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The Dicke Hamiltonian is linearized by expanding the field and atomic shift operators about disposable c-
number parameters. When these parameters are chosen to be the expectation values of the corresponding
operators with respect to the linearized Hamiltonian, the difference between the free energy of the original
Hamiltonian and the free energy of the linearized Hamiltonian is minimized. This difference (per particle)
vanishes in the thermodynamic limit; so the equilibrium statistical mechanics of the system is described by the
linearized Hamiltonian. The disposable parameters are order parameters of the linearized Hamiltonian. The
field and atom order parameters obey a system of coupled nonlinear equations characteristic of mean-
field theories. These equations determine the critical temperature and the ordered-state behavior. The
thermodynamic state of each subsystem is a statistical superposition of thermal noise and a coherent state
produced by the complementary subsystem acting as a classical source. The classical driving terms are the
order parameters. The order parameter and coherent-state parameter are equal for the field subsystem but not
for the atomic subsystem. The ordered state is characterized by an enhanced condensation of the atomic
subsystem into the state of maximum cooperation number r. This enhancement is attributed entirely to the
Stark splitting of the atomic energy levels due to the classical driving field. A different but equivalent system
of coupled nonlinear order-parameter equations is derived from the order-parameter equations of motion in
thermodynamic equilibrium in the thermodynamic limit. This alternative form of the coupled self-consistent
equations leads to a very simple method for locating the critical temperature and determining the ordered-
state behavior of interacting systems. This method is illustrated by determining the gap equations for three
model Hamiltonians. These describe (a) interaction of spin-j systems with a single mode of the radiation field,
(b) interaction of two-level atoms with a finite number of modes of the radiation field, and (c) interaction of
two-level atoms with one or two modes of the radiation field through double photon absorption and emission
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processes.

I. INTRODUCTION

In 1954 Dicke! proposed a model Hamiltonian
which has since become an extremely useful tool
in quantum optics for the study of the interaction
between light and matter. Interest in this model
has been renewed by the recent discovery by Hepp
and Lieb? that this Hamiltonian predicts the exis-
tence of a second-order phase transition for a cer-
tain range of the coupling constants.

Wang and Hioe® considerably simplified the com-
putational aspects of the Hepp and Lieb proof by
introducing the Glauber® field coherent states. In
addition, they determined the conditions for a
phase transition in the multimode Dicke model for
a finite number of modes. Hepp and Lieb® were
able to put upper and lower bounds on the partition
function for the infinite-mode Dicke model using
atomic coherent states.”” Their results reduced
to those of Wang and Hioe in the finite-mode case.

The demonstration of the phase transition and
and the location of the critical point were further
simplified by Gibberd,® who applied a Bogoliubov
transformation® to the field part of the Dicke Ham-
iltonian.

In the meantime the computational methods of
Wang and Hioe have been used to discuss phase
transitions and derive gap equations for “dressed”
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Dicke models. Carmichael, Gardiner, and Walls'
showed that inclusion of the counterrotating terms
merely serves to renormalize the coupling con-
stant. Kudenko, Slivinsky, and Zaslavsky'' studied
the effect of Coulomb interactions on the location
of the critical point. Thompson'? studied the ef-
fects of phonon-assisted transitions on the critical
temperature and found that for a certain range of
the coupling constants a first-order phase transi-
tion was possible. Recently, Rzgzewski, Wodkie-
wicz, and Zakowicz'® showed that the phase trans-
ition disappears when the A term is also included
in the Dicke Hamiltonian. However, we believe'*
that the disappearance of the phase transition in
their work stems entirely from the presence of the
counterrotating terms in the interaction Hamilton-
ian.

The contributions stimulated by the original Hepp
and Lieb result have been of two types, those that
have simplified the original computation, and those
that have considered more complicated models. In
the present contribution we will simplify the com-
putation even further by modifying the method in-
troduced by Gibberd. In a subsequent contribu-
tion'® we will consider more general model Ham-
iltonians.

The method to be introduced in this work is the
following: The Dicke Hamiltonian is expanded
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around the mean values of the shift operators o*, a'

In the thermodynamic limit the free energy per
atom from the full and linearized Hamiltonians are
equal. The existence of the phase transition and
the location of the critical temperature can then be
determined from the linearized Hamiltonian. The
physical interpretation of the system state is then
immediately determined from the density operator
obtained from the linearized Hamiltonian.

The plan of this work is as follows: In Sec. II we
carry out the dual order-parameter treatment of
the Dicke Hamiltonian. In Sec. IIl we interpret the
physical system state by comparing the density
operators for the field and atomic subsystems with
density operators representing statistical super-
positions of thermal noise and coherent states. In
Sec. IV we show that in the ordered phase there is
an enhanced condensation into the atomic state of
maximum cooperation. In Sec. V we compute gen-
erating functions for the energy moments of both
the atomic and field subsystems. In Sec. VI a dif-
ferent but equivalent system of coupled nonlinear
order-parameter equations is derived from the
order-parameter equations of motion in thermody-
namic equilibrium. These coupled equations are
used in Sec. VII to locate the critical temperature
and discuss the critical behavior for three variants
of the Dicke Hamiltonian.

II. DUAL ORDER-PARAMETER TREATMENT

The Dicke Hamiltonian for m modes of the radi-
ation field interacting with N independent two-level
atoms is!

= t 152
Gﬁ—iwsasas+ei2 o5
S=. J=1

1 N m ‘4o .
+ riatos+r.a0%). (2.1)
m;}g( s¥svi s¥sY i
The field mode operators n =ala,, al, a,, I obey
independent harmonic-oscillator commutation re-
lations,

[ns’ a;] =+ al 6st’ [n.sy at] =—ay 6st: [al’ at] == Ibst'
(2.2)

The atomic operators 0%, ¢}, and o obey indepen-
dent SU(2) commutation relations:

[0%,0%]=+20%6,,, [0%,07]=—20370,,

(2.2a)
[0%,03]=+02 B 1

For the purposes of the present section we will as-
sume that only one field mode is important (m =1),
that w, =1, and that A, =X is real.

The equilibrium statistical mechanics? of the
system described by the Hamiltonian (2.1) is gov-

erned by the free energy F,
e™®F =Tre™¥, (2.3)

The exponential of the Dicke Hamiltonian is diffi-
cult to compute because of the bilinear coupling
terms a'o; and ac?.

It is therefore useful to rewrite (2.1) by making
the following substitutions:

a=(a-p)+p, 07=(05-v,)+v;. (2.4)
The Dicke Hamiltonian then assumes the form

=3, +3q, ¥ =H,+H +H,, (2.5)

N N
— A * *
”o--ﬁ(u Zjﬂ vj+u§jﬂ2v,~),

N N
X
H, =a'a+ T (a*ZVﬁ aZV’}‘),
j=1 J=1

(2.6)
N A N N
H, =eZ§ 0%+ v <H*Zo}+p20}) ,
j=l j=1 j=1
N
=2_jh(j),
\ N
Ho=7% <(a* - u*)Z(G;— v;))
N
+a-w)3(05- u;‘)>. @.7)

The Hamiltonian 3C, contains terms bilinear in the
field and atomic operators, while 3C; contains only
linear terms. Moreover, JC, can be expressed as
the sum of the three mutually commuting terms H,
which is a c-number function of the parameters p
and v;, H;, which depends only on field operators
and the parameters v;, and H,, which depends only
on atomic operators and pu.

Since H,, H,, and H, commute, F; is the sum of
the free energies associated with each of these
terms,

Fp=F,+F, +F,, (2.8)

N
_ A * *
Fo“—mjg(li Vj+IJ-Vj),

. (2.9)

2

j=l

F,=—(1/8)N1n2 coshp [(3¢)* + |xpu|2/N]*/2,

Fl=_

. In(1 - e7%)
B b

N

So far the values of the disposable parameters
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K, and v; have not been specified. Since the equi-
librium statistical mechanics of (2.1) is governed
by F but only F,(p,v;) can be computed, we must
choose the parameters pu, and v; to make the two
free energies equal in the thermodynamic limit,
lim #—”L) -0. (2.10)

N—>
This can be done by comparing the ratios

e=fF _ Tre-?XL*%q)
e-BFL Tre-BSCL

~1+f<3co>+ff(3c%)+...

The perturbation expansion is given explicitly in
the Appendix. If the expansion on the right-hand
side of (2.11) coverges then (2.10) is valid.

The values of the parameters p, and v; for which
(2.11) converges can be determined by investigating
the term ¢3C%),

(2.11)

603 =3 TN [ - %) a- wh05- v, )Xok - v,
i K

+{(a-p) (@ = p*)) (o - v3) (05- v ), ).
(2.12)

The subscripts 1 and 2 indicate that the expecta-
tion values are taken with respect to H, and H,,
respectively, and the integrals have been sup-
pressed. It is clear that the choice of the param-
eters p,v; which minimizes the expectation value
of the fluctuations in (2.12) is

p=La)y, v;=©07,. (2.13)
The choice (2.13) causes all odd terms in (2.11) to
vanish and all even terms to be minimized. There-
fore if the expansion in (2.11) converges the choice
(2.13) will guarantee convergence.

The arguments leading to (2.13) are heuristic in
nature and could have been anticipated from (2.4).
We remark that a rigorous variational argument!®
leads to the same result.'®

The result (2.13) shows clearly that the (varia-
tional) parameters p and v ; have a physical in-
terpretation as order parameters for the field and
atomic subsystem, respectively.

The order parameters p and v; may be deter-
mined as follows: p ={a),, where the expectation
value is taken with respect to H,(v), which is itself
an explicit function of the unknown order param-
eters v;. Similarly, v;=v, is a function of y. Di-
rect computation of the expectation values leads to
a pair of coupled nonlinear equations for p and v,

;L=—7\\/Nv,

_V_-x(u/m)
20

tanhge, (2.14)

Vj: r=V=

0= (he) 22w/ VN |2,

It is convenient to replace the extensive order pa-
rameter p by the intensive order parameter u’
=u/VN.

These equations can be solved for p’ and v using
the standard methods of mean-field theory.!” For
example, v can be eliminated to obtain

W’ =(u’/20) tanhg [Ge )P+ [Ap’ 2122, (2.15)

It is clear that u’=0, v=0 is always a solution of

(2.15) and (2.14). This solution corresponds to the
disordered state. If a nontrivial solution p’#0,

v #0 exists, then p’ is determined implicitly from
(2.15). At T=0,

|’ |2=(/20)2 [0 /e - 1];

thus an ordered state is possible only if A\?/e >1.
The order parameter p’ decreases with increasing
temperature and approaches zero as the critical
temperature is approached from below. Therefore
the critical temperature is determined from the
“gap equation”

1=(2%/¢)tanhs Be.

The behavior of the order parameter y as a func-
tion of temperature on both the disordered and the
ordered branch is shown in Fig. 1. The behavior
of the free energy F/N,

(2.16)

1]

ORDERED BRANCH

BIFURCATION
POINT

T=0 Y e
\ T, j T
—— THERMAL CHAOTIC BRANCH

FIG. 1. Behavior of the order parameter u’ as a
function of temperature shown both above and below the
critical temperature 7T,. In the ordered state the order
parameter | ¢’ |? is determined implicitly through the
self-consistent equations characteristic of mean-field
theories, tanhx =(2kT/A%)x, where x =8I (%6)2+ [Au’]21072,
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FIG. 2. Free energy per particle F/N=f(u’, u’*)
=+|p’ [*=(1/B) In2 coshB[(4€)*+ | A’ |!]/2 plotted in both
the disordered and the ordered phases. The ordered
phase is stable below T, and the phase transition is sec-
ond order.

F/N=f(u,pn’)
=|p’|?- (1/8) In2 coshp[(3 €)*+ | ap’|2]172,
(2.17)

as a function of the temperature 7 =1/Kg is shown
on both the disordered and the ordered branch in
Fig. 2.

III. PHYSICAL INTERPRETATION OF THE
ORDERED STATES

In the thermodynamic limit the equilibrium
statistical mechanics of the systems described by
(2.1) and its linearlized version 3¢, (2.6), are
equivalent. The density operator obtained from 3,
factors into the product of density operators, one
describing the field subsystem only, and the other
describing the atomic subsystem only. The influ-
ence of each subsystem on the other is contained in
the order parameters v and p appearing in H, and
H,. As a result, we can discuss the physical state
of the field and the atomic subsystem separately.

A. Density operator for the field

The density operator for a single field mode of
energy 7w in thermal equilibrium is*

p(B, iw)~ exp(-phiwa’a). (3.1)

The density operator for a pure coherent state
|a) is

p(| @) =|a)(a| =U(a)|0) O|UH(a), (3.2)
U(a) =exp(aat - a*a). (3.3)

The operator |0) (0] is the density operator p(vac)
for the field vacuum state. From (3.2), the opera-
tor U(a)p(vac)U '(a) describes a system originally

in thermodynamic equilibrium at 7 =0 which is
driven by a classical current. The density opera-
tor describing a system initially in thermodynamic
equilibrium at temperature T, which is driven by
the same classical current, is

p(B, Fiw; | @))~ U(a) exp (- phwata) U t(a)

~ exp [-phw(ata - aa’ - a*a)].
(3.4)

Comparison of the density operator p, ~ e™?#1) for
the field subsystem with (3.4) leads immediately to
the conclusion that the physical state of the field
subsystem can be represented by a statistical su-
perposition of thermal noise characterized by a
temperature T=1/Kg, Zw=1, and a coherent state
characterized by the coherent-state parameter «
== XVNv. Fromthe coupledorder-parameter equa-
tion (2.14) we conclude that the order parameter p
and the coherent-state parameter « for the field
subsystem are equal.

B. Density operator for the atomic subsystem

The density operator for a single two-level atom
with energy level separation E in thermal equilib-
rium is

p(B,E)~ B2, (3.5)
The density operator for a pure atomic coherent
state |9<1>) is”
p(|09) = [60) G| =UB,0)| -2)(-1 U9, ),

(3.6)
U8, p) =exp[3(8e-ic* - Bei®c™)]. (3.7)
The density operator describing a statistical su-

perposition of thermal noise and atomic coherent
state is

p(B,E, [66)~U(6,p)e8E%/2 U (0, ¢)
~exp{-BE[30%cosf

-z (e"*°0* - e#?¢~) sind]}.
(3.8)

Comparison of the density operator p,~ e=8#z(
from (2.6) for the atomic subsystem with (3.8)
leads immediately to the conclusion that the physi-
cal state of the atomic subsystem can be repres-
ented by a statistical superposition of thermal
noise characterized by a temperature 7 =1/Kg and
energy E =2[(3¢)*+ |Au’|2]*/2 and a coherent state
characterized by Bloch angles 6 and ¢, where

cosb=¢/E, (3.9)
(sinf)e=i® =v/[(e/2227 + | v|2]*/2.

For the atomic subsystem the order parameter v
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and the coherent-state parameter 3 6e™*® are
uniquely related to each other but are not equal,
while for the field subsystem the order parameter
1 and coherent-state parameter o are equal.

The results of this section make it clear why the
coupled order-parameter treatment (2.4)-(2.13)
reduces to a mean-field theory. In the thermody-
namic limit the Hamiltonian (2.1) can be replaced
by 3¢;, Eq. (2.5). Since the components of 3¢, com-
mute, the corresponding density operator factors

p~ e BRL — g=BH; ei2~p . ®p,, (3.10)

p;~ exp [- B(a*a+7->‘ﬁa*f: (o + V%az”: ©; ):‘ ’
F; j=

=1

(3.11)

Tl ew[ (s cos+ 2y @i 7y <@3)]-

(3.12)

Equation (3.11) describes a field driven by a clas-
sical current ({0%)), and (3.12) describes an atom-
ic system driven by a classical field ({a), (a')).
Thus each subsystem is treated as a quantum-
mechanical system driven by its dual classical
counterpart. The effective classical driving fields
(u,n™) and currents (v;,v¥) are related to each
other in a self-consistent way by (2.14). The on-
set of order in each subsystem induces an order in
its complementary subsystem.

In the ordered phase the effective classical driv-
ing field p produces an increase in the energy lev-
el separation between the ground and excited atom-
ic levels. This Stark splitting E =[e%+42%| n’ |?]*/2
ranges from E =¢ at the critical temperature to
E=)%at T=0,

IV. ENHANCED COOPERATION CONDENSATION

Since the atomic subsystem is described by N
independent SU(2) algebras, it is useful to intro-
duce the total angular momentum operator

J2=J2+3 (J,J_+J.Jd,),

where
N N
= 1 -z - &
J,—Z 20% and Jt—z o%.
J=1 J=1

Then the cooperation number » defined by
r(r+1)=(J%)=Trp,J? (4.1)

describes the extent to which the individual atomic
Bloch vectors are aligned. In the disoraered state
7 increases monotonically as the temperature de-

creases and assumes the maximum value » =3 N at

since all atoms are in the ground state m
It is not immediately obvious, however, that
r=%Nas T -0 in the ordered state.

The cooperation number as a function of temper-
ature in both the disordered and the ordered states
is given by

r(r+1)=(J2)=3N+iN(N-1)(tanh 3 BE)?.
(4.2)

s

:0,
1
- 3.

In the limit of high temperature (3—~0), the atomic
system behaves like N independent spin-3 systems.
In the limit of low temperatures (tanh 3 gE —~1), the
atomic system behaves like a single giant spin with
J=1N. Below the critical temperature 3 E
=[(3€)?+ |xp’|3]*/? in the ordered state and E =¢ in
the disordered state. As a result, at fixed temper-
ature 7(ord) = »(dis). The onset of order below the
critical temperature leads to an increase in the
cooperation number 7. As a result we can say that
the ordered state is characterized by an enhanced
condensation into the state of maximum cooperation
number.

From (3.8) it is clear that the density operator
for the atomic system in the ordered state can be
diagonalized by a unitary transformation U (6, ¢).
This unitary transformation rotates the south pole
of the Bloch sphere into a new position character-
ized by the atomic coherent-state parameters
3 0e~i®, In this new representation the density
operator has the diagonal form

N z
po~]T exp (——/%531 ) .

j=1
It is apparent that the enhancement in the coopera-
tion number » stems entirely from the Stark split-
ting of the atomic levels produced by the effective
classical driving field u’ as discussed at the end
of Sec. III.

V. GENERATING FUNCTIONS FOR OPERATOR MOMENTS

Generating functions for the moments of the dia-
gonal operators afa,o*;, and the off-diagonal opera-
tors a', a, 0%, can be computed by standard tech-
niques involving Baker-Campbell-Hausdorff for-
mulas.'® We will compute the generating functions
for the diagonal operators in this section.

The expectation value

(erata) =Tre"“T" exp[- g (afa+ aa'+ a*a)]

Trly =0) (5.1)

isls

<e7'afa ) -

1 la|? (¢ -1)(n)
I-@ -1 ex"( (ny 1- (e’—1)<n>>’

(5.2)
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where (n)=(ef-1)". Further application of a
standard Laguerre polynomial identity,'? valid for
|er - 1] <1, leads to

vatay _ = al® 14 1
(e >-kz=0L,z(-J@L)(e SR (63)

The first two moments obtained from this generat-
ing function are

(a'ay={(n)+|a|?=T+8,
{(ata)?) = (29 + ANS + 82) + (N +8),

where N is the chaotic or thermal contribution and
8 is the ordered contribution. The variance

{(Aata)®) =8 + (1 +N)+28N (5.4)

is the sum of variances expected from a coherent
source only, from a thermal source only, and the
interference term arising from the presence of
both sources.*®

The generating function for the diagonal operator
3 0% can be computed similarly,

:Tre"""/2 exp[- B (zeo?+ap’o* +ap'*07)]
Tr(y -~ 0)

=cosh}y — (3¢/6) tanhg6 sinhz y, (5.5)

<e'raz/2>

where
0 =[(5e)?+ | apn’|?]*/2.

The first two moments and the variance of % 0% are
(307)=-3 (z¢/6) tanhgh, ((z0%)=1,

(6L o7y =1[1 - (¢ /20 tanh?a0]. (5.6)

It should be remarked that in the disordered
phase (a'a)={(n)=(ef- 1) and (3 0% =-} tanh3 Be
go to 0 and -3, respectively, as T—0. In the
ordered phase {(a'a) —(e® = 1)+ N[(3 \)* - (e/21)?]
and (309 —~— (¢/2)?) by (2.15) and (5.6).

VI. ALTERNATIVE FORM FOR THE COUPLED
EQUATIONS

The interpretation of the disposable parameters
p and v;, (2.4), as order parameters, which is
forced on us by (2.13), suggests an alternative de-
rivation of the coupled order parameter equations.?!
This involves computing the equation of motion for
the order parameters (a),and (03,

a ¢ + = 1 .z
E(a)=% aa+<220j
J=1

+\7']):7 (a"i o+ aZN a‘}),a] > (6.1)
il i=1 '

The assumptions of steady-state conditions, d{a)/dt
=0, and the thermodynamic limit, ([a'0;a])
={[a'a]), (07),, lead directly to an expression for
(a). A dual calculation leads to an analogous ex-
pression for {03). The coupled nonlinear equations
obtained in this way are

N
by 2\
RSN TR R (6:2)

Although the coupled order-parameter equations
(6.2) appear different from the coupled equations
(2.14), the two sets may be shown to be equivalent'®
using Schur’s formula (see the Appendix).

For purposes of discussing the existence of phase
transitions and locating critical temperatures,
coupled nonlinear order-parameter equations
derived by the methods of this section are more
useful than the nonlinear order-parameter equa-
tions derived by the methods of Sec. II. In the
neighborhood of a critical temperature, the order
parameters p’ and v; appearing in (6.2) may be
taken as infinitesimals of the first order. The ex-
pectation values of the commutators may then be
taken with respect to the disordered state. For
example, (505)2 is simply a Brillouin function for
a spin-3 system. Using the result that %BUZ(Be)
=%tanhs Be in (6.2) leads directly to the gap equa-
tion (2.16).

Coupled equations of the form (6.2) are more
useful than coupled equations of the form (2.14) for
locating critical temperatures because they are
already in linear form in the neighborhood of the
critical temperature. Moreover, Eqs. (6.2)
provide both local and global information about the
nature of the order-disorder phase transition. It
may be verified from (6.2) that p,y,~ |T - T |*/2
in the neighborhood of T,. From (2.17) it is easily
verified that the phase transition is second order.

It is also possible to make global statements of a
less precise nature about the phase transition. If
the order parameters behave like (T,— T)'/2 in the
neighborhood of T, then the phase transition will
be second order at T, but if they behave like
(T - T,)*/? in the neighborhood of the largest criti-
cal temperature, then there will be'® a first-order
phase transition at a temperature 7, >T, in addition
to the second-order transition at 7,. This latter
behavior appears for a certain range of the cou-
pling constants in a model Hamiltonian discussed
by Thompson.'?

The results in this section dealing with the loca-
tion of critical temperatures are a special case of
a more general theorem called the fluctuation-
transformation theorem, which will be discussed
elsewhere.'®
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VII. APPLICATIONS TO OTHER MODEL HAMILTONIANS

The methods outlined in Sec. VI will be illus-
trated by application to three simple modifications
of the Dicke Hamiltonian. These models describe
(a) interaction of N identical spin-j systems with a
single mode of the radiation field, (b) interaction
of N identical two-level atoms with m different
modes of the radiation field (m finite), and (c¢) in-
teraction of N identical two-level atoms with the
radiation field through double photon absorption
and emission processes. In each of these models
the gap equation for the critical temperature will
be derived. In addition, for model (b) we will
show that the atomic system order parameter be-
haves exactly as in the Dicke model, provided the
coupling constant is appropriately chosen.

A. Spin+j systems

The model Hamiltonian describing the interac-
tion of N identical spin-j systems with a single
mode of the electromagnetic field is obtained from
(2.1) by replacing the spin operators o7, éoj by the
angular momentum operators J,°, J;. With the
definitions

(a)=p=p' VN, (J)=y=v, (1.1)

the following coupled nonlinear equations are ob-
tained using the procedures leading to (6.2):

A z
we-% > v, =205 . (7.2)
k=1

Linearization of (7.2) around the critical tempera-
tures leads to the gap equation for the critical
temperature T,=1/B8.K,

(A%/€)(2))B,(B€) =1, (7.3)

where B(x) is the Brillouin function. This re-
duces to the gap equation (2.16) for j=3. Compar-
ison of (7.3) with (2.16) reveals that it is pos-
sible for an ensemble of “atoms” with 2j+1
equally spaced energy levels to undergo a phase
transition for smaller values of the coupling con-
stant A than that required for the corresponding
system of two-level atoms.

B. Multimode systems

The Hamiltonian describing the interaction of N
identical two-level atoms with m modes (m finite)
of the radiation field is given by (2.1). Making the
identifications

(ag) =g, Og)=v,=v (7.4)

and using the equations of motion method leads to
the following coupled nonlinear order-parameter
equations:

Wglhg= v‘;iu eu—<0:>i)\p,
-= R R~ .
sts 71\7— v FN o s Hs

(7.5)
Linearization about S, leads immediately to the
gap equation

m 2
1=2 <Z I—%) tanhz B.€. (7.6)

€
s=1 s

This is identical to the single-mode gap equation
(2.16) under the identification

> Al?
A2=Z sL | (7.7)
s=1

Ws

In order to show that the ordered-state behavior
in the multimode and single-mode models is the
same, it is useful to eliminate the order parame-
ters pgfrom (7.5). This leads to the relation

Ech(Z '—j—l—) E%tanh[%),

s=1

€\ 2 291/2

) - -

After making the identification (7.7), the two solu-
tions v=0, v# 0 obtained from (7.8) for the multi-
mode case are identical to the solutions for the
single-mode case obtained from (2.14) by eliminat-
ing u instead of v.

0

mo %
D
=1 w-l‘

C. Two-photon processes

Recent theoretical®? and experimental?®’?* inter-

est in double photon absorption processes suggests
that it might be useful to investigate such systems
for critical behavior. Since absorption of two
equal-energy but oppositely propagating photons is
more likely to be important for cooperative behav-
ior (because the Doppler shift is eliminated?!), we
will investigate the following model Hamiltonian
for critical behavior in the thermodynamic limit:

N
H=(ala,+ala_+1)+ € Z 308
k=1

A N _ N
+W (aIaI E 0, +a,a_ E 0:) . (7.9)
k=1 R=1

Here aI describes photons propagating with wave
vector k and a! describes oppositely propagating
photons. The photon number difference operator
A:aIa,,— ala_ commutes with the Hamiltonian.

The coupled equations for the order parameters
(a,a_) and (o, ) are
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<a+a_>=-%x(n++n_+1>711v— Z (o7,

(7.10)
e(o7) =(A/VN Xof){a,a_).

For fixed A=n,-n_ (A an integer) and at S,
(n,+n_+1) =| Al +cothB, and (0f) =—tanhzB.€. The
gap equation is then

(A2/2€)tanhzB.€(| Al +cothB,)=1. (7.11)

Assuming a resonant interaction (€=2), the gap
equation simplifies to

(3M)2(1+| Al tanhB,) =1. (7.12)

This result clearly shows that a phase transition
is possible even for very small values of the cou-
pling constant A, provided the photon number dif-
ference |A| is large enough.

A similar gap equation can be derived for the
case in which two photons are absorbed from or
emitted into the same mode,

(22%2/€)(cothB, F3) tanhz B, e=1. (7.13)

The upper sign holds for the case of an even num-
ber of photons in the mode and the lower for an
odd number.

VIII. CONCLUSION

The equilibrium statistical mechanical proper-
ties of the Dicke Hamiltonian have been treated
from a coupled order-parameter point of view.
The Dicke Hamiltonian was linearized by expand-
ing each of the shift operators appearing in it about
an undetermined c-number parameter. These pa-
rameters are chosen variationally® to minimize
the free energy associated with the linearized
Hamiltonian. The variational choice leads to an
interpretation of the variational parameters as
order parameters for the two coupled subsystems.
In the thermodynamic limit, the free energy per
particle obtained from the original Hamiltonian
and its linearized version are equal.

The order parameters for the field and the atom-
ic subsystems obey coupled nonlinear equations.
These equations always support the trivial solu-
tion £ =0, v;=0 describing the disordered state.
For large enough values of the coupling constant
(A%>¢€), a phase transition to an ordered state is
possible. The gap equation (2.16) locates the crit-
ical temperature below which the onset of order is
possible.

The density operator for the linearized Dicke
Hamiltonian factorizes into the product of density
operators, one for the field subsystem, the other

for the atomic subsystem. These subsystem den-
sity operators were compared with density opera-
tors describing a statistical superposition of ther-
mal chaos and a classical driving field. The com-
parison reveals that the thermodynamic state of
each subsystem is a statistical superposition of
thermal chaos characterized by a temperature T
=1/KB and a classical behavior characterized by
coherent state parameters o and 36e~*%. For the
field subsystem the order parameter u and the co-
herent-state parameter a are equal. For the
atomic subsystem the order parameter v and co-
herent-state parameter $6e™'? are related but are
not equal.

This density-operator treatment clearly reveals
the mean-field nature of the equilibrium statistical
mechanics of systems governed by the Dicke Ham-
iltonian in the thermodynamic limit. Each quan-
tum-mechanical subsystem behaves as if it were
driven classically by its counterpart. The classi-
cal driving terms are order parameters for the
respective subsystems. Furthermore, the order
parameters obey coupled self-consistency equa-
tions.

The ordered state is characterized by an en-
hanced condensation of the atomic subsystem into
the state of maximum cooperation number 7. This
enhancement is due entirely to the further splitting
of the atomic energy levels by the classical inten-
sive driving field characterized by the order pa-
rameter u’ (Stark effect).

The interpretation of the variational parameters
1 and v as order parameters for the coupled sub-
systems suggested an alternative derivation of the
coupled order-parameter equations. This involves
computing the equation of motion for the order pa-
rameters d{a)/dt and d{o, )/dt under steady-
state conditions in the thermodynamic limit. The
coupled nonlinear equations obtained by this pro-
cedure appear different from the self-consistent
coupled equations, although the two sets may be
shown to be equivalent.

The coupled equations derived from the equa-
tion-of-motion method are more suitable for the
location of the critical temperature, since they
are already linearized in the order parameters at
B.- The critical temperature is easily determined
from a linear eigenvalue equation.

This technique was then used to locate the criti-
cal temperatures and discuss the order-disorder
behavior for three variations of the Dicke model.
These models describe interaction of spin-j sys-
tems with a single field mode, interaction of two-
level systems with many modes of the radiation
field, and interaction of two-level systems with
one or two modes of the radiation field through
two-photon absorption and emission processes.
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APPENDIX: PERTURBATION EXPANSION AND SCHUR’S
FORMULA

The perturbation expansion used in (2.11) in-
volves computation of the function f(x, y) defined
by

eB(x+y) _ o Bx f(x) (A1)

The operator e™#* e(***) obeys the first-order dif-
ferential equation

d . Bx , B(x+y) - Bx B(x+y)
€ e =e e
B Y

=ead(-Bx)y(e—BreB(x+y))’ (A2)

e @ y=e*ye =y +(x,y] +3[xx,y]] .

Integration and iteration of (A2) lead to the per-
turbation expansion

8 8’ ”
e-BxeB(x+y)=I+f dﬁre—eladxyé,(f dﬁ”e—ﬁ adx )
(! 0

X(I+---)>

(A3)
Application of (A3) to (2.11) yields the desired ex-
pression,

Tre-8(}L+¥%Q) B .
TR Tl fo ap'(et 1 Nescq),

B B’
v [ ap [ dprie® e
o 0
xeB” XLge ) e,
(A4)

The expectation value is taken with respect to the
Hamiltonian C; .

Schur’s formula® is essentially the first Born

approximation to (A3) for the operator e**€,

where € is assumed small.

€Y =¢ (I+fl g8 ¥ eydﬁ’) +0(€?)
=e*{I+[(e™™* ~I)/-adx] ey} +0(€?)

=e"exp{[(1 - e™*)/adx] ey} +O(€?). (A5)
Schur’s formula is particularly easy to use when
y is an eigenoperator of x, [x,y]=ay. For example,
if x=a'a+5E0® and y=Na'o~ + ac*),
exp{-Bla’a+iE0* + Ma'To™ +ac*)]}
= exp[-Bla" a+ 3E0%)]

l_e—B(E-l) + -

xexp(-————_(E_l) Aa'o
1=e®0, o vo) . (A6)
R S V7, i
S +0( ))
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