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We develop a fully quantum-mechanical theory for the organic-dye-solution laser, obtain density-matrix

equations of motion for the single-mode radiation-density operator and the matter-density operator, and solve

and investigate the steady-state case. We generalize the usual Born-Markoff approximation master equation

for two matter states to include four matter states, each one of which interacts with the laser radiation field.

This allows us to treat exactly the organic-dye molecular triplet-state levels which participate in the laser

operation in an essential way. For experimentally realizable conditions the steady-state solution contains
features which are qualitatively different from nondye lasers. These effects are directly attributable to intensity-

dependent triplet-state radiation absorption losses. At threshold the diagonal matrix elements of the radiation

photon distribution (R„)can be a decreasing function of the photon number n with an inflection point
rather than the usual truncated Gaussian. This necessitates redefinition of threshold. For pumping just above

threshold there may be both a maximum and a minimum in R„rather than just a maximum as in usual laser

theories. We also specify the effect of triplets on the narrowing of R„ for pumping above threshold and the

subsequent widening of R„ for pumping well above threshold. Many of our results require photon-counting

experiments for verification. Also, our equations are easily reducible to a semiclassical theory, ~here our
treatment of the triplets variables is an improvement over the usual rate equations.

I. INTRODUCTION

A great deal of laser-theory research was car-
ried out during the early years of the laser. By
1968 the fundamentals of laser theories, from en-
ergy-balance approaches to fully quantum-mechan-
ical appx oaches, had been carried out. The fully
quantum-mechaninical approaches had been carried
out using three essentially equivalent methods':
Langevin equations for the laser-system opera-
tors, '"' Fokker-Planek equations for the distribu-
tion function of macroscopic laser variables, '~
and density-operator equations of motion' " ' had
been developed and applied to the vaxious existing
types of lasers.

The organic-dye la,ser, however, entered the
picture somewhat late relative to other develop-
ments in the laser fieM. Organic-dye laser opera-
tion was not reported until 1966,' and then output
was in pulses only. It was not until' 19'70 that con-
tinuous-wave organic-dye lasers were obtained.
Because of their wide-range tunability, organic-
dye lasers have been of great interest to experi-
mentalists ever since their inception. However„
there has not been a concomitant theoretical in-
terest. Most theories have been rate-equations
approaches based on energy-balance considera-
tions, although semiclassical theories have been
considered. 'O'" Such theories describe many laser
phenomena very well. However, in order to inves-
tigate detailed properties of the radiation, such as
photon statistics and radiation intensity fluctua-
tions, it is necessary to include radiation fluctua-
tions.

If the organic-dye laser were qualitatively the

same as other lasers, radiation fluctuations could
be included simply by directly applying one of the
previously developed quantum-mechanica, l theo-
ries. ' ' However, because of the presence of
"triplet-state losses,"which was one of the primary
stumbling blocks preventing successful dye laser
operation for so long, there are differences in the
development of a complete organic-dye laser theo-
ry. In particular, whereas in most laser systems
the laser radiation intex acts with two matter-en-
ergy levels, for the organic-dye laser the laser
radiation interacts directly with four matter leve1s.
Two "singlet"-state levels are analogous to the
usual laser two-state system, which is predomi-
nantly emissive. In a,ddition, thex"e are two triplet
levels which are populated by a decay from the
upper singlet level and are predominantly absoxp-
tive. The laser xadiation loss associated with the
triplets, then, is intensity dependent in two ways.
The first is because of its direct absorptive inter-
action with the laser radiation, and the second is
because of the dependence of the triplet state popu-
lation on the singlet-state population (which is
responsible for the laser radiation emission). The
presence and nature of these triplet-state losses
make the dye laser different from other lasers.
Hence we have redeveloped the laser theoretical
formalism to apply to the organic-dye laser.

In particular, we extend an approach previously
used by one of us for lasers in which two states
interact with the laser radiation"" to include four
states, so that the theory is applicable to the
organic-dye laser. The theory is a microscopic
quantum-statistical approach which starts with the
Liouville equation for the density operator of the



laser system. This xeduces to the Born-Markoff
approximation master equation if, as for the
organic-dye laser, the ratio of an interaction time
to the xelaxation time of the system is much small-
er than 1.

%e obtain equations of motion for the organic-
dye laser which can be the starting point for a com-
plete theoretical study of the organic-dye laser.
In this paper we solve the equations for the steady-
state radiation distribution.

Because of the algebraic complexity of the solu-
tion we first consider two reduced versions of the
exact solution for 8„. In one we neglect the triplets,
which gives the "usual" (singlet-state) solution in
which two states interact with the laser field. In
the other we neglect terms which are small for
pumping not too far above threshold. Finally, we
present the results of a computer study of the
exact solution. We have found that the triplets
may be specified by two parameters, n and P.
The dimensionless parameter a is a product of
ratios of dye-molecule parameters. Its value
ranges between 0 azd 1 for laser operation, with
larger values of o. meaning increased triplet pres-
ence. P is the fraction of excited triplet states
which deexcite and return to the lower triplet
state. For experimentally obtainable values of
a (apparently, little is known about P), there are
features of the radiation density matrix which are
qualitatively different from that of nondye lasers.
First, there may be a maximum and a minimum
in A„rather than just a maximum. Second, the
old definition of thxeshold is inadequate, and we
find that at threshold R„may be a decreasing func-
tion of n with an inflection point rather than the
usual truncated Gaussian. %e also present quanti-
tative features of R„which depend on organi. c-dye
parameters.

In Sec. II we discuss the role of the organic-dye
molecule in the lasing process in terms of a typical
energy-level diagram. Since the role of the trip-
lets is so important and yet is often treated incom-
pletely in the literature, we discuss the triplet-
state losses in detail. Section III contains a dis-
cussion of our organic-dye laser model and Ham-
iltonian. In Sec. IV we present the organic-dye
laser equations after a brief discussion of our
theoretical approach, and in Sec. V we solve for
and discuss the steady-state solution. Appendix
I contains details of the formal derivation of the
organic-dye laser equations presented in Sec. IV.

A. Laser operation

The role of the organic dye in the lasex process
can be understood in terms of the energy-level
diagram pictured in Fig. 1 for a typical organic
dye. The energy levels pictured are actually
singlet- (80 and 8,) and triplet-state (T, and T,)
bands of rotational and vibrational levels as-
sociated with each electronic level. Singlet denotes
the usual two-electron antisymmetric (spin-zero)
state and triplet the two-electron symmetric(spin-
one) state. In the diagram the vibrational (rota-
tional) levels are represented by the longer
(shorter) horizontal lines. The small separation
between adjacent levels of the same band combined
with their widths results in a "continuum" of pos-
sible radiation emission wavelengths. The fluo-
rescence emission spectrum, which we explain
in the next paragraph, is an example of this.

%hen the dye molecules are at thermal equilib-
rium, their energies are given by a Boltzmann
distribution at the bottom of the So electronic level.
At room temperature most of the molecules are
within 200 cm"' of the bottom of S . To obtain flu-
orescence an external source pumps some of the
dye molecules to levels of the S, band. After being
excited to a state in the S, band, the dye molecule
decays nonradiatively to the bottom of the S, band.
This relaxation time is fast enough (-10 "-10"
sec) relative to the radiative lifetime (v,'„=—5
&& 10~ sec) that the dye molecules "thermalize"
at the bottom, of the S, level. Then, in the absence
of external radiation, spontaneous emission takes
place from near the bottom of the S, level to the
S, level. Next, for most laser dyes there is a fast
nonradiative relaxation (v, , =—10"-10"sec ') back
to the bottom of the So level, where the pumping
cycle can start agaUl.
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II. ORGANIC-DYE-SOLUTION LASER

%'e shall give several references for the organic-
dye laser below. The most complete single refer-
ence is the book edited by Schaefer. "

~'4g g Fast non-radiativa decay

FIG. i. Energy-level diagram for a typical organic-
dye molecule.
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The laser emission process associated with the
singlets is the same as fluorescence, except for
the added presence of external radiation, which
causes stimulated emission. If the lasing process
were adequately described in terms of the singlet
bands alone the usual four-state laser theory (in
which two states interact with the radiation) would
be appropriate (levels 1-4 in Fig. 2) and we would
expect no qualitatively new features for the organ-
ic-dye laser. However, the usual four-state laser
description is inadequate because of the triplet
states.

The lower triplet band T, generally has energy
levels lower than the lowest S, levels, and some
of the dye molecules decay nonradiatively from
near the bottom of S, to the T, band. This pro-
cess is denoted by K», the singlet-to-triplet
crossover rate. The decay to the triplet level
causes losses in two ways, which we collectively
term "triplet-state losses. " One loss is the de-
pletion of the upper singlet population available
for lasing. The other loss is an absorption of
laser radiation in a transition to an upper triplet
band (T,). A fa,st nonradiative decay from the
upper triplet level to nearby vibrational and rota-
tional states prevents reemission of laser radia-
tion.

In order to get continuous operation the triplet-
state losses are reduced by the addition of "triplet-
state quenching agents" to the organic-dye solu-
tion. This reduces the lower triplet-state lifetime
(vr', ) from approximately 10 ' to approximately
10 ' sec (for the dye Rhodamine 6G). This shorter
triplet-state lifetime is of the order of magnitude
required to reduce the triplet losses enough to get
continuous operation. " Thus the triplet losses
are still an important loss mechanism in the opera-
tion of a continuous-wave dye laser. This means
that an adequate model for the organic-dye laser
requires the inclusion of six states, four of which
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FIG. 2. Organic-dye laser as a six-state system.

interact with the laser radiation. This is pictured
in Fig. 2. The bottom of the So level is the ground
state and the top of S, is the upper pump level.
The bottom of the S, level (state 3) is a single
level with width v~ „(the u refers to upper), the
bottom of the T, level (state 5) is a, single level
with width vr, (the 1 refers to lower}, the top of
the S, level (state 2) is a level with width v~ „
and the top of the T, level (state 6} is a level with
width v~ „. These four levels are directly in-
volved in the laser transition process. Between
the singlet levels there is dominantly stimulated
e~~sission, whereas between the triplet levels there
is dominantly stimulated absorption. The triplet
absorptive loss is intensity dependent, since it
depends on the laser radiation intensity. Also,
since the population of the upper lasing level (at
the bottom of S,) is also dependent on the intensity,
there is a further, though indirect, dependence of
the triplet loss on radiation intensity. There also
are singlet-state losses which may be associated
with additional singlet states. However, we have
found that their inclusion has no qualitative effects
on the laser radiation, so we do not treat them ex-
plicitly in this paper.

8. Triplet losses

In the energy balance approaches of most pre-
vious organic-dye laser papers, e'"»" "the triplets
have been included in various approximations. In
this paper we treat the triplets exactly, since as
our results show the behavior of the statistical
properties of the radiation distribution are sensi-
tive to the details of the organic-dye molecules.

We noted above that the decay rate of the lower
triplet level (vr, ) had to be increased in order to
obtaio continuous operation. A minimum condition
on v» necessary for laser operation has been giv-
en before" (a more exact expression, including
radiation losses, can be found in Ref. 38) and de-
pends on other dye-molecule parameters. In terms
of our notation this condition is

o. —= TK~~, 'Sv~ ) &1,

where T is the triplet stimulated absorption rate,
S is the singlet stimulated emission rate, and K»
is the intersystem crossing rate. Physically this
says that the ratio of the stimulated singlet emis-
sion to stimulated triplet absorption rates must be
greater than the ratio of the "creation" to the de-
cay rates of the lower triplet level. The parame-
ter n partially expresses the extent to which trip-
let losses are important in the operation of a dye
laser. For small values of n, trip1.et losses are
relatively small. For larger a the triplet losses
a.re more important. For instance [see Eq. (5.22)],
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the minimum pumping needed to obtain laser os-
cillation (threshold) increases as n increases.
For n = 1, the triplet losses balance the singlet
emission, and no amount of pumping will give la-
ser oscillation. Hence for n &1 the triplet losses
dominate and continuous operation cannot take
place. We show below that the parameter n arises
naturally in the fully quantum-mechanical theory.
Furthermore, we shall show that new qualitative
features of the dye laser may be parametrized in
terms of n. However, there is another para. meter
important for specifying the qualitative features
of the organic-dye laser radiation, which we de-
scribe in the next paragraph.

In describing the role the triplet states play in
the lasing process we have not specified what hap-
pens after the triplet absorption and subsequent
fast nonradiative decay to near the bottom of the
upper triplet band (T,). The literature does not
provide definite information about what happens
next. Presumably, in many cases there is a fur-
ther decay and the molecule returns to the lower
triplet level, where it can once again act as a ra-
diation absorber. However, there are mechanisms
by which a dye molecule in the upper triplet state
can "decay, " as far as the laser radiation field is
concerned. For instance, organic-dye molecules
in their more excited states are more likely to in-
teract with their surroundings, which would re-
move the molecule from the triplet levels. Also,
there are other singlet bands above S, which may
be situated so that intersystem crossing would take
place from T, back to the singlet band. In this case
also, the upper triplet would not be returned di-
rectly to the T, level. In any case, a molecule in
the upper triplet level may decay to levels other

than the lower triplet level, which leads us to
specify the fraction of the dye molecules which,
once excited from the lower triplet band to the up-
per triplet band, return to the lower triplet band.
The most detailed treatments in the literature
make an approximation" which is equivalent to as-
suming all of the excited triplets return to the low-
er triplet level. We have found it important to in-
clude a "fractional return parameter" (P) which
specifies what fraction of excited triplet states re-
turn to the lower triplet band. In this paper we
present the results for the two possible extremes,
all returned (P= 1) and none returned (/=0). When
all the excited triplets are returned to the lower
triplet level, the steady-state solution for the ra-
diation distribution R„ is qualitatively the same as
for other lasers. However, when none are re-
turned, R„exhibits features which are unique to
the dye laser. It is conceivable that using our re-
sults experimental values of P could be obtained
which would increase the apparently small amount
known about what happens to a dye molecule once
in an excited triplet-state electronic band.

Table I is a summary which we have obtained
from the literature" "of data for the commonly
used laser dye Rhodamine 6G. The data in Table
I correspond to parameters used in our theoreti-
cal development, so we have made conversions
from the data given in the literature to data listed
in the table. " In many cases, we have made the
conversion by reducing our microscopic equations
and comparing our notation with the rate equations
used in the literature. Details of the conversions,
as well as a much more complete table including
more information on Rhodamine 6G and other la-
ser dyes, are to be found in Ref. 38.

TABLE I. Rhodamine 6G organic-dye-molecule laser parameters. The data presented here
form a condensed version of a table (itself a composite of information collected from Refs.
15-37) which appears in Ref. 38.

Definition Symbol Range

Upper singlet-state lifetime
Lower triplet-state lifetime
Intersystem crossing rate
Singlet molecular emission rate
Triplet molecular absorption rate
Radiation decay rate
Lower singlet decay rate
Upper singlet decay rate
Singlet ratio of interaction time

to relaxation time
Triplet ratio of interaction time

to relaxation time
Triplet parameter
Fractional return parameter

VR

Vs, l

T, l4

s

o. =(T/S) Ksz/vz,
P

(4.8-7.4) x 10 sec
1.0x 10 3-2.5x10 ' sec

(0.30-2.8) x 10 sec
1.0-15.0 sec '
0.11-14.0 sec ~

2.0x 105-1.0 x 10 sec
(0.1-1.0) x10' sec '

(0.1-1.0) x 10 sec
0.025-0.04

0 .01-0.03

0.001& ~
No data given
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III. ORGANIC-DYE LASER MODEL AND HAMILTONIAN

Our model for the oxganic-dye laser is pictured
in Fig. 3. Lines connecting different elements of
the system represent interactions between them.
The principal components are the radiation and
matter parts of the system. %e have included sev-
eral radiation modes in the model since, although
we treat only the single-mode case here, we in-
tend to extend our treatment to the multimode
case. The matter systems are the organic-dye
molecules, which are excited by the external
pump.

The significant difference between usual laser
models and the dye laser model is the existence
of the triplet states. In the diagram we represent
the singlet and triplet states separately, even
though they are associated with a single molecule,
since they participate in the lasing process in es-
sentially different ways. Also, by separating the
singlets and triplets we can show explicitly in the
model diagram that singlets are pumped exter-
nally, whereas triplets are pumped by a decay
from the singlets. This is signified in the diagram
by the arrow pointing from the pump to the singlets
and from the singlets to the triplets.

The decay of the triplet and singlet molecular
levels, mentioned above, is included by means of
the matter reservoir. The dissipation of the laser
radiation (owing to interaction with the laser cavity
mirrors, scattering in the lasing medium, etc. ) is
included by means of the radiation reservoir.

The possibility of including the center-of-mass
motion of the dye molecules is represented in the
diagram by the box enclosing the singlet- and trip-
let- state boxes. The organic-dye solution's flow
through the cavity has a negligible effect on the dye
laser radiation distribution; thus we shall neglect
center-of-mass motion in this paper. If the dye
solution flow is such that its residence time in the
laser beam is smaller than the lifetime of the low-

Rettietion
teeelvoae

er triplet level, then this flow could, in effect, act
as a triplet-state quencher. Thus although the val-
ue of v~, would be affected, center-of-mass mo-
tion would not need to be included explicitly in this
instance. However, a proper treatment of the va-
por-phase organic-dye laser may require explicit
treatment of center- of-mass motion.

The system Hamiltonian, which contains terms
corresponding to each part of the laser model de-
scribed above, as well as to the interactions be-
tween the various parts of the system, is

H = Q QhQt(at a- +2), (3.2)

where the sum k is over all cavity modes and the
sum over n corresponds to possible polarizations.
The symbol Q~ is the frequency corresponding to
the mode of the wave vector k, h =5j2v= (Planck's
constant)/2', and at and a- are the usual cre-

kt Ol kg&
ation and annihilation operators with commutation
relations

[a-„,a, ,]=O,

[a', a-', ,] = 0.
In this paper we treat only the single-mode case

(this is equivalent to assuming that a tuning device
makes the losses infinite for all modes but one),
and use the single-mode radiation Hamiltonian

H~ = h A(ata+ —,) .

(3.1)

where H~ is the radiation Hamiltonian, H~ the
molecule Hamiltonian, H~ „,the radiation-reser-
voir Hamiltonian, and H~, the molecule-reser-
voir Hamiltonian. V~ „is the radiation-molecule
interaction, V„„,the radiation- radiation reser-
voir interaction, and V„, the molecule-molecule
reservoir interaction Hamiltonians.

The radiation field Hamiltonian expressed in
terms of normal modes is

Molecule

1eeel vol t

Sing let

Stet%0

FIG. 3. Organic-dye laser model.

The polarization index has been suppressed for
simplicity.

The matter-energy-level Hamiltonian for lasers
is usually written in terms of the Pauli spin oper-
ators (or combinations of them), ' ' since there is
a formal analogy between the two matter states
interacting with the laser radiation and the up and
down spin states. However, since for the organic-
dye laser four states interact with the laser radi-
ation, the Hamiltonian of the dye molecular levels
is in the second quantized form. As indicated pre-
viously, the singlet- and triplet-state Hamiltonians



are specified separately,

(3.4)~a& a~ i~
0

t (3.5)

The sum over o is the sum over all dye molecules
participating in the lasing process. The sums
over i and j are over the singlet and triplet states,
respectively, c; and &, are the energies of the
ith and jth levels, respectively, and st, , s, ,
and t t .. t, , are the singlet and triplet creation
and annihilation operators, respectively, which
have the anticommutation relations

R 8 J ~ ~~ yki jk(S&r, isa, jek+ Sa jSk iak)

(3 7)

for e, & e; and where y„jk= [4jje'(kj —k, )'/tjAkV]'. j'
& (k x)I"(x). The expression for VR r is

v„„= PPQ v...,it.',~., ,'~ t ', t . .), . .
(3.8)

for k, & k and where y„,=[47ie'(e„- k,)'/IAkV]'j'
& (x, )I'(x), jjj is the mass of the electron, x, is
the appropriate dipole matrix element, e is the
charge on an electron, t/' is the laser cavity vol-
ume, and I'(x) is the spatial cavity eigenfunction.
To prevent double counting the sums over matter
states are restricted to the case where the energy
of the second index is greater than that of the
first. For single-mode operation we drop the
sum over k.

The two terms in the interaction Hamiltonians
represent first (from left- to right-hand sides) a
decrease in molecular energy level accompanied

(st,s. j}=6,j, (t'. ..t. j}=6,j,
(s'. ..s'. , ) =(s. ..s, ,) =(t.', , t,', ) =(t. .. t, , ) =O,

(s'. ..t'. „.}=(s', , , t. , ) =(s. .. t,', ) =(s. ..t, ,) =0 .

(3.6)

Since individual dye molecules are "distinguish-
able" from one another, all commutators of opera-
tors associated with different molecules are zero.
For example, [ss, , s, ,]=0 for &xoP.

The radiation-matter interaction Hamiltonian
(VR jj =—VR s+ VR r) is 'the well-known J 'A matter-
radiation interaction in the dipole approximation
(valid since the wavelength of optical radiation is
much larger than the distance of the electron from
the molecule center of mass). VR s is the radia-
tion-singlet interaction Hamiltonian and V~ ~ is
the radiation-triplet interaction Hamiltonian.

The expression for V~ ~ is

IV. ORGANIC-DYE LASER EQUATIONS

The starting point for our theoretical approach
is the quantum I iouville equation for the density
operator p(t) of a system,

dp(t) z
[ ( )] (4.1)

where H is the Hamiltonian of the system. We
write the Hamiltonian in the form 8=Bp+ ~t/',

where A. is a dimensionless parameter. The first
Born approximation master equation in the Markoff
approximation is

+ -„[&., p(t)]=-1' dw [V, [V(w), p]],

(4.2)

where V(v) = e'"&' j"Ve '"o' j". This equation has
been used for gas laser theories"' and has been
discussed in general elsewhere. " Briefly, such
a master equation is valid if there exists an in-
teraction time (t,.„,) which is much smaller than a
relaxation time (t„,) of the system, t,.„/t„,«1.
For the organic-dye laser this ratio in our nota-
tion is As = SIV/vs, for the singlet-radiation in-
teraction and Ar ——TjV/jjr „for the triplet-radia. —

by the emission of a photon, and second an in-
crease in molecular energy level accompanied
by the absorption of a photon. Ne have left out
terms which correspond to the lowering of the
molecular energy level accompanied by the ab-
sorption of a photon and the raising of the molecu-
lar energy level accompanied by the emission of a
photon. This is often referred to as the rotating-
wave approximation.

It is unnecessary to explicitly treat the reservoir
Hamiltonians and their corresponding interaction
Hamiltonians, since we are interested only in the
effects of the reservoirs (pumping and decay). The
Appendix has a discussion of formal elimination of
explicit consideration of reservoir variables.

The next step in the development of an organic-
dye laser theory is to use the above physical model
and Hamiltonian to derive equations of motion for
organic-dye molecules and laser radiation vari-
ables. The physical differences between the
organic-dye laser and other lasers have been in-
cluded in the model and Hamiltonian already dis-
cussed above. The derivation of organic-dye laser
equations of motion are formally analogous to pre-
vious laser theories, although one obtains two
"extra" equations corresponding to the triplet-
state levels. Therefore in Sec. IV we discuss our
theoretical approach in general terms and then
present and explain the organic-dye laser equa-
tions of motion.
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dR„(f) = —vs[nR„—(n+ 1)R„„]

SN[(n+1)(Ds' Ds' )+n(D„~ ' —D '")]

—TN[(n+1)(D "—D ')+n(D ' —D ")]

(4 3)

dDs "(f)
(vs „+Ksr)Ds "+R„(t)v,

—S(n+ 1)(Ds,"—D s, t ) (4.4)

dD ''t
v

~
D, S (Ds, r Ds, ) (n+ 1) (4.5)

tion interaction, where N is the number of organic-
dye molecules participating in lasing, S is the
singlet stimulated emission rate, T is the triplet
stimulated absorption rate, vz, is the lower sin-
glet decay rate, and v~ „ is the upper triplet decay
rate. The range of values we have calculated for
A~ and A~ for continuous-wave operation using the
dye Rhodamine 6G (see Table I) confirms the
validity of the Born-Markoff master equation (4.2).

One of us' has shown that the first Born approxi-
mation treatment of the radiation-matter interac-
tion is sufficient to describe the laser photon
statistics if matter-radiation correlations are re-
tained by requiring that the radiation-matter den-
sity matrix not be factorizable into the product of
a radiation density matrix times a matter density
matrix. We treat the radiation-matter interaction,
as well as the various reservoir-laser-system in-
teractions, in the Born-Markoff approximation.
Then, after eliminating the reservoirs by tracing
over a complete set of reservoir variables, we ob-
tain equations of motion for the single-molecule-
radiation density operator D(1, t) and the radiation
density operator R(f) (see Appendix).

We treat the radiation variables of the equations
of motion for D(1, f) and R(t) in the number repre-
sentation, since for the Born approximation master
equation the diagonal matrix is coupled only to
diagonal, and not to off-diagonal, matrix elements.
The resulting equations for the radiation density
matrix, R„= (n~R~ n), and the diagonal single-particle
radiationdensitymatrix, D„(t)-=(n~( j~D(l, f)~j) ~n)

[where n is the photon number, j is the jth molecu-
lar state, and we have left out the single-particle
index (1) for convenience], are

d
——Ksr n +Pvr uDn z

—-vr iDn

—nT(D ' —Dr " ) (4.'I)

These are the fundamental equations for our
quantum-mechanical theory of the organic-dye
laser, and are the starting point for further theo-
retical work. In the above equations the dye-mol-
ecule states are labeled doubly, first according to
whether they are singlet (S) or triplet (T), and

second according to whether they are upper (u)
or lower (I). Also, P is defined as the fractional
return of excited triplets and v, as the molecular
excitation rate (via the external pump).

In Eq. (4.3) for R„ the first two terms on the
right-hand side represent radiation decay due to
the radiation reservoir. The third term repre-
sents stimulated and spontaneous emission of
molecules in the single state, the fourth term
represents stimulated absorption of molecules in
the ground singlet state, and the fifth and sixth
terms are the corresponding terms for molecules
in the triplet state.

Thus it is apparent that S and T may be identified
a.s singlet and triplet stimulated emission (absorp
tion) rates. The contributions of emission and

absorption to the population levels is also evident
in the equations for the single-particle radiation
density matrices. For instance, in Eq. (4.4) for
the upper singlet level, the term -S(n+1)D„'"re-
presents the loss of population due to spontaneous
and stimulated emission in transitions to the lower
la, sing level. The term +S(n+ 1)D„,',' corresponds
to an increase in population of the upper lasing
level owing to reabsorption of laser radiation from
the lower lasing level. Also, the molecule re-
servoirs induce the different decay rates of the
appropriate molecular levels. For instance, in
Eq. (4.5) for the lower singlet level the term
—v~, D„' is the decay of the lower lasing level.
Similar terms appear in the other molecular-level
equations.

As we have mentioned earlier, the lower triplet
level is also pumped, although not in the usual
manner, since the triplet population stems from
crossover from the upper singlet level. Accord-
ingly, the pump term in Eq. (4.7) equals the un-
factorized "population" probability of the upper
singlet state times the crossover rate(K»Ds'").
Note that Eq. (4.7) also includes the triplet return
terms pv~ „D„',", where the parameter p specifies
the fractiona1 return (0 ~

p
~ 1).

dD ~" f)n v Dr, u T(DT, u Dr, l )(n+ I)

(4.6)

V. STEAn Y-STATE DISTRIBUTION

The organic-dye laser equations (4.3)—(4.7) can
be used for a study of various features of possible
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laser operation. The existence of the continuous
wave single-mode organic-dye laser makes the
steady- state solution a physically reasonable and

logical case to consider first. It is conventional
at this point to adiabatically eliminate the matter
variables and write a time-dependent equation for
R„. However, this is unnecessary for the steady
state. We shall discuss this further in a future
paper which includes the physically realizable case
in which adiabatic elimination of the molecular-
state populations is inappropriate. The rest of this
paper includes the solution and investigation of R„
in the steady state. In Sec. VA we obtain the
steady-state solution. Secs. VB and VC contain an
investigation of the solution in simplified forms,
first with the triplet states omitted and then with
the relatively small singlet absorption and triplet
emission terms omitted. In Sec. V B we investi-
gate the exact solution.

A. Steady-state solution

Since we are interested in the radiation density
matrix Rn, we break all terms such as D„' into

2$(n+ 1)
""+' v +2$(n+1) ""

ST E

r, 2T(n+ 1)
v +2T(n+ 1.) l&"+"

Tau

2nT(1 —p)sr r i 1+2&7/v 7o
Tag

(5.1b)

(5.1c)

(5.1d)

Next, we obtain the steady-state solution to Eq.
(4.3) for R„by setting the time derivative equal
to zero and rearranging the terms to give

products of two terms D~" =rt~"(t)R„(t). This ex
act expression is just the conditional probability
relation that the probability of n photons and the
ith molecular state equals the probability of n
photons times the probability of the ith molecular
state, given that there are n photons. The )7~'"(t)
contains the radiation-matter correlations.

Letting the time derivative equal zero, the solu-
tions of Eqs. (4.4)—(4.7) for the )1~'" are

2$(n+ 1)
1+22( +1)i ) (5.la)

n V + $+ ~S, l n-1 ~S, u + T~ ~T, l n-1 ~T, uR R
R n-1 n R n-1

n n

(++1) v n+1+$+ nsI ))S, ( ))S, (( +Trav nsl ~T, ) ~T, (( (5 2)
R R R
R n+1 n n+1 n

n n n

(5.3)

The square-bracket term which multiplies n+1 on
the right-hand side of Eq. (5.2) contains all cou-
plings between the n and n+ 1 photon states, i.e.,
terms representing increases from n to n+ 1
photons and decreases from n +1 to n photons.
In the steady state the sum of all such terms must
be zero.

The same argument holds for the left-hand side
of Eq. (5.2), which contains couplings between the
n and n —1 photon states, so that the coefficient of
n is also equal to zero. This occurs because the
J A interaction allows only single-photon pro-
cesses to take place. Setting the coefficient of
n+ 1 equal to zero gives the following recursion
relation between Rn „and R„:

$q Sy u + TgTy u

R n n

$)7 ''+T)l '+v /X
The formal solution to Eq. (5.3) is

B. Singlet-state case (triplets excluded)

Leaving out the triplets greatly simplifies things,
since terms and equations associated with the
triplets are left off. The resulting steady-state
solution for R„ is

$qSa u $gSaun+1 n n

-=g(n)R„,

2$(n+1) va I

v~, + 2$(n+ 1)

(5.6)

where

)1's in Eqs. (5.1) are to be used.
Equation (5.4) is complicated, and its thorough

investigation requires a computer study. However,
in order to gain a better understanding of the
workings of Eq. (5.4) we first investigate it in two
simplified forms.

R s+1 = vs =oG(t))Ro 2

where

(5 4) 2$(n+ 1)
1 ~ 22( ~ 1)/, , ) (5.7)

$)l '"+Tq '"

Sq&~,', + Tqs,', + v)2/V
' (5.5)

and where p is an integer, 7' p is the product of
terms from p =0 to p =n, and the solutions for the

The formal solution is

Rn„= g pRO.
P=O

With a change in notation this expression is identi-
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cal to the usual solution for a four-level gas laser
(in which two levels interact with the laser radia-
tion) with stationary atoms. '" This is as we
might expect, since eliminating the triplets re-
duces our model to the usual four-level model.

We next investigate the properties of the singlet
state R„by using Eqs. (5.6) and (5.7), and then find
the threshold number of pumped molecules nec-
essary for laser operation (N, „, hereafter referred
to as the threshold value of pumping), find the
maximum in R„, and investigate the narrowing of
R„ for pumping above threshold (i.e., for N&N, „).

First, the threshold value of pumping (N, „) is ob-
tained by setting the numerator equal to the denom-
inator for' n=0 in Eq. (5.6) [i.e., letg(0) =1]. To
a good approximation the result is

Nth —VR/S . (5.8)

This says that the threshold number of molecules
is given by the ratio of the photon decay rate to a
stimulated emission rate.

Possible extrema in R„are found by setting the
numerator equal to the denominator in Eq. (5.7)
[i.e., g(n) =1].' There is only one root, which is
a maximum

n —= (vq „/2S)(N/N, „—1) . (5.9)

(5.10)

and for large n (2Sn»vR, ),

(5.11)

Notice that for threshold pumping (N= N, „) the-
maximum is zero, which points out that the above
definition of threshold is identical to the condition
that the maximum in R„be at n=0. For pumping
below threshold, Eq. (5.9) gives a negative value
for n ~, which is unphysical, i.e., there is no
maximum. For pumping above threshold the maxi-
mum is for a positive value of n which depends on
the upper singlet decay rate (vR, u), the stimulated
emission rate (S), and the pumping (N).

We can understand the behavior of R„and the
meaning of the definitions of N,„and n in more
detail by considering the formal recursion rela-
tion solution, Eq. (5.6). Since R„ is a product of
a succession of g(p) [i.e., R„=g(n)g(n —1) ' g(0)R, ]
the behavior of g(p) determines the behavior R„.
We consider approximate expressions for g(n) in
two limits. For small n (2Sn«vR, ),

enough (n) [see Eq. (5.11)]. The qualitative be-
havior of R„, however, depends on the value of
the external pump (N). If N & N, „, then g(0) is
less than 1, as are all other g(n). Then since
R„ is a, product of a succession of g(n), R„ is a
monotonically decreasing function of n, which
means it has a "thermal" behavior [see Fig. 4(a)].
If N=N, „, then g(0)=1, but g(n)& 1 for n&0. In
this case there is a maximum in R„at n = 0, and

R„ is monotonically decreasing for n &0 [see Fig.
4(b)]. If N&N, „, then g(0) &1 and R„ is an in-
creasing function of n for n& n, where n is
defined as g(n ) =1. For n&n g(n) is less
than 1 and R„becomes a decreasing function of n.
Hence R„has peaked (or "nonthermal") behavior
[see Figs. 4(c) and 4(d)].

To complete the study of R„we discuss the "nar-
rowing" of R„as the laser is pumped above thresh-
old. This requires a calculation of (n) and (n')
from Eq. (5.6), where (n) is defined as n, since
"narrowing" is usually discussed in terms of the
normalized peakedness (n) /g ~ —= (n) /((n') —(n) 2).
To do this generally is difficult, since near and
just above threshold the equation for each moment
is related to higher moments and no simple solu-
tion is possible. It is easier to plot R„using a
computer and measure the width (o') directly
from the computer output. Then, since to a good
approximation for pumping well above threshold
n =—(n), one can calculate (n) /o 2 for different
values of N. We have done this and find that for
pumping not too far above threshold R„behaves
in the same way as for general laser systems.
That is, at threshold R„ is approximated by a
truncated Gaussian (n =0) (see Fig. 4). As the
laser is pumped above threshold the maximum
moves to the right-hand side along the positive
n axis and R„narrows and becomes Poisson-like
(i.e., n /(T' increases with N) However. , we
have found that for pumping far enough above
threshold R„widens again.

For pumping far above threshold, the moments
of R„can be calculated, since (for 2Sn» vR, ) the
equation for R„reduces to

dR„"=—2vR[nR„—(n+ 1)R„„]

—2NS ' [ (n+ 1)(R„—R„„)+ n(R„—R„,)],
vs, s

(5.12)

and equations for the moments uncouple, which
gives

By comparing the above two expressions one might
suppose (and detailed analysis confirms) that this
g(n) is a decreasing function of n [see Eq. (5.10)],
which approaches a constant less than 1 for large

(n) = (A'/VR)(V, /VR, )S,
(n )=2(2n) + —,'(n) =2(n)' .

(5.13)

(5.14)

Using these results we see that in the limit of
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8 (n)

large pumping (n)/a'-(n) '-N ', which means
that R„widens as the pump is increased.

If the pumping is too large, the condition for
the validity of the Born-Markoff master equation
is violated. However, the widening of R„occurs
within the range of validity. An order-of-magni-
tude calculation shows that the pumping necessary
to observe this widening effect for a single-mode
continuous-wave dye laser is of the order of tens
of watts, which is near or beyond present limits. 0

However, larger pump sources will very likely be
available in the near future.

C. Approximate solution (trip1ets included}

We can obtain a qualitative understanding of the
dye laser solution, Eq. (5.4) (including triplets),
if we neglect the second term in the numerator
and the first term in the denominator, which cor-
respond to the relatively insignificant processes
(true for pumping not too far above threshold) of
triplet-state emission and singlet-state absorp-
tion. Thus, keeping only the three dominant terms
in Eq. (5.4) which correspond to singlet emission,
triplet absorption, and radiation losses, and
making appropriate approximations, the expres-
sion for R„„is

~8, R
nq~'"[1+ (2T/vr, )(n+1)(1 —P)] '+ vs/NS

(5.15a)

whose formal solution is

R„=', g pR

where

q8su

on,'"[1+2T(p+ 1)(1 —P)/v, ,]+ v~/NS
'

(5.15b)

R(nj

d. N

The term on the left-hand side in the denominator
of g(p) corresponds to the triplet-state absorption.
The n in this term shows its appropriateness as a
measure of the strength of the triplet-state effect.

Just as in the case of the singlet solution dis-
cussed above, we can understand features of R„
by considering g(n). The presence of the triplets
in the denominator of g(n) [ Eq. (5.15b)] is the
added complication. It is convenient to consider
two separate cases, one for which the upper
triplet return is unity (p = 1) and one for which
there is no upper triplet return (P = 0).

When P = 1, g(n) simplifies to

FIG. 4. Typical plot of the radiation distribution vs
photon number for different pump values.

S,Q

) Rn

nq '"+vR/NS (5.16)
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In this case the expression for g(n) in the limit of
small n (2S «v~, ) is

V~e (&s u+. Ksr) "r,i~ extrema 4 4S 4

1
g(n), , =-

a+vzvz „/.VSv, +2vsn/Nv,

and in the limit of large n (2Sn» vz, ),

(5.17)
1,Vv, (vg gg+Kgr) vr, ' N4v, K~r

(5.21)

1
g(n) 8=, -=

a+v, v„/NSv, „
(5 Ig)

A comparison with the singlet state g(n) under the
same conditions [see Eqs. (5.10) and (5.11)] shows
that its functional form is identical to g(n)8
Thus although there are quantitative differences
between the singlet state R„and the organic-dye
laser R„ for P=1, there are no qualitative dif-
ferences. Thus the triplet state R„ for P =1 has
the same features as those pictured in Fig. 4 for
a typical laser.

When P = 0, g(n) is

g(n) nq„'"[I +(2T/vr, )(n+ I)] '+ vR/VS
'

(5.19)

Owing to the n+1 in the triplet term in the denomi-
nator, g(n) z o has a functional dependence on n

different from the singlet g(n), and different from
g(n)z, . Notice that this different dependence of
g(n) on n is retained for any P less than 1. We
present the two extremes of the P =0 and P = 1
cases to simplify the discussion.

The new result is that unlike the gas laser for
which there is only one extremum in R„(a maxi-
mum) there are two extrema, one a maximum
(corresponding to the plus sign) and one a mini-
mum (corresponding to the minus sign). Depend-
ing on dye-molecule parameters the minimum may
or may not be physical —that is, it may or may
not have a positive n value. Typical plots of the
radiation distribution as a function of n, for dif-
ferent values of n, above threshold, are given in
Fig. 5. For small values of n there is only a
maximum in the region of positive photon number.
However, above a critical value of a (see below),
both the maximum and minimum may appear.

The behavior of the maximum [see Eq. (5.21)] of
the radiation distribution as a function of laser pa-
rameters is typical of lasers. As the external
pump (N) is turned up the maximum in the photon
distribution also increases. Increasing the singlet
stimulated emission rate (S) increases the value

D. Exact solution

Owing to the algebraical. ly complicated nature of
the exact solution, many of the results of this sec-
tion are in a graphical form taken from computer
output. The equations we do present are only ap-
proximate, and for simplicity we have set P =0 in
them. Our discussion of the organic-dye laser
radiation distribution, as for the singlet-state ra.-
diation distribution, is in terms of the extrema of
A„, the threshold value of pumping (N,„), and the
narrowing and widening of R„ for pumping above
threshold (N& N~).

R (n)

1. Radiation distribution extrema

Ne obtain the extrema in the radiation distribu-
tion by setting ft„,=R„ in Eq. (5.4) and solving for
n. That is,

Su +T T,u

G(n) =
S In+1 Tn+ j. ~R/N

(5.20)

After making an approximation accurate to -10 '
we obtain a quadratic equation. Leaving out some
small terms, the expression for the extrema in
the photon distribution is

FIG. 5. Radiation distribution vs photon number for
different values of e (pumping fixed above threshold).
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of n,„. This is not surprising, since the pumping
and singlet emission processes contribute to the
photon population. On the other hand, increasing
the photon loss parameter and/or the singlet de-
cay rate decreases the maximum. Also, increas-
ing the triplet absorption rate (T) and decreasing
the lower triplet decay rate (vr, ), both of which
increase triplet-state absorptive losses, decreas-
es n . Finally, the effect of increasing the sing-
let-to-triplet crossover rate (K~r) (i.e. , increas-
ing the triplet losses) is to decrease the maximum
in 8„. The surprising feature is the minimum in
the distribution.

We can understand the minimum A„ in terms of
the G(n) in the recursion relation (5.4). As we
have already pointed out, when there is only a
maximum in the distribution it arises from G(0)
being greater than 1 and G(n) being a decreasing
function of n. Owing to the triplet terms, how-
ever, G(n} can be an increasing function n for
some values of n Wit. h reference to Eq. (5.4), the
presence of the triplet term in the denominator of
G(n) may cause G(n) to be less than 1 for small n.
That is, for o. large enough (and for values experi-
mentally realizable) and n small enough, g(n) is
less than 1 and R„ is a decreasing function of n.
However, since the triplet absorption term de-
creases as a function of n owing to both q~'" and its
"own" triplet denominator, I+2Tn/vr, it decreas-
es faster as a function of n than the singlet emis-
sion term. Thus for large enough n g(n) may again
take on values greater than 1 and A„once again be-
come an increasing function of n. For large enough
n the triplet absorption term becomes negligible
and the decrease in the singlet emission term be-
comes dominant, and A„again decreases. If a is
not large enough the effect of the triplets is not
enough to cRuse R mln1mum Rnd the radlatlon dis-
tribution is typical, as pictured in Fig. 5(a}. But
for o. large enough (but not too large to prevent
laser operation) a plot of A„may look like that
pictured in Fig. 5(c). In Sec. &D2 we shall find
that the existence of two extrema requires a re-
definition of threshold.

R(n)

4. N N,

2. Laser threshold

We found that the usual definition of threshold
[the value of %obtained from G(0) = I] is equivalent
to the condition that there be an extremum (in that
case a maximum) in the radiation distribution at
n =0. Applying this definition to Eq. (5.20) for the
organic-dye laser, the result, which we refer to
as N~, ~, is

+cog= ~s(vs, +&sr)/~ S(1

The factor (1 —a) ' shows the increase in laser

FIG. 6. For organic dye laser (with n large enough
and P small enough), radiation distribution vs photon
number for different pumping values.
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threshold owing to the triplets. However, we have
changed the subscript to "thold, " since this ex-
pression is incorrect in cases for which both the
maximum and minimum occur in the radiation dis-
tribution.

This can be seen by examining plots of A„vs n,
for different values of pumping, in which boih ex-
trema appear. For small pumping R(n) is qualita-
tively the same as that for typical lasers, pictured
in Fig. 4(a). However, for some larger value of
pumping, R„has the shape pictured in Fig. 6(a},
which has neither a maximum nor minimum, but
rather an inflection point. We call the value of
pumping for which this takes place N„, and the
value of photon number n corresponding to the in-
flection g„. N„ is found by setting the expression
in square brackets in Eq. (5.21) equal to zero and

solving for ¹ n„ is found by substituting V„ into

Eq. (5.21).
For N larger than N„, the maximum in R(n) is

to the right-hand side of n„and the minimum is
to the left-hand side [Figs. 6(b) and 6(c)]. The
larger the pumping, the further to the left-hand
(right-hand) side of n„ the minimum (maximum)
is. For pumping large enough the minimum is
far enough to the left-hand side of rg„ that it dis-
appears (i.e. , occurs for negative photon number

n, which, of course, is nonphysical). Thus the
old definition of threshold is incorrect in such
cases, since there is no value of pumping for
which the maximum in R(n) is at n =0. In fact,
since the old definition of threshold gives the value
of V for which an extremum appears in R(n) at n

=0, and since, as we just showed, when there are
two extrema in R(n) the maximum occurs for posi-
tive values of g, the old definition corresponds to
the value of pumping for which the minimum oc-
curs at n=0. Thus we need a new definition of
threshold for the organic-dye laser. In order to
see what this definition should be, consider the al-
gebraic behavior of R(n) for positive and negative
n, even though for negative n there is no physical
meaning. If the triplet state effect is small enough
(small enough n and large enough P) the inflection
point occurs for negative n As pumping (N) is in-.

creased, the maximum moves to the right-hand
side until it reaches n =0, at which point the laser
has reached threshold and the ol.d definition of
threshold is correct. As triplet-state effects are
increased (by, for example, increasing o.), the
inflection point (n„) moves to the right-hand side,
eventually occurring at n =0, and for further in-
creases in triplet-state losses, occurring at n & 0
(see Fig. 8).

Thus it is apparent that for n„& 0, the old defi-
nition of threshold is correct, whereas for n„&0
threshold must be redefined. If for this latter

2-

8
Nx 10

FIG. 7. Plot of &thold and Athncw vs

case we call .V„ threshold, then the definition is
consistent at g„=0 where the old and new defini-
tions must agree. Thus the new definition of
threshold is

' ' thold P ~ 0r
&0

&u = &0f ~ &.f ~ 0 ~

(5.23)

(5.24)

~ 106

0

FIG. 8. Value of n„., at dye laser threshold, as a
function of o. .

Figure 7, showing typical plots of Nth, &d and, V,„„,„
as a function of n, shows that the differences be-
tween them become larger as n increases. Qn the
+ axis we have labelled n„, the critical value of

For e greater than a„ there are two extrema
in R(n) and the threshold is given by N„. For o.

less than a„ there is only a maximum in R(n} and
threshold is Nth, ~d. z„ is determined by the condi-
tion that IV„=1V&,» which means that g„=0. Im-
posing this condition gives, to good approximation
(and letting p =0),
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EC gp
X/2 &sr

vx „+K~r 2(vg „+Kgr)
(5.25)

Experimental variations in n would be most
easily carried out by variations in the three pa-
rameters T, 5, and v~, and we may regard K»
and v~„as fixed. This means that expression
(5.25) is, in effect, an expression specifying a
critical e. For typical parameters for the dye
Rhodamine 6G, n„-=0.27, which is well within
the range of experimentally realizable values for
Q.

In Sec. VD3 we give an account of the narrowing
and widening of A„as N is increased above thresh-
old. Although there are no features unique to the
organic-dye laser the triplets do have an effect
on the narrowing and widening of 8„.

3'. iYarrowing and widening above threshold

In order to investigate the narrowing and widen-
ing for pumping above threshold we have found the
maximum and variance (o') of A„. As before, we
characterize the radiation distribution as approxi-
mately Gaussian in photon number near threshold,
where n /o'«1. As the laser is pumped above
threshold, the radiation distribution usually nar-
rows and approaches a Poisson distribut:ion, which
means n /o'-1. Thus a plot of n,„/o' vs pump-
ing looks qualitatively like curve a in Fig. 9,
where (N/V, „) is the ratio of actual pumping to
threshold pumping. Also, e /o' begins to de-
crease again for large enough pumping, which is
depicted in curve b. The presence of the triplets
affects the dependence of n,„/o' on N/iV~ in three
different ways.

First, since for dye lasers at threshold, n„
(=n ) has increased value for increased a, plots
of n /&r have positive y intercepts which increase

with z, rather than the zero y intercepts of typical
lasers. The second difference is based on our
finding that the plot of n,„/o' vs N/Ns, is approxi-
mately a straight line just above threshold. For
the organic-dye laser the slopes of these straight
lines increase with increasing a (see Fig. 10 for a
typical plot of the slope vs n). This increase in-
dicates that the triplet presence causes narrowing
of ft„. Finally, the maximum of n /gx occurs for
smaller values of N/Q~, for correspondingly larg-
er values of 0.. Thus the widening in R„ for pump-
ing far above threshold occurs for smaller values
of pumping relative to threshold and may be easier
to observe experimentally in the presence of trip-
lets than without them.

VI. CONCLUSION

%e have shown how the values of the organic-
dye-molecule parameters (in particular e and P)

affect the laser threshold behavior, the functional
form of the photon distribution A„, and the narrow-
ing (and widening) of A„ for pumping above thresh-
old. As present, l.ittle is known about values of p.
However, n [=(7/S)Kzr-lvr, ] can be varied experi-
mentally to almost any value desired (see Table 1)
in one of two ways. First, since both S and T have
different dependences on laser wavelength, n can
be varied simply by tuning the laser to different
wavelengths. Second, since the lower triplet de-
cay rate (vr, ) is increased (decreased) by the ad-
dition (reduction) of quenching agents, o. may be
varied by varying the amount of quenching agent
used (unfortunately Kxr may also change with the
concentration).

Initial experimental work could be done to search
for the effects we have discussed. Thus one could,

FIC. 9, Normalized radiation distribution parameter
(n, »,,/0') as a function of pumping above threshold
(~'/N, h) for different values of the triplet loss parameter
(e). Curve a, +=0.1; b, 0=0,5; c, 0. =0.8; d, +=0.9.

FIG. 10. Slope of (nm, ,/a vs pump) vs n (pumping
just above threshold).
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APPENDIX

This appendix contains some of the more salient
details of the derivation of the equations of motion,
(4.3)-(4.7), using the Born-Markoff approximation
ma ter equa. tion.

The Liouville equation of motion for the density
operator P(t) of the entire organic-dye laser sys-
tem includes terms associated with the reservoirs.
%'e can write it in the following way:

=—„[H„,+H, +V„, „J'(t)]. (Al)

for example, perform the following experiments:
A photon counting experiment could be done to
search for a minimum in A„. In addition to varying
a, the external pump can be varied to see if the
minimum moves to smaller photon numbers. By
operating the laser at threshold the unique behavior
of the dye laser at threshold could be investigated.
Similarly, the value of threshold, as a function of
triplet parameters, could be checked. By means
of photon counting experiments the slope of n,„/o'
just above threshold (for different values of a),
the maximum in n /o' just above threshold, and
the narrowing of A„well above threshold could be
checked. Once these effects have been verified for
a particular dye, the study of such effects in other
dyes could be used as a tool. to obtain information
about organic-dye-molecule parameters in other
dyes.

In the future we plan to treat the multimode and

high-power cases, mode locking, the vapor-phase
dye laser, phase and amplitude flu. ctuations, and
various time-dependence phenomena.

0„, includes all reservoir Hamiltonians, H$ is
the system (radiation and molecules) Hamiltonian,
and P„, $ contains the reservoir system interac-
tion Hamiltonians. Since the details of the reser-
voirs are of no interest here we eliminate explicit
consideration of them. First we assume that the
density operator for the entire system may be fac-
torized into a product of reservoir and nonreser-
voir density operators,

P(t) =D(V, t)d„, (t),
where D(N, t) is the density matrix for the radia-
tion and H dye molecules and d„,(t) is a product of
the density operators associated with the reser-
voirs of the system. Substituting Eq. (A2) into Eq.
(Al) and taking the trace over reservoir variables,
we obtain

=—[H, +H„D(V, t)]

—i Tr„,[Vs „,D(t)t, t)d„, (t)]

+ KxD(V) t) + K„D(N, t), (A3)

where HR is Eq. (3.3}, H~ is Eqs. (3.4) and (3.5),
and V~ „is Eqs. (3.7) and (3.8). Ks and K„are
linear time- independent operators which specify
the effects of radiation and matter reservoirs on

D(X, t) We trea. t the reservoirs in such a fashion
that the Hermitieity, positive definiteness, and
normalization of the dye molecule and radiation
density matrices are preserved.

When we carry out a Born-Markoff treatment of
the radiation dye-molecule interaction in Eq. (A3}
the result is

=—[H, +H „(tt),D(H, t)]+K„D(H, t) +K, D(V, t)
dt

+Tr„, A V„, V, -7-, 0 X, I;)d„, $) +Tr„, d~ V„, V„-~,D N, kd„, t
0 0

where

y ( 7 ) ~t'(H~HR)r jh ~(I):~+ gR)r y -ir(Hy+p~)/y
R1'~ RT~

(A5)

sma, ll terms associated with the two-molecule
density operator and the radiation reservoir we
obtain

=—[Hs +H))(l), D(1, t)] +K„D(1,t)
df

( ) i(H~+VP)r/h (K~+ ER) r y - i r(Fly+ HR} P
YR$1, Tj 8 R$

(Ao)

+ Tr „, dw VR~, VR~ -7,0 1 r)d „,

In the above we have left out negligible terms as-
sociated with multipl -molecule effects. In order
to obtain an equation for the single-molecule-ra-
diation-density operator D(1, t), we sum the above
equation over V —1 of the particles. Neglecting

+T res ~T ~R$y ~R$ ~~7 D ~y 7 )7 ~res

(A7)

Tracing over all molecule va.riables in Eq. (A4)
gives the equation for the radiation density opera-
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tor R(t),

=—[HR, R (t)] + KsR (t ) d7

+NTr„, Tr, d7 VR~, VR~(-7), D 1, t)d„,
0

+(V„,[V (-r), D(l, t)d„,]}. (A8)

The effect of the reservoirs on the radiation-
matter interaction Hamiltonian appears in the ex-
ponent e' t"s' Rs' in V(-7) [Eqs. (A5) and (A6)].
This exponent propagates the time dependence due

to the reservoir interactions of the interaction
Hamiltonian operators. The net effect is to add a
decay to the time dependence of the radiation and
molecule operators. ' For instance, in the Heisen-
berg representation the "free" time dependence of
the operator associated with the jth molecular lev-
el is st(t) =s, e ' t', where ~, is the frequency as-

sociated with the energy of the jth level. The ef-
fect of a molecule reservoir on time dependence
of s, is to add on a decay time associated with the

jth level,

Tr „„,„,[s, (t)s,'. (0)]=(s, (t)s,'. (0)) =s, s,'e ' &'e "&',

(A9)

where vj is the decay rate of the jth level caused
by the reservoir. Values for vj and other reser-
voir parameters are phenomenological and not cal-
culated from first principles.

%hen we write the interaction Hamiltonians ex-
plicitly, and include the effects of tracing over the
reservoirs in the interaction terms in Eqs. (A7)
and (A8), we can then, after rearranging terms, do

the time integration. The resulting terms for the
radiation-singlet interaction (the terms for the ra-
diation-triplet interaction are the same, except
for a. change to triplet notation) are

y';, (v; +v, +vs)]s~s;a +s;sta, [s, s;a +s; s, a, D(1, t)]}Tr
ij i j R

ty', , (0 —ut, ,)ls, s,a + s, s,.a, [s,s,a —s,. s, a, D(1, t)]}
i j

i i i

i

j i j
(fl —(u;, )' + (v, + v, + vs )' (A 10)

—S)D(1, t) TTD(1, t), - (A11)

=—[HR, R (t) ] + KsR (t)

where

—Tr „„„„N(S$+TT)D(l, t), (A 12)

S -=y', ,/(v, . + v, + v R), yam/(vl vm vs) &

(D(1, t) -=ts,. s, a +s,. s, , [s, s,a +s, s, a, D(1, t)]},

and

TD(l, t) —= ]t t, a +t, t a, [t t, a +t, t a, D(1, t)]}

When we take (All} and (A12} in the number rep-

where ~,t -=(e f —e,.)/tf, v, and v,. are the decay
rates associated with the ith and jth molecular
levels, and vR is the decay rate of the laser radia-
tion. The second (imaginary) term on the right-
hand side represents an energy shift which is im-
portant in some problems. It does not contribute
when the laser is at resonance (i.e. , when the
mode frequency 0 equals the molecular transition
frequency co, j). (Purely for convenience we have
assumed resonance in this paper. ) Equations (A7)
and (A8) then are

dD(1, t) =—[Hs+Hs, D(1, t)) +KvD(1, t)

Vs, u
+ &sr

Ve =
(1 + Ksr/v i}r (A&3)

which depends solely on the decay constants of the
molecule.

resentation in the radiation variables and molecu-
lar energy-level representation, we obtain the or-
ganic-dye laser equations of motion, (4.3)-(4.7).

In these equations we have already included the
reservoir kernels explicitly. For the radiation
reservoir we have taken a simple-harmonic-oscil-
lator zero-temperature reservoir. Including a
finite-temperature reservoir is easily accom-
plished, and would have negligible effect on the
results. The reservoirs also induce the different
decay rates for the appropriate molecular levels.
The reservoirs are responsible for the molecular
excitation rate v„ the pumping of (or decay from
the upper singlet state to) the lower triplet level,
and the fractional return of the upper triplet to
lower triplet states.

The simplest way to completely specify v, is to
impose the normalization condition that the sum of
the probabilities that the organic-dye lasing levels
are occupied is 1 (i.e. , Ds" +Ds'+D„"+D„"'=D„)
This condition is physically reasonable, at least in
the steady state. Our normalization condition
stems from the fast rotational and vibrational re-
laxation rates. Imposing this condition results in
the expression
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