(V, 8) is large, the moment expansion can be used
to examine the coarse features of the differential
cross section for small 0. a, and a, are the coef-
ficients obtained when the sine transform over
small 0 is completed and only the average over
the Maxwell-Boltzmann distribution of velocities
remains. It would seem that the sine transform
will contain terms similar to the expansion of

y 'siny for small y.
Again it must be emphasized that a(V, 8) must be

large for small 8 for Eq. (54) to be useful. Hard
collisions which cause a large change in 0 and
which give rise to diffusion are not included. This
is particularly evident when the cumulant expan-
sion of Eq. (53a) is considered and it is observed
that the second moment

(Vv(V, 8)(V,' —V, )'),
is directly proportional to the B„or0 '' integral,
which occurs in the theory of diffusion. "'" The
(V,' —V,)' term reduces to the V'(1 —cos8) term
in this diffusion integral, and at small 0 there is
negligible contribution to the integral. The im-
portance of these small values of 0 are enhanced
by the (KT)' term and become measurable As 8.
increases sinK V0x becomes a rapidly oscillating
term and as values of 0 are reached which are
important for diffusion, these rapidly oscillating
terms yield negligible contributions.

Equation (55) for 1nG» can be combined with Eq.
(35a) to yield a decay in echo amplitude for the
mth echo of

ln(F /'Fo) = -n[( Vo( V, 8)),]2m T (large T) (56a)

=-n[(a~V'}K T' —(a, V'}K T + ' ' ' ]2mT

(small T) . (56b)

Since T is the interval between pulses, 2mT is
approximately the interval between the first pulse
and the time of measurement of the mth echo.
The echo amplitude decays exponentially with time
t = 2mT, but the decay constant depends on the
pulse interval for small T and on the total colli-
sion rate for large T.

The decay of the echo differs from the results
in an earlier paper. ' Owing to an error in the
determination of the change in phase, the order
in which the collisions occurred was not impor-
tant, and the appropriate characteristic function
was Eq. (44b) with Eq. (54b) for P(a) and with
T=2T in P(a). Although the same sine transform

is important for small T, the numerical constants
are changed when the order of the sequence is
important.

C. Adiabatic collisions

ej =(c, —c,)/r" =c'/r". (57)

A straight-line path is usually assumed, or r '
= b'+ V't', and the impact parameter b and the
relative collision velocity become parameters
in the theory. The decay in echo amplitude which
is due to this type collision is given by Eq. (29)
with y = 0. The decay in echo amplitude follows
from the evaluation of

T
G~= exP i 5(dab d t

0 C

(58)

where

M~& = K~&(t) —™~&—— g f (t —t & )

describes the collisional effects and the sequence
in which the binary collisions occur is not impor-
tant. A detailed treatment of this problem is
given elsewhere. " It is equivalent to replacing
m in Eq. (45) by the total change in phase t'(~) in
a binary collision and by using Eq. (53a) for o.
= oP(m). &(~) for a binary collision with impact
parameter b and relative velocity V is given by

Kgt )=c' J dt Ib ~ v'Pl "~'' (59)

and is the same as the phase shift 25 in the ei-
konal scattering approximation. For an r
interaction P(~) = 3vc'/8kb'V and for an r
interaction t(~) = 2C'/A b'V Then.

lnG„=n( Vo(e' " —1)), T

= —n(v'8 ' ~C' ~)T (for r ')

(60a)

(60b)

yields an echo decay linear in T. For an r '
potential it is a.ssumed that+ (C'

~
occurs with

equal probability and only the cosine term occurs.
c'/vh is proportional to one-half of the total

cross section for the r collision and is an indi-

When the oscillating electric dipole moment of
the molecule occurs between an upper state ~a)
and a lower state (b), the energy level spacing
(d,b which is a function of the distance between
two colliding molecules can be important. One
procedure" is to compute the interaction between
the excited state

~
a) and the lower state of another

molecule and denote the interaction by CU/r" .
A similar procedure with the lower state yields
Cz/r ", and the phase shift during the collision
is given by
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ln(F /F, ) = 2m ln G„. (61)

Schmidt, Herman, and Brewer' emphasized this
aspect in their discussion of their measurements
on CH, F and they also emphasized the similarity
to nuclear-spin echo experiments. '

Even though velocity-changing collisions and
adiabatic collisions occur at the same time and
the change in direction is related to the change in
phase, the effect of velocity-changing collisions
also depends on the interval between collisions.
Since this interval is not related to the change, it
would seem that velocity-changing collisions and
adiabatic collisions can be treated as statistically
independent for short T, and

G= GrG„(small T) (62a)

for both the photon echo and the Carr-Purcell
echoes. For large T for photon echoes the decay
in echo amplitude is essentially the probability of
no collision during the decay interval and

G= G„(large T). (62b)

D. Collisions and the r potential

cation that hard collisions, i.e. r(~)& 1 are of pri-
mary importance.

For sufficiently short T the Carr-Purcell echo
measurements almost eliminate the effect of
velocity-changing collisions and then

path the eikonal phase 26 or g(~) of Eq. (59) has
the form

26 = &(~)= 2C/8 b'V,

where

(65a)

(sin'P sin'y —cos'P) .
4weo J„(J„+1)Js(Js+ 1)

(65b)

For a particular collision the angles P and y and
the quantum numbers v~K„J„m„andv~K~J~rn~
are given. It is now assumed that only the molecule
which interacts with the laser radiation has known
quantum numbers and only v„K„J„m„aregiven.
As the collision average ( ~ ~ ~ ), is formed, the
probability of selecting K~J~m~ as well as the
angles P and y for the plane of the motion must be
included. For given K„J„m„the coefficient C is as
often positive as negative, but in the collisional
average only the absolute value of C is used. 'The

average of
~
sin'p sin'y —cos'p

~
is approximately

0.5. The average over ~Ks~~ms~/Js(Js+ I) yields
Js(Js+ 1)/(2 Js+ 1)' and is of the order of —,. C is
further reduced by the K„m„/J„(J„+1)term.

If the molecule interacting with the laser radiation
has an upper molecular state A* connected by the
radiation to the lower state A, then the interaction
of this upper molecular state with molecule B and
the lower molecular state with the same molecule
B differs by C'= C~ —C~ or

If the rotation operator R(„'~((w, P, y) defines the
x, y, z axes relative to the space-fixed axes X Y, Z
in terms of the spherical basis vectors, the in-
teraction operator for the interaction between two
permanent dipoles is given by

rr, Z (Z ~ ))
)&RJ~*(JR*+1} (66)

where C is given by Eq. (56b}. K„*=K„is used
and for linear polarization m „+= m ~.

Schmidt, Berman, and Brewer' have measured
the amplitude of decay of the photon echo and of
the Carr-Purcell echo in CH, F as a function of
pulse interval T. Their data have a large, inten-
sity-dependent decay term, but after this term is
removed their experimental data would seem to
fit the equations

(63)XP» PZ-M

p, » and p, ~ „.are the electric dipole operators
for molecules A and B in the space-fixed frame.
r =xx+ bz is the intermolecular distance for mo-
tion in the x-z plane with impact parameter b.
is a unit vector with components r, = + 2 ' ' sinu
and r, = cosu. For a symmetric vibrator-rotator
this potential energy has a first-order diagonal
component of

ln(F, /F, )= —n(5. 1x10 ")2T (large T) (6Va)

= -n(2. 8x10 "+6.1x10 'T'+ ~ ~ ~ ) 2T

(small T) . (67b)

For sufficiently small T, the Carr-Purcell echo
amplitude decayed asK~Ksm gm s f (o( P y u)

4we, r' J„(J„+1)Js(JR)+ 1} (64}
(68)ln(F /F, )= —n(2. 8x10 ")2mT.

2U()=, Q (-) 5 ' 3ZR R „r1).„'
7rEor'M Ml m, m'

where f= 1 —3(-sinP cosy sinu+ cosP cosu)' and p.
„

and p, ~ are the magnitudes of the vibrational elec-
tric dipole moments. Since b is not chosen as the
axis of quantization, f does not have the usual
(1 —3cos'u) form. " For a straight-line collision

The decay of the echo amplitude for large T can
be compared with Eqs. (62b) and (56a). The re-
sults from an earlier paper' for the total cross
section for a. C/r' potential gave o(V)=2w'C/IIV
and
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(Vv(V, 0)), =2w'C/k'= 5.1x10 " (m'/sec).

This yields a value of C = 2.7 X 10 ". It was noted
in the discussion of Eq. (65b) for C that an average
over trajectory angles, K~, and m~ yielded a fac-
tor of the order —,', and

2

( )
1 Pe K~m~
8 4we, J~(J~+ 1)

With ( C) = „(pe/4we„), the dipole moment p. w
= 6.9

X10 "C m and can be compared with the experi-
mental value" of 6.1&&10 "C m. This is only ap-
proximate agreement. The K„=3,J„=4,K„+=3,
J„*=5 transition was used, and I„wasnot given.
ff&/d&= 3/5 and for the stimulated molecule these
states occur with equal probability. A factor of —,

'

was introduced to estimate the effect of K„m„/
Z„(d„+1). Equation (65b) is only approximate, and
there could be appreciable contribution from the
second-order perturbation terms.

For small T the coefficient of the T' term can be
compared with the coefficient of the T' term in
Eq. (56b),

( a, V' ) K' = 6.1 x 10 '

The cross section o(V, 0) for a r ' potential is not
available, but it is known to diverge logarithmical-
ly' for small 6 and to have a total cross section of
2w'C/h V= (wb, )'. A cross section which may have
some features of this cross section for small 6I is
a constant cross section for small 6I and with h k

=pV,

provide a better model. Then as experimental
measurements become better, it may be possible
to measure the higher moments (a,V') w'T', etc.
and yield a more direct measurement of the scat-
tering cross section in the forward direction.

The average value of the adiabatic collision con-
stant C' is related to the constant C by Eq. (66) and
with J„=4and J„*=5,C'= —,'C. With the previous
value of C,

w'C'/k =0.9x10 "
and with Eq. (60b) the expected decay rate by
adiabatic collisions can be obtained. This term
and the inelastic collision rate contribute to the
decay rate of Carr-Purcell echoes of 2.8&10 "
which is given by Eq. (68).

It may be noted that the adiabatic and inelastic
collision contribution to the relaxation rate is ap-
proximately one-half of the total elastic cross
section. In an elementary model this is equivalent
to the contribution of the elastic encounters in
which the phase shift 25, & 1 or the impact param-
eter b& b, . This implies that encounters with
b & b, cause a transition out of the v„K„J„~n„state.

E. Collisions and the r 6 potential

There is always an attractive C/r ' Van der
Waals long-range interaction between molecules.
The phase shift 26, or g(~) for a straight-line col-
lision path follows from Eq. (59) and

o(V, 0) = (w/n') k'b', (0& kb, 0& n) (69) 25, = g(~) = 3wC/8k V b' = (b, /b)', ( t 0)

=0 (kb„0&n).

Then (a,V') a' = (w'/36) (nhK/p, )'V where k w/g
= k/m„X. For CH, F and X=9.6x10 ' m laser ra-
diation and V= 600 m/sec, this coefficient is 2.3
x 10 'n'. Comparison with the experimental value
6. 1&& 10 ' yields good agreement with n = 0.5. This
simple cross section corresponds to an angular
change in the relative velocity of 0& (2kb, )

' The.
angular change in a collision with the average rel-
ative velocity V is AV= VO or

A V = fi /2 yb, = 1.9 m/ s ec ..

The concept of a "velocity jump" has been intro-
duced for the discussion of velocity-changing col-
lisions. Berman, Levy, and Brewer" suggest a
value of 0.85 for this "velocity jump", which can
be compared with one-half of the value of the
change in relative velocity. They use a Keilson
and Storer collision kernel in their discussion of
small velocity changes. It would seem that the
more direct relationship to the scattering cross
section v(V, 0) which is given in this paper should

where K = p, Vb and hk= p, V is used. The impact
parameter b = b„for &(~)= 1, and with this notation
the total cross section is

f(k, 0) =ik b db J—,(kb0) (1 —e' o ~ ).
0

(72)

The amplitude f (k, 0) is a known integral and is
rela. ted to the total cross section by o(V) = (4w/k)

lmf(k, 0). For small 0 Mason" et al. suggest that
this integral has the approximate form

f(k, 0) exp I-v(V) ' k/08 ]w.

Since

the choice of constant in the exponential is selec-
ted in this paper so that the v(V, 0) integrates to
almost the total cross section. Thus

v(V) = 2.4wb', ,

where 2.4 = w/I'(-', ) sin —,
'

w. The angular dependence
of the cross section for small angles is difficult to
obtain, but its approximate form follows from
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o(V, e) =-0.60&'5', e '"-"" (73)

is selected as the approximate form for the small-
angle scattering.

It is this sharp small-angle peak which will be
observable in Eq. (55a). Direct integration over
2mo d 6} of the sine term yields Dawson's integral.
This is not a particularly useful form and the ex-
pansion which yields Eqs. (55b) and (55c) is used.
For large T, that is ~VT/kb, =(h x/ijb, ) T& 1, the
decay rate depends on n{V o(V, 0)), and

y =m[2. 4x(3vC/6a V)2'V], ("l4)

where {V'i') = V'i' is used. The data of Hamann"
eI; a/. which were obtained from the study of the
second virial coefficient can be used to obtain a
value of C=4400X10 79 Jm' for SF, and C=2500
X10 "Jm' for SiF,. For SF, this yields an ap-
proximate value of b, = 17.5&10 "m and a cross
section of

o(V) = 2300 x 10 "m'.
This cross section yields a decay rate of

y=2. 3x10'P 7,
and can be compared with the rate of 2x10' P 7
which was observed by Heer and Nordstrom. '
The pressure is in units of millitorr. For SiF,
the impact parameter b, =15.2x10 "m and the
approximate cross section is a(V) = 1750x10 "
m'. This cross section yields a decay rate of
y= 2.0x10' P z. The experimental value of the
echo decay measured by Nordstrom' et al. is
pressure independent in the pressure range from
1 to 10 mT and corresponds to a rate of y=3&10'
for excitation with the P(30) CO, laser line. A
similar pressure-independent linewidth was found

by Nella wjth Iamb-dip measurements. Thjs
pressure-independent feature is not explained.

The second virial coefficient" for CH, F suggests
a value of C=152X10 "and 50=7.8x10 "m.
This yields a cross section of 450~10 "m' and
an echo decay rate of 2.7&10 "n=0.9&10' P~~.

APPENDIX

The matrix elements of the operator exp(-if')
are taken from Ref. 8 and the matrix elements
connecting states ~m, ) and ~m~) follow from

e '~~ '~' =e '@'[/m, )(m, / f(m, ) —/m, )(m, f g(mq)

+ (m, )(m, ~g*(m, )

where

+ @lb FPlb @lb (A 1)

2q(m, ) = [&'(m, m, )+ 4 [v]'(J, lm, M ( J,m, )'] 'i',

(A2)

f(m, ) = cosq(m, )r-i[n, (m, m, )/2q(m, )] sinq(m, )y,

g(m n ) = i [~ /q( my )j (J~ 1m ~ M ]J,m, ) sinq(m ~ )r,

b,(m, , m, ) = (u(m, m, ) —(u,

(((m. , m, ) =-,'a -' [Z(m. )+ Z(m, )j .

(A4)

(A5)

The strength of the interaction v=8 'E(J, ~[P~[J, )
(2J, + 1}-"

This value is somewhat smaller than the observed
rate of 5.1X 10 ". CH, F has both a r ' and a r '
interaction potential between molecules and in
second virial coefficient calculations the contri-
bution of the r ' term is a small perturbation.
This need not be true when the total cross section
is important and the z ' term could dominate the
r ' term.

For sufficiently small TEq. (55c) is appropriate.
The exponentail cross section yields a value of

{a,V') z'= l.7 (km/p, )' V

for the coefficient of the T' term. At a wavelength
of 10.6 pm, one has (5 K/p)=2. 6x10 ' for SF,.
This term becomes important when (A z/pb, ) T
= 1.5&10' T& 1 or at pulse intervals shorter than
0. 6 p, sec.
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