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A theory of electron-molecule scattering is developed which is a synthesis of close-coupling and adiabatic-

nuclei theories. Specifically, the theory is close coupling with respect to vibrational degrees of freedom but

adiabatic-nuclei with respect to rotation. In addition, this theory can be applied to any number of partial

waves required; the remaining ones can be calculated purely in one or the other approximation. A theoretical

criterion based on fixed-nuclei calculations and not on experiment can be given as to which partial waves and

energy domains require the various approximations. The theory allows all cross sections (i.e., pure rotational,

vibrational, simultaneous vibration-rotation, differential, and total) to be calculated. Explicit formulas for all

these cross sections are given. The theory is applied to low-energy e-N2 scattering. The fixed-nuclei results are

such that the criterion shows clearly that vibrational close coupling is necessary, but only for the II~ partial

wave. The contribution of remaining partial waves can be obtained directly. from the adiabatic-nuclei ~pp«»-
mation. The close-coupling calculation for the II~ wave is carried out, and we find that it does give rise

to the substructure as well as the gross structure of the 2.4-eV resonance. When this amplitude is combined

with the adiabatic amplitudes, we can compute absolute values of all cross sections of interest. In particular

we find that vibrational excitation cross sections are about twice as large as previously inferred. The
momentum-transfer cross section can also be computed, and it too reveals substructure within the gross

structure resonance.

I. INTRODUCTION

Molecular nitrogen is a major constituent of the
atmosphere to an altitude of about 500 km. Thus it
can be expected that the scattering of electrons
from N, will be an important process in the aero-
nomy of the atmosphere particularly above the E
region, where photoionization of many of the upper
atmospheric constituents by solar uv produces an
abundance of electrons. For example, the reso-
nances in the e-N, vibrational excitation cross
sections in the vicinity of 2.4 eV have been used by
Newton et al.' to explain an enhanced 0'+N, (v)
-NO'+N rate which in turn will lead to the ob-
served decrease in ambient electron density in the

F, region during times of enhanced air glow giving
rise to stable auroral red (SAR) arcs via the reac-
tion e+NO'-N+O.

The 2.4-eV e-N, resonance is known to be a very
complex structure. Fortunately there is a wealth
of experimental details, ' and more or less phe-
nomonological theories to explain them. It is im-
portant however that this complicated structure be
understood from a fundamental —essentially ab
initio —point of view, in order that researchers
be able to predict scattering from other molecules
which cannot be prepared in the laboratory, but which
we now know to exist in many astrophysical environ-
ments. ' We believe that the present modification and

synthesis of existing theories will complete the fun-
damental approximations which must underlie the
methodologies to be employed in such calculations.

In Sec. II we shall describe the e-N, 2.4-eV reso-

nance and briefly review the previous calculational
theories leading to the point in Sec. III that, strict-
ly on the basis of fixed-nuclei calculations (and not
experiment) of the II, partial wave, one can infer
that the adiabatic-nuclei theory will not suffice to
describe the substructure of the resonance. 4 The
fixed-nuclei calculations which are an extension of
those of Burke and Chandra' to a series of inter-
nuclear distances 8 are also described in Sec. III.
In Sec. IV we develop the vibrational-close-cou-
pling theory and show that our calculations for the
II partial wave do reveal the substructures of this
resonance as more states are added, while at the
same time showing reasonable convergence when a
sufficient number of states is retained. The main
formulas of the adiabatic-nuclei approximation are
reviewed in Sec.V; by simple inspection one may then
see how to combine the vibrational-close-coupling
with adiabatic-nuclei theories: the process is one
of substitution of the appropriate scattering matri-
ces of the one theory for the corresponding ones of
the other.

The pseudopotential method whereby exchange
and polarization have been simulated in Ref. 5, as
well as its carryover in the vibrational-close-cou-
pling portion of the present work, renders this cal-
culation as not purely fundamental in prs, ctice. (In
point of fact it depends on one adjustable parame-
ter. ) Nevertheless the manner in which one may
in principle derive both exchange and polarization
from an unparametrized ansatz for the total wave
function has been given (cf. Refs. 15 and 16, for ex-
ample); thus the one phenomenological aspect of
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the present investigation should be considered an
item of calculational convenience rather than in
contradiction to the above description of the hybrid
theory as essentially ab initio.

Results and comparisons with experiment are
also given in Sec. V. An important aspect of the
calcu1ations is that they yield absolute normaliza-
tion for individual vibrational excitation cross sec-
tions, whereas as far as we know all measure-
ments are relative or have been done at individual
angles. Furthermore the theory is complete: it
gives formulas for total and differential cross sec-
tions of individual and averaged transitions for vi-
brational and/or rotational excitation as well as
pure elastic scattering. Simultaneous vibration-
rotation differential cross sections can also be cal-
culated (although that is not done here) as well as
the momentum transfer. The latter, which is cal-
culated, is particularly interesting because it re-
veals substructure similar to that of the elastic
scattering.

Finally in Sec. VI we give a brief discussion of
how this method fits in with other methods and pos-
sible generalizations.

II. PRELIMINARIES

Experimentally the low-energy e-N, resonance is
a complicated beast. It was first measured in de-
tail in vibrational excitation by Schulz' as a series
of irregular peaks (cf. Figs. 11—13}. The results
have been importantly complemented by the mea-
surement of the total cross section by Golden, '
which shows a gross structure peak centered at
about 2.4 eV superimposed on top of at least five
prominent subpeaks between 1.8 and 3.2 eV (cf.
Fig. 7). The observed inelastic structure led in
short order to its interpretation (crudely de-
scribed) as a compound state of the electron and
target system (i.e., the N, ion") with the sub-
structure due to the interference between the vari-
ous vibrational states of the compound system.
This general physical interpretation of the struc-
ture is certainly correct; the difficulty with the
calculations is that they are not ab initio, and thus
they contain many adjustable parameters. It should
be added, however, that the physical and mathe-
matical refinements of this general approach have
been greatly developed since the original papers,
most successfully by Birtwistle and Herzenberg. '0

That calculation, which is based on a boomerang
model, gives remarkable agreement with the
shapes of the vibrational excitation curves as mea-
sured by Ehrhardt and Willmann, "but it too does
not give absolute values.

In addition to the types of calculations mentioned
above, there have been other, more ab initio types

of investigations. One is a calculation by Krauss
and Mies" of N, - as a bound-state structure. This
calculation confirmed the assignment by Gilmore"
of this resonance as a II, "state, " and it showed
that it is a shape rather than a Feshbach resonance.
The calculation is truly a 15-electron self-consis-
tent-field calculation, but since the II symmetry
overlaps the ordinary e-N, continuum, which can
be of lower energy, some delicate restrictions on
the variation were necessary to assure that the res-
onant state was not contaminated by this nonreso-
nant scattering of the same symmetry. On that
score we can aQ state that the calculation was in
good hands with the NBS investigators. "

Finally, tw'o single-center fixed-nuclei calcula-
tions have been carried out: The first by Burke
and Sinfailam" includes full exchange of the inci-
dent and orbital electrons, but no induced polariza-
tion; the second by Burke and Chandra' includes
polarization and simulates exchange by orthogo-
nalizing the scattered to the bound orbitals. This
"pseudopotential" approach provides the basis of
all fixed-nuclei aspects of the present calculation,
and we shall discuss it as appropriate in succeed-
ing sections.

III. FIXED-NUCLEI THEORY AND CALCULATIONS

e'"'= g„(r;%)C(x,;R) (3 1)

exhibits no particular stationary properties with
respect to variations of R about the equilibrium
separation of the target molecule A =B,. This is
very forcefully exhibited here, when we extend
the calculations at the equilibrium separation' (R
=R, =2.068a, ) to four additional values of R of the
N, wave function given by Nesbet"': R =1.744393,
1.868, 2.268, 2.391 607.

To review the fixed-nuclei calculation (cf. Ref.
5 but our notation is somewhat different), the
ground state 'Z,' of N, is a closed shell described
by a single Slater determinant

C =det(y, (x,)y (x,) . ~ y„(x„)),
where the a,- can readily be identified from the
configuration 10 2o2 3o' 1o„20„1m„ofthe ground
('Z;) state of N, . The bound-state function" which

(3.2)

In contrast to its application in bound-state prob-
lems, the fixed-nuclei approximation for electron-
molecule scattering"'" assumes not only that the
nuclei are fixed (at a distance R apart), but that
the target molecular wave function C(x;R) has been
precalculated at each, in principle, arbitrary, in-
ternuclear separation A. As a result the scattering
associated with a total wave function (r is the co-
ordinate of the scattered and x, those of the orbital
electrons}
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is an LCAO function-meaning pairs of orbitals
are centered about the separate nuclei —is con-
verted to a single-center basis using a program of
Faisal and Tench':

2E + y'&t l/2
2l', 1) (I,) 00

~
l,O) (l,X~O

( l,~)„,(~)

(3.9)

(3 3) v, (r)=v, (r)+v,' "(r). (3.10)

(A double prime indicates every second term is
to be taken. The coordinate x includes spin vari-
ables plus the vector r.) A similar expansion is
now made of the scattered orbital"

(m}
&IF (r; R) = g '«'«Y, „(A)Y«*„(A,},

l]ly

(3.4)

where Qp are the sperical angles of the internu-
clear axis in the laboratory frame and &

= (r, A),
i.e. , unprimed coordinates are the coordinates in
the molecular frame.

With the use of (3.3} the static potential seen by
the scattered electron is naturally expanded in
single-center coordinates (in rydberg units)

(
2g 2Z 2

2 222/IIF+-22/21 + tr —r,. I )

= g "V,(&")P,(cost&) . (3.5)

(3.6b)

V(&&0&)(r.R) — rr + 2 y& (COSe} (1 8-(F lr&&) )
6

r'
(3.7)

The calculation' also includes orthogonality to all
occupied orbitals of the same symmetry via La-
grange multipliers. The equations satisfied by
ui". ,

& (r) of E&l. (3.4) are then

+jP u' ' r'- v' ' r u'. ' r
(

d' l (l +1)
dr lily l ~lg l&l~

l~

=g ) Q&( &(&), (3.8}

The equations satisfied are then derived from the
variational principle:

&IF
& m & m(H E)&If

( m) d& —0 (3.6a)
4

which is equivalent to the projection

Y,*„I', (H —E)4™dr'=0,
where d7' means integration over all coordinates
but r (including integration over A, ). In practice
this set of coupled equations, which may readily be
derived from (3.1)—(3.5), is augmented to include
an induced polarization potential

V'"" are the multiple components of V'"" from
(3.7), thus in particular V(12 &) =0 for )&&2. [The
remaining symbols in (3.9) are Clebsch-Gordan
coefficients. ]

The calculation for each R was done just as the
calculations of Burke and Chandra' at R =R,. One
only needs the dependence of the polarizabilities
on R. These were taken of the form

(F (R) =12.0+1.692(R -R,),
u, (R) =4.2+ 2.031(R —Ro) .

(3.11a)

(3.11b)

Equations (3.11) were chosen to give the correct
polarizabilities at R =R, and to reduce correctly
to the united atom limit: no(0) (= (F„&(„„)=8.5a,'
and n (0) =0. The value 8.5ao3 was interpolated
from Sternheimer's'9 calculation of the polariza-
bilities of Cl, K', and Ca". It is to be noted that
E(ls. (3.11) are somewhat different from Truhlar'o
who used Raman data to get an accurate estimate
of the derivatives in the neighborhood of R =Rp.
Our own interpolations, while somewhat cruder,
should apply over a larger range in R, and thus be
more suitable to excitation of higher-lying vibra-
tional states. Finally the value of r, was retained
at 1.592 as independent of R. That value was
chosen, ' so that the II, resonance for R =R, oc-
cured at exactly 4' =2.394 eV.

The scattering is determined from the asympto-
tic solution of (3.8):

limu(( «)
=mk-'/' [sin(kr- —,'((l,.) 6««

7'+ (&o 2 J

+K« I cos(kr —2&(l«)]. (3.12)

The K matrix as indicated in (3.12) is diagonal
in m; it is also real, symmetric, and for homonu-
clear targets connects only /, and l& of the same
parity. In matrix notation the scattering is natur-
ally expressed in terms of a matrix proportional to
the T matrix. In Ref. 5 this matrix is taken to be
T' ' which is related to E' ' by

7 &™= 2f(1 —au&. &) -'X("& . (3.13)

In Ref. 16, which gives the original derivation of
the coupled fixed-nuclei cross sections (using a
spherical analysis), the scattering is written in
terms of the a matrix which is related to the above
T matrix by"

(«
—«&« «2&([V (21 +-1)]1/2/I & 7r(m& (3.14)
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The fixed-nuclei results are most conveniently
given in terms of the sum eigenphase shifts. The
eigenphases are the arctangents of the e:genvalues
of the K matrix:

det~Z'"&-& &"&I
~

=O

g&m) —Q tan-) &((m)

(3.15a)

(3.15b)

where the sum in (3.15b) goes over all coupled
states that are included (and is found to converge
with inclusion of approximately eight coupled
states) I is the unit matrix. In Table I we give a
selection of our results for Z, 5„, II„partial
waves as a function of internuclear separation R.
The R(=R,) = 2.068 results are just those of Burke
and Chandra. ' A detailed description of that gener-
ic program has been published by one of us,"and
that program is what was applied here.

We also note in addition to m = 0, 1, . . . corre-
sponding to Z, II, . .. that the parity of the index l
(even or odd corresponding to g or (() is also a
good quantum number as well as the spin S. The
latter is always S =

2 corresponding to doublet mul-
tiplicity, since N, is a closed-shell ( Z,) target.
(We therefore suppress the doublet label, for ex-
ample, 'll, , on our partial wave notation. )

The sum of eigenphases for non-IJ, phase shifts
are seen to change minimally as a function of R
(although it is interesting that for Z, the minute
change is an oscillatory one). The change is also
slow and smooth as a function of the impacting en-
ergy k'. For those partial waves, therefore, the
adiabatic-nuclei theory for both rotational and vi-
brational excitation applies (see below).

On the other hand the change with both R and k'
of the II, wave, given in Fig. 1, is dramatic. As
a function of k' the salient feature is the resonant
behavior. If one confines attention to the equili-
brium separation R, one' evaluates the width I'
=0.4 eV, which is sensibly larger than the vibra-
tional spacing AE„=-0.29 eV. It was for this rea-
son that we previously believed the adiabatic nu-
clei theory would be at least semiquantitatively ap-
plicable to that partial wave as well." However,
if one looks at the curves for R&Rp then one sees
that the resonance has diminished to I'=-0.14 eV
for R = 2.391 607. And even at R = 2.268, I' =- 0.25
eV which is smaller than the vibrational spacing
of N„ in other words the time (r ~ I' ') spent by
the incoming electron in the vicinity of the mole-
cule is comparable to or longer than the vibration-
al period of the nuclei. This is a definite viola-
tion of a basic criterion for the validity of the adi-
abatic-nuclei theory, and it gives a purely theoret-
ically determined basis for distrusting the adiabat-
ic-nuclei theory for this partial wave. " We there-

fore turn in Sec. IV to vibrational close coupling
and its amalgamation into the adiabatic-nuclei
theory.

Before concluding this section, we give in Fig.
2 a comparison of our fixed-nuclei width and po-
sition curves versus R as compared to the calcu-
]atj.ons of Krauss and Mies and Birigristk and
Herzenberg. " Considering the different natures
of these calculations, we consider the agreement
to be remarkable.

@(I)—C, (x .R) g F(m)(r)~ (R)
V

[The contrast of this with (3.1) should be noted. ]
I et us write the total Hamiltonian (in rydbergs)

(4.1)

H =HO(R) —V„—(1/M)V~+ V„+Vx, , (4.2)

where H, (R) is the Hamiltonian of the target mole-
cule, with nuclei fixed at a distance R apart, and
M their reduced mass. V„and V„, are the inter-
action potentials of the scattered electron with the
orbital electrons and nuclei, respectively;

N 2
ee

j=l
(4.3)

1 1
~ -R2~ ~ +R2~ (4.4)

We derive coupled equations for the functions
F„(r) in the usual way; obtaining

(- ~'„-I'„,)F„,(r)+g(C~
I
V„+V„, I

C& &, „F„(r)=O.

(4.5)

In deriving (4.5) one uses the conservation of en-
ergy

E —Eo=k +&o=k„+&„, (4.6)

where E, is the electronic energy of the target
state satisfying the target Schrodinger equation

H, (R)C (x„R)= Z, (R)e(x„R) . (4.7)

One also uses the approximation that the rotational
kinetic energy is negligible compared to its vibra-
tional energy, so that

1 O'R
8 (4 8)

IV. VIBRATIONAL CLOSE COUPLING

It is clear from the foregoing that it is necessary
to include the dyna, mical response of the nuclei to
their vibrational motion. The most natural way of
doing that in quantum mechanics is to expand the
wave function. in terms of the eigenfunctions of the
vibrational motion: this is what is meant by a vi-
brational close- coupling expansion:
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TABLE I. Nonresonant eigenphase sums as a function of R (mod z).

Energy
(eV)

Partial
suave

Internuclear separation 8 (in units of tzp)

1.744 393 1.868 2.068 2.268 2.391607

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

2.00

2.20

2.40

2.60

2.80

3.00

3.20

3.40

A
B
C

A
B
C

A
B
C

A
B
C

A

C

A
B
C

A

C

A

C

A
B
C

A

C

A
B
C

A

C

-0,1921
-0.0253

0.0351

—0.2960
-0.0366

0.0503

-0.3772
-0.0505

0.0572

-0.4450
-0.0673

0.0591

-0.5037
-0.0845

0.0573
-0.5555
-0.1033

0.0528

-0.6022
-0.1229

0.0466

—0.6446
-0.1428

0.0389

-0.6835
-0.1630

0.0303

-0.7193
-0.1833

0.0210

-0.7524
-0.2035

0.0113
-0.7833
-0.2235

0.0011

-0.8122
-0,2434
-0.0092

-0.8393
-0.2631
-0.0197

-0.8649
-0.2825
-0.0302

-0.8890
-0.3016
—0.0408

-0.9119
-0.3204
-0.0513

-0.1906
—0.0645

0.0295

-0.2938
-0.0113

0.0423

-0.3747
0.0211
0.0474

-0.4421
-0.0346

0.0479

-0.5006
-0.0503

0.0449

-0.5524
-0.0677

0.0394

-0.5989
-0.0862

0.0323

-0.6412
-0.1054

0.0239

-0.6801
-0.1250

0.0146

-0.7158
-0.1448

0.0046

-0.7480
-0.1647
-0.0058

-0.7799
-0.1845
-0.0165

-0.8089
-0.2043
-0.0274

-0.8361
—0.2239
-0.0383

-0.8617
-0.2432
-0.0493
—0.8860
-0.2623
—0.0603

-0.9090
—0.2812
-0.0712

-0,1985
-0.0037

0.0288

-0.3048
-0,0090

0.0406

-0.3878
-0.0202

0.0448

-0.4570
-0.0353

0.0442

—0.5170
-0.0530

0.0401

-0.5702
-0.0723

0.0337

-0.6180
-0.0927

0.0256

-0.6616
-0.1137

0.0163

-0.7018
-0.1352

0.0062

-0.7388
-0.1568
-0.0045

-0.7733
-0.1784
-0.0155

-0.8056
-0,1999
-0.0269

—0.8359
-0.2213
-0.0383

—0.8646
—0.2424
-0.0498

-0.8917
-0.2633
-0.0613

-0.9175
-0.2838
-0.0727

-0.9418
—0.3041
-0.0839

—0.1902
0.0011
0.0278

-0.2940
-0.0020

0.0390

—0.3750
-0.0115

0.0427

-0.4426
-0.0253

0.0414

—0.5012
-0.0419

0.0368

-0.5530
—0.0603

0.0298

-0.5997
—0.0799

0.0212

-0.6423
-0.1003

0.0114
-0.6814
-0.1211

0.0009

-0.7176
-0.1421
-0.0102

—0.7514
-0.1632
-0.0216

-0.7830
-0.1843
—0.0332

—0,8129
-0.2051
—0.0450

-0.8409
-0.2258
-0.0567

-0.8677
-0.2462
—0.0684
—0.8929
—0.2664
-0.0800

-0.9174
—0.2862
-0.0914

—0.1926
0.0038
0.0271

-0.2972
0.0012
0.0379

-0.3787
-0.0083

0.0411

-0.4467
-0.0223

0.0394

—0.5056
-0.0393

0.0343

-0.5577
-0.0581

0.0270

-0.6047
-0.0782

0.0181

-0.6475
-0.0990

0.0081

-0.6869
-0.1203
-0.0027

-0.7234
-0.1417
-0.0139

-0.7575
-0.1632
-0.0255

-0.7896
-0.1846
-0.0373

-0.8198
-0.2058
—0.0491

—0.8484
-0.2268
-0.0609

-0.8756
-0.2474
-0.0726

-0.9015
-0.2678
-0.0841

-0.9265
-0.2878
-0.0955
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TABLE I. (continued)

Energy
(eV)

Partial
wave~

Internuclear separation & (in units of ap)
1.744 393 1.868 2.068 2.268 2.391607

3.60

3.80

4.00

4.50

5.00

A
B-

C
A
B
C
A
B
C
A
B
C
A
B
C

-0.9337
-0.3389
—0.0617
-0.9544
—0.3570
-0.0720
-0.9743
-0.3749
-0.0821
-1.0203
-0.4179
-0.1067
-1.0620
-0.4589
-0.1302

-0.9307
-0.2997
-0.0819
-0.9516
-0.3180
-0.0925
-0.9716
-0.3359
-0.1030
-1.0181
-0.3792
-0.1283
—1.0605
-0.4204
-0.1522

-0.9654
-0.3239
-0.0950
-0.9880
-0.3434
-0.1059
-1.0096
-0.3625
-0.1167
-1.0605
-0.4087
-0.1425
-1.1073
-0.4525
-0.1669

-0.9408
-0.3056
-0.1026
-0.9633
-0.3247
-0.1136
-0.9850
-0.3434
-0.1244
-1.0363
-0.3884
-0.1502
-1~ 0838
-0.4311
-0.1745

-0.9505
-0.3074
-0.1067
-0.9737
—0.3266
—0.1177
-0.9961
-0.3454
-0.1284
-1.0491
-0.3907
-0.1541
-1.0984
-0.4332
-0.1779

'Rows A, B, C refer to Z~, Z„, &„eigenphase sums, respectively.

and the fact

1 1 dA, + (e(x„R)~tt, (R)
~
e(x(,R)), —e

)g„(B)= 0.
(4.9)

Jn (4.5) an& (4.9) the subscripts on ( ) indicate 'the

coordinates over which one integrates. Note in
particular that. (Cv

~ V„~4v)„„ includes the ParaB,r)
metric dependence of 4 on R and is therefore not

Jk

1.5—

F(R)(eV)

1.0—

PRESENT
——BIRTWISTLE &

HERZEN BERG
KRAUSS & MIES

F(R) vs. R

ji

(RADIAN)

SSENPNASE SIIM 0.5—

hE„(

R n 2.3916

I I I

1.868 2.068 2.268 2468
I I I

R(ap)

eV

E (R) vs. (R-Rp)

(R)+EN (R) -EN2(Rp)

rr
rrr

j I

0
I

2 3
k (eV) = E —E„ (R)2

0'
N (R)-EN (Rp)

I I I I I

-0.4 -0.2 0 0.2 0.4 0.6 R-Rp(ao)

FIG. 1. Fixed-nuclei II~ eigenphase sum (mod 7I.) for
different internuclear separations. Note that k2 is rela-
tive to the ground-state energy of N2 which is itself a
functionR; cf. bottom curve, Fig. 2.

FIG. 2. Width and position of II~ resonance vs R. The
other results are from Birtwistle and Herzenberg (Ref.
10) and Krauss and Mies (Ref. 12). The lowest curve is
E/2(R) —&

N2 (Rp)



194 N. CHANDRA AND A. TEMKIN 13

simply 5„„,(C
~ V„~C)„. On the other hand, it is

true that

(4.10)

since @ is normalized for each R and V„, is inde-
pendent of r, . The net results is that the set of
equations (4.5) is seen to be a set of equations pure-
ly in r.

Note in deriving (4.5) we have neglected the ac-
tion of V2s on C (r,.; R). This is in complete analogy
with what one does in the full Born-Oppenheimer
approximation wherein the equation for the vibra-
tional wave function is derived neglecting the op-
eration of V'„on the parametric dependence of 4
on R [cf. specifically Eq. (4.9) above]. In the pres-
ent case the purely vibrational function y„(R) is re-
placed by a close-coupling expansion Z„F„(r)ll„(R)
which, as opposed to the bound-state ansatz, is
seen to depend on the scattered electron's coordi-
nates. Nevertheless the same prescription ap-
plies; V2~ operates only on that sum. The result
however is quite different; the vibrational equation
is automatically satisfied, Eq. (4.9), and one is
left with coupled equations for the F„, Eqs. (4.5).
The ansatz (4.1) also seems to single out the elec-
tronic coordinate of the scattered electron r and
treat it differently from the bound orbitals de-
scribed by r&. Formally speaking, however, this
lack of symmetry can be readily removed by anti-
symmetrizing 4,',"& of (4.1) between r and the re-
maining r&. In practise we shall not do this but
simulate it with the same pseudopotential of the
fixed-nuclei part of the calculation, V'"" of Eq.
(3.V), albeit treating it consistently with the close
coupling method. In order that polarization as
well as exchange be included, the ab initio ansatz
would require, according to the method of Refs.
15 and 16, that (4.1) be augemented to read

'(m& (r) =—g f(m&(r) Y (fl)
1

(4.11)

(C
~
V„+V„, ~ C)„,= Q V' &(r, R)P„(cos8) . (4.12)

The latter implies that

(Cv
~

V„+V„,~Cv)„„,= g V'„V„(r)P,(cos8),

where

V'„".„(r)=(v'~ V"&(r,R) ~v)„.

(4.13)

(4.14)

Using all these plus the well-known formula for
the integral of three spherical harmonics"

Y,*, P„Y, dA=(-1) [(2l+1)(2l +1)]'&'

|'l' ». l l X l
&

xl
(m o-m oooi

(4.15)

The essential item in all these treatments, as in
the Born-Oppenheimer approximation for bound
states, is that whereas nuclear kinetic-energy ef-
fects associated with 4 (or C+4'"") can be ne-
glected, they cannot be neglected for the coeffi-
cient functions which multiply the 4 's in the total
wave function, and the potential-energy effects of
all terms must be included.

To eliminate the angular dependence, we make
the usual type spherical harmonic expansion. As
opposed to (3.4), however, we here suppress the
dependence on A„since this does not alter the dy-
namical equations. Let

y(m& —8 (C, + C, (yol&) ~ F(m&lfccgo V V
(4.1') one can reduce (4.5) to the coupled equations

d' l' l'+1
+0'„, f&, ,

&, (r) = Q[(2l+1)(2l'+1)]'~'(-1)
~

'U'„~'„(r)f„'& '(r) .l ». l l X l

Vg l, )t m 0 -m &0 0 0
(4.16)

Equation (4.16) shows that the price we have to pay
to get rid of the angles in (4.5) is the l coupling.
In addition to that we have the summation over X

which comes from ihe single-center spherical ex-
pansions of V„and V„,, Eqs. (4.3) and (4.4). Fi-
nally, however, in the spirit of our fixed-nuclei
calculation we include an additional pseudopoiential
to describe a,nd simulate the effects of polarization
and exchange. [Note, like (3.1), (4.1) is also not
antisymmetrized between r and r, (i =1,2, . . ., I&l).]

However the way to do is now clear: to V'„~&„(r) we
add a polarization potential gotten from appropriate
matrix elements of V'""(r,R) of (3.7), i.e., in
(4.5) we augment the potential by (Ov

~

V'""
~

C v);
this induces a change in the potential V'„Y„of (4.14)
to U'„', &„(r) in Eq. (4.16), where

'0&„',&„= V„'&,& (r) + (v
I

~

V'" ' &

~
v) (4.17)

and V',""is the Xth multiple component of V'""
[see below Eq. (3.10)].
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Equations (4.16) are solved in analogous fashion
to (3.6); specifically here one demands the asymp-
totic form

lim f'„".I, (r) = [1/(k„)'~'] [sin(k„, r —,'nl —)5„„,6„,
+ K'„.I, „,cos(k„r - 2wl )] .

(4.18)

From the K' ' matrix one can, in analogy with
(3.10) and (3.11), develop a T' ' and a' ' matrix

T'„",I, „,= 2i Q [(1—iR) -']. i,u- i- + u- ~-, u»

(4.19)

(4.20)

The actual calculation, as we have indicated,
need only be done for the II partial wave. For
this partial wave there is no orthogonality require-
ment; on the other hand the multiplicity of coupling
(v, I, and X) makes it impossible, even on our ma-
chine (IBM 360-91), to include a sufficient number
of terms to get full convergence in all coupling in-
dices. We have therefore chosen to delimit the l
coupling to three terms (I = 2, 4, 6). The X expan-
sion is thereby automatically restricted to seven
terms (x=0, 2, . . . , 12). Within this approximation
we seek convergence in v. The role of the polari-
zation potential V'"", specifically the cutoff z,
here will hopefully serve, in addition to exchange,
to simulate the unincluded 3 and ~ components. It
was chosen so that with the inclusion of only one
vibrational state, the resonance in the v = 0- v' = o
cross section occured at k', =2.4 eV (cf. Fig. 4).

We shall not dwell on the numerical aspects of
this calculation: sufffice it to say that the generic
program of Ref. 22 was applicable with only minor
additions to (4.16). The static potentials V'„",„(r)
were generated numerically from Nesbet's wave
functions"; a selection of these potentials as a
function of z is shown in Fig. 3. There diagonal
potentials are compared with the fixed nuclei
(static) potentials V"'(r, R, ) wherein we see that
both potentials get increasingly more sharply
peaked and concentrated around y=-,'R„but that
for corresponding X the close-coupling potentials
are softer and without cusps. The off-diagonal po-
tentials have no real counterpart in the adiabatic-
nuclei theory, and they are mathematically the
source of the substructure of the II, resonance.

To see how this substructure appears we show
in Fig. 4 the II contribution to the v =0- v =0
cross section. The cross section is plotted for dif-
ferent numbers of vibrational states retained in the
expansion. In addition we have shown two sets of

curves, one includes two coupled I(l =2, 4) compo-
nents in (4.16) and one set includes three I's
(2, 4, 6). For each case we include all X allowed by
vector coupling.

One can see that one v-term result does indeed
exhibit a resonance at k' =2.4 eV. It was essential
to get this resonance that the polarization potential
be included along with the static potential in V'~'.
To get the resonance at the desired potition we had
to choose y, =1.496, 1.554 for two and three l-cou-
pled calculations, respectively. These values are
gratifyingly close to the value needed in the fixed-
nuclei calculation 1.597.' Thereafter one sees as
the fundamental result of this paper that the sub-
structure begins to appear, and that by the time we
have coupled in 10 and 9 vibrational states, re-
spectively, reasonable (but not precision) conver-
gence is seen to occur. (The program correctly
includes whether various vibrational channels are
energetically closed or open. ) The comparison of
the two-vs-three coupled l solutions shows that de-
tailed effects do depend on the number of l's re-
tained. Thus to obtain the second rather than the
first bump as dominant in opp as is revealed by ex-
periment (cf. Fig. 13), the retention of three I's
is necessary. It is also clear that the inclusion of
even more l's would be necessary to obtain the
totality of peaks in the substructure. (We shall
see other manifestations of the truncated substruc-
ture in other cross-section data a.s well. )

In Figs. 5 and 6 we give similar results for the
(II, contribution) to v =0-1 and v=0-2 cross sec-
tions. The same type of convergence and l-cou-
pling effects are apparent, except that the necessi-
ty of more I coupling (and consequently more u

coupling) becomes progressively greater, as one
goes to higher v .

We also state for the record that the substructure
does not appear if we retain only one /. Nor does
it occur in the adiabatic-nuclei approximation"
(see below).

V. ADIABATIC-NUCLEI APPROXIMATION, HYBRID-THEORY

RESULTS

The adiabatic-nuclei approximation" gives the
transition amplitude between vibrational rotational
states 1-I' as

f'.(& II')=(I" lf(&, II')I», +~ (5.1)

where f ((,0 ) is the fixed-nuclei amplitude with
nuclear coordinates frozen at $. Although the er-
ror term z on the right-hand side of (5.1) has never
been completely elucidated, the present calculation
will show that the delay time of scattering must be
small compared to the period 7 -=5,/n. E„.„associ-
ated with the largest energy quantum number of I
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which changes to the transition (we assume I' c I'),
in order for & to be negligible. The fixed-nuclei
amplitude for scattering from a diatomic molecule
is such the angular integrations in (5.1) can be
done analytically, "whereas the integrations over
R are necessarily numerical.

The resulting formula for the simultaneous rota- where

'"' —g A~(j 'v',j v)P~(cos '),
jg L

(5.2a)

tion-vibration differential cross section (when the
target is a Z; state) can be written"

Az(j v;jv) =(2L+1)(2j'+l)g(- I)'J'"x'~'"[(2l&+ I)(2X, + I)] ~ a, , (v'v)az ~ „(v v) 0003000
xg( 1) &' '~ ' ' " '&~&»~ '& '~ '~ '(2~, 1)

(m -m 0 p, —p 0)(0 001 t,. l,. J'

and for joint vibration-rotational excitation'

(5.2b)

I
a... „(v,v) = y„,(R) ,a, „(R)y„(R)R'dR . (5.3)

If one averages over initial rotational states j and sums over final states j, one arrives at

g A~(v', v)P~(cosg'),
dA k„4m L

(5.4a)

where the rotationally averaged coefficients are

Az (v ', v) = (2L+ 1)P [(2l&+ 1)(2X,. + I)]'~'a» „(v,v)a~ ~ (v ', v)

/l, X, L)(l X L fl, X, I )/'l X L
x

(0 0 0~ ~0 0 0 (m p -(m+ p, )) (m p -(m+ p)j
(5.4b)

The total cross sections are quite obviously just 4n

times the L = 0 terms of the respective expressions,

aq, „, ,„=(k,,„,lk, „)A,(j v;j v), (5.5)

(5.6)

(m)a, ),„(v', v)-a„, , „,. (5.7)

(An equivalent replacement can be made for T and
K matrices also. ) The justification for this re-
placement we hope is clear. The point we wish to
reemphasize is that the time delay criterion can
be theoretically (and need not be experimentally)

(The formulas involving the sum-averaging over
j states are the ones which are presently useful in
comparison with experiment in e-N, scattering, be-
cause the rotational spacing has not as yet been re-
solved. )

We now come to the fundamental statement of the
hybrid-theory: xePlace the adiabatic-nuclei matrix
elements, Eq. (5.3), by the corresponding close-
coupling values, Eq. (4.20), fox tvkatever partial
waves axe necessary.

assessed. [It should be added, however, that any
such criterion is always approximate in the sense
that constant of proportionality is necessarily
somewhat ambigous. In addition, in the present
case the 8, =2.068 curve lies slightly removed
from the main portion of the wave function y„,(R)
of the zero vibrational function of the N, molecule.
Thus the theoretical nature of the time delay cri-
terion must be understood within the confines of
such mundane considerations. ]

Coming back to the hybrid theory, note that the
purely rotational aspects of even this II wave are
described by vector coupling coefficients which de-
rive from the adiabatic-nuclei theory. It is this
fact which has motivated us to call this a hybrid
theory. One could in principle also include rota-
tional close coupling at the same time as vibration-
al close coupling (cf. Sec. VI). Indeed Henry"
has attempted that in the case of e-H, scattering
with only limited success. The point is that the
adiabatic-nuclei theory is quite sufficient, ' '
when polarization is included, to explain the exper-
imental data whereas vibrational-rotational close
coupling even in the simpler e-H, case poses con-
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FIG. 6. Same as Fig. 4 but for 00 2(=020).

Thus the need for direct absolute measurements is
clear, not only to test the theory but for many at-
mospheric applications, of which Ref. 1 is one, as
well. Although the shape for the inelastic v =0
-v =1 cross section is satisfactory, the detailed
agreement rapidly degenerates for higher v, and
again this can be attributed to inadequate v and l
coupling as noted in going from Fig. 4 to Fig. 6.
We believe however that the average magnitudes of
the particular cross sections are meaningful for
practical applications.

It should be noted that, because of the virtual in-
dependence of the nonresonant amplitudes on B,
essentially all of the inelastic cross sections
comes from the resonant II wave. This can be
clearly seen in the inelastic-differential cross sec-
tions, given in Fig. 15, which are quite symmetric
about 90'. Although the measurements of Ehrhardt
and Willmann" are not done over sufficiently wide
angular range to prove the symmetry, the agree-
ment with calculation in terms of ratios of forward
to minimum and 90 values at the different energies

is very good.
Finally we give the momentum-transfer cross

section. The formula for this cross section

o„-=l, (1 —cos8') dA' (5.8a)

is readily integrated from (5.4) to give

oz =—
2 g [Ao(v', 0) —qA, (v, 0)],

V

(5.8b)

where the A(v, 0) are given in (5.4b) with the II,
amplitudes replaced again by the close-coupling
amplitudes according to the prescription (5.7) of
the hybrid theory. [Note the A, (v, 0) =0 for v &0
for Ii, .j The result of the calculation is compared
with the experiment" in Fig. 16. The experiment as
is well known does not measure o„directly, but
rather infers it by optimizing assumed momentum
transfer cross sections to fit swarm data as func-
tion of applied electric field. As such the absence
of substructure on the "experimental" result should
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that the symmetry of the inelastic cross sections around
90' due to minuteness of non-G~ contribution in these
cases.

not be interpreted as its absence in fact. (lt is
virtually certain that the substructure must be
present. ) The experimental curve is seen to en-
velope the calculated curve in the resonance region
as would be expected. About 25%%ug of the calculated
curve comes from the v &0 terms in (5.8b). How-
ever the contribution of the resonances does not
extend beyond about 4 eV, thus the 20% difference
in this energy range would appear at this point to
remain unexplained.

Finally it is clea, r from (5.2) and (5.7) that the
hybrid theory can be used to calculate simultaneous
rotation-vibration excitation. We shall not do that
here as the programming of the formulas is some-
what more arduous, and there are presently no ex-
periments with which to compare. (We do intend
to perform that calculation at a later time. )

VI. DISCUSSION

This then completes our hybridization of vibra-
tional close- coupling and adiabatic-nuclei rotation-
al approximations. In order to complete the
a Priori theoretical framework for calculation of
very narrow (probably Feshbach) resonances one
will have to include rotational coupling as well. In
that case the hybridization will take place at the
second level only; i.e., the rotational and vibra-
tional close-coupling amplitudes for the resonant
par tial wave will be merged with the adiabatic-nuclei

amplitudes for the nonresonant partial wave. We
expect to elucidate the formal aspects of this gen-
eralization shortly.

Calculations involving this generalized hybrid
theory will certainly be arduous. It may well be
that for practical purposes other techniques (R
matrix, Fredholm determinant, etc. ) may be more
useful. But to be reliably accurate they will have
to include the equivalent physics of the hybrid the-
ory.

The frame-transformation theory"' represents
a different mix of the above theories. There one
ties interior fixed-nuclei calculations to exterior
close-coupling calculations at a boundary point r,
utilizing appropriate simplifications for each re-
gion. The approach has undoubted utility in molec-
ular photoionization and electron-molecular ion
scattering, where the known asymptotic Coulomb
solutions can be combined with multichannel quan-
tum-defect theory" to render the resonant struc-
ture to be described in terms of a few experimen-
tal parameters. " It should be noted, however,
that even here the fixed- and adiabatic-nuclei the-
ories can describe the nonresonant structure very
well.

In the case of scattering from heteronuclear
molecules (i.e. , those with a dipole moment)
frame-transformation can be expected to be use-
ful" if for no other reason than rendering certain
cross section finite which would diverge in the
fixed- and adiabatic-nuclei approximations. 4' How-
ever, in the case of homonuclear diatomic mole-
cules the utility of frame transformation is more
uncertain, because the forces are probably not
long-range enough to allow cross section to emerge
which are suitably insensitive to the matching radi-
us ro.
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