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We study the thermal radiation field in finite cavities bounded by perfectly reflecting walls. Previous analytical
results on the spatially averaged temporal correlation tensors for the cube-shaped blackbody are generalized
for cuboidal cavities of arbitrary edge lengths including the infinite slab resonator. Computational results for
very small cubes and sufficiently long times demonstrate the almost periodic character of the coherence
function. The transition from cyclic to aperiodic relaxation is shown for the visibility, the phase, and the field
autocorrelation. Improved results on the spectral mode density and total radiation energy are obtained as by-

products.

I. INTRODUCTION

In a previous paper' we introduced the spatially
averaged electric, magnetic, and mixed temporal
correlation tensors §,,, 8,,, and 9%, for the
thermal radiation field in a finite cavity:

8. (t)=v= fvdf('tr [pECX,0) EE, D], (1)

w,v=1,2,3, where ¢ denotes the time, V the vol-
ume of the cavity, p the canonical density operator,
and E, =E{”+E(" the puth component of the elec-
tric field operator. The averaged tensors §,, and
®,, are related to the spectral energy density

u(w) dw of the radiation field by virtue of the quan-
tum-optical Wiener-Khintchine theorem?® leading
to the relation

uw)- [ jdte“‘"(g(gw(l‘)+au,,(l‘))>- (@)

In the free-space limit wV*/3 ~o  u(w)—=u_(w)
obeys Planck’s radiation law. The spectral density
u(w) for finite blackbody cavities is relevant to the
problem of radiation standards in the far-infrared
and submillimeter wave regions, and the above-
averaged tensors are basic to correlation experi-
ments or Fourier-transform spectroscopy of the
blackbody emissivity.'»*-6

We calculated the tensors for the simple case of
the cube-shaped cavity of edge length L with per-
fectly reflecting walls and obtained®

é’uvzauvr:(—guw E’Tluv:o, (3)
with the scalar function
1 ;ch"e-ik,,ct
T=F(t,L,T)=—3—‘;ZWT, (4)
k"

where T denotes the temperature, K the Boltzmann
constant, 7 Planck’s constant divided by 27, and c
the speed of light. The %,=w,/c are the eigenval-
ues of the cavity resonator. We established an
asymptotic expansion for I'(¢) in powers of 1/LT
and ¢/L, the first term of which corresponds to the
free-space limit.” Unfortunately, this expansion
is useful for the numerical calculation of I'(¢) only
for finite but not-too-small LT and only for not-
too-long times L.

In this paper, we study the more involved case
of the cuboidal cavity with edge lengths L,, L,, and
L, as well as the almost periodic behavior of the
correlation appearing in the case of very small
cavities or sufficiently long times. In Sec. II, we
present the correlation tensors for the cuboid in
terms of exact series. We find that both the iso-
tropy (3) and the vanishing of the surface terms of
the tensor components observed for the cube! as
well as for the free-space limit? do not hold for the
less symmetrical cuboid. In Sec. Il we present the
asymptotic expansion of the tensor’s trace and ex-
ploit the relation (2) for the calculation of the spec-
tral and total radiation energies. In particular, we
study the oscillatory terms of the density of states
and compare it with the analogous scalar wave
problem. The case of the Fabry-Perot resonator
(L,/Ly=L,/L,~~) is discussed as well. Section
1V is devoted to the numerical summation of the
series of type (4) for very small cubes or very low
temperatures. The corresponding Poincaré cycles
are studied for the fringe visibility |T'(¢)/T(0)],
the phase angle ®(t)=argI'(¢), and the electric
field autocorrelation function

EO) B ) <ReY B (t).
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II. CORRELATION TENSOR

A more involved version of the procedure out-
lined in Sec. II of Ref. 1 leads to the following se-
ries representation of the diagonal components §,,
and ®,,, A=1,2,3, of the spatially averaged elec-
tric and magnetic field temporal correlation ten-
sors: We obtain

Tic 3 3 =
Su0)=-57 Lz *boig;) 25 GGk
n tnh
uwiv
(5a)
_Fc = K - (m,/L,)?
_W<n nZn 1 k F(k,t)
X’ ul =
+ ka(kw,t)) (5b)
nu,nl':l

and

©

_ fic ) 9
m**(t)"EV(Lua—q +L"8—LV> > Glk,0)

(6a)
ke K- (m,/L,)
(o e
Mty ety
T3 et F,).
O=uyp Myangal
(6b)

Here we introduced V=L,L,L, and the wave num-
bers

8,,(t) =(Ec/16V)

) () ()T %

and
kw=1r[(nu/Lu)2+(nv/L,,)2]‘/2. (8)

The indices {, 1, v} are any permutation of {1,2,3}.
The functions G and F are related by

-ikct
G(k t)=F(k,t)= ———m—l 9

From (5a)-(6b) we learn that the isotropy of the
correlation tensors as well as the identity of the
corresponding electric and magnetic field tensor
components valid in the free-space limit are in
general lost for finite blackbodies. In the limit

t -0, the representations (5a) and (6a) suggest the
related anisotropy of the radiation pressure in
agreement with a previous result.® In the case of
the cube, L,=L,=L,=L, however, the above six
diagonal components coalesce to one scalar func-
tion,

—gn(t )= ‘_Bu(t )

=§%<§ Y, kRO« Y %F(l”e,t)),
"1'"2'"3=1 ﬂ1)"2=1

(10)

with %= (/L) (n2 +n2)'/2. This result is a conse-
quence of the high symmetry.

We now have to evaluate the sums (5b) and (6b).
To this end, we symmetrize the summations as
follows:

—~ K- (m,/L,)
x| P22 Fk, t) (11a)
MyoNy, g1y ==co
+0
_Y S W p e S kBl (11b)
0=y 1y g N == kxo n,an, ==
- Y| | o]0 (110)
0= gV N ==®
+KT/12V, (11d)
with % and k,, as given by (7) and (8). &,, looks edges of the cuboid. The edge-length-independent

like é’u w1th the exception that the two-dimensional
sums (11b) have the opposite signs. From the di-
mensionality of the summations we easily infer
that (11a) is related to the cavity volume, whereas
(11b) corresponds to the faces and (11c) to the

term (11d) is supposed to be related to the corners
of the cuboid. For instance, the last term in (11b)
stems from the faces that are orthogonal to the A
direction. In (11c), only the edges orthogonal to
the A direction play a role. Obviously, the surface
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terms of
1 3 _ 1 3 _
T(t)=3 2 6nt) =3 2 Bu® (12)
A=l A=l
vanish.

III. ASYMPTOTIC EXPANSION FOR THE TRACE AND
SPECTRAL DENSITY

The sums occurring in(11a)-(11c¢) are evaluated
by means of the Poisson summation technique.
The detailed results for the single tensor compo-
nents are very complicated and are therefore com-
piled in the Appendix. In this section, we restrict
our considerations to the trace (12) related to the
spectral energy density by the relation (2). Intro-
ducing the reduced reciprocal temperature
a=#c/KT and the reduced time T7=ct/a=KTt/7,
the Poisson summation for the trace (12) leads to

e L,+L,+L
12702 14

ilic =\ s - . 2
- 3 Z u‘[§(3,1+z<‘r-?ﬂ

VisVgy Vg==e

T(¢, @)= %m, 14+47) =

\\ Rel,
\

\
\Rel,
\

FIG. 1. Real and imaginary parts of the normalized
generalized Riemann ¢ functions &,(1) =90m~4¢ (4,1 +i7)
(dashed lines) and £,(7) = 6m~2¢(2, 1 +i7) (solid lines).
They occur in the temporal coherence functions (13) and
(15). For 7<= 2, these functions are approximately de-
scribed by -15174@37 3 -2 i7 7% and 317 2(r “2-24i 7Y,

KT
12v

382, 144iT) + ===

>) —§(3,1+i<7+-2a£>)}

- 2—4::‘;—2‘/2 {Ll i' [Q(Z, 1+i(T— %>)+§(2, 1+i(‘r+ 2";L">) } %, (13)

A=1

M=o
with

u= [(V1L D2+ (VL ,)% + (V3L3)2]1/2 )

(14)

and where (s, z) denotes the generalized Riemann ¢ function. The prime indicates that the terms with
=0 and m=0, respectively, are omitted in the summation. The result (13) is valid for any finite @ and

any 7.

For any time {<2Lnin/c, With Ly,=min(L,, L,, L;), the following asymptotic expansion in the limit @/ Lmin

- 0 can be established:

_ fic . ic L,+L,+L, . KT
rE) gy £(4,1+4T) = o, v ¢(2,1+47) o7
e <N _opo- iic < X 2m+1
e ) T2Q2n 4 1)g, g ) T Y (=1)"27mB, dp (15)
167a? "; nT grat For? ; 2(m=n) sl ’
with the Bernoulli numbers By, and with

_ ¥ a )2 M+l o N ~2m=a

w5y 3e(f) smen- Star S e, 1)

where Z(s) denotes the ordinary Riemann ¢ function and where u is given by (14).

For not-too-large a/Lmin and for not-too-long times ¢, I'(¢) is sufficiently well described by the two lead-
ing terms of (13) or (15). The corresponding generalized Riemann ¢ functions are displayed in Fig. 1. Ap-
parently the decay of the correlation is already slowed down by the first correction term proportional to
¢(2,1+i7). We mention that this term becomes minimal in the case of the cube-shaped cavity showing the
same volume.

Applying (2) to the exact result (13), we calculate the spectral energy density. Omitting the Bose-Einstein
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factor #ick(e"*/¥T — 1) we obtain the spectral mode density

VEk? = sin(2uk) 1 & - .
D)= — . o ‘; L, Y cos2mL,k )+ 3o(k), (17)
LA 2uk 2T & —

with p defined by (14). The corresponding total radiation energy U reads

ic 15 a' 12 o? Za =
N LL,L, & M'ls <21m \)'3 _ cosh(zﬂl
2 o’ vyl } a
dr &Ko ol f2mimIL,\7?
+W§ "; ]ml [smh(—a >] s
where
o 1<1 1 1) LL,L, &' _,
“‘16[3 VD A Y A 2 H ]

VypVor V==

For L,=L,=L,=L, (17) and (18) reproduce the
known results for the cube-shaped cavity.”%°® We
observe that LU scales with KTL /7ic in the case
of the cube,® whereas no analogous scaling law in
terms of some length L, characterizing the
cuboid can be established for the cuboid. Equa-
tion (18), as well as the analogous result for the
cube,%° represent the total energy in terms of
an asymptotic expansion around T —« (“high-
temperature expansion”). By definition,' the dif-
ference between the exact value of the total energy
and a finite number of leading terms of (18) is thus
of order T, with some M >0, where M increases
with the number of terms taken into account. A
finite number of leading terms is an excellent ap-
proximation of the total energy for finite but not-
too-small 7. In the case of the cube the four lead-
ing terms represent the total energy to within 1%
error for LT 20.3 cmK.'»!? We cannot, however,
expect that these four or any finite number of
leading terms of (18) will describe the limit 7—~0
correctly. In particular, Eq. (18) does not imply
U- const or dU/dT —const as T—~0.*!' For ex-
tremely small values, say LT <1 cmK, it is

nic

) [omn (222) ]}

(18)

(19)

r

more feasible to use Eq. (10) for the numerical
calculation of the total energy.'!®* The formula
(10) is likewise an asymptotic expansion around

T =0 (“low-temperature expansion”). This low-
temperature approach is considered further in
Sec. IV. The range of validity of both the high-
and low-temperature expansions of the total ener-
gy of the cube-shaped blackbody was studied nu-
merically in Ref. 11.

We mention that the electromagnetic mode den-
sity (17) differs from the mode densities derived
for the lattice-point problem'* and the scalar wave
Dirichlet and Neumann problems.'® The scalar
mode density shows terms proportional to L,L ,,
including oscillatory terms in the form of two-
dimensional sums over the zero-order Bessel
function. Similar surface terms are obtained in
the electromagnetic case only if one calculates
the partial mode densities corresponding to the
modes contributing to some specific field compo-
nent E,. This can be seen from Fourier trans-
forming the terms (A2) and (A3) in the Appendix.

In the limit of flat cavities with L,=L =L -,
but finite L, =1, we find the tensor components

= X n 1 &)1 . 2vl , 2vl
811(7)=—2—7T 045(4,1“7) ——716:‘1 WZ {F {5(2,1+1<T+T))+§(2,1+1<‘r-—a—>)j|

+2—€%§ l:zp(l +i<‘r+—2&ﬂ>) - IP(I +i<‘r- 2%7)):' % +;1%57€(3, 1+i7),

®,,(1)=8,,(1) = (Fc/21a*)E(3, 1 +47)

and
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< - nic . K fa Y (_ 2u
822(T)=£33(T)=W€(4’1+ZT)+WV§, ]‘w[€(3,1+1<7+?>)—§(3,1+2<T—-—>)]

1 2
*W[g(z’l"”(”%))*@(z L+ T-_VZ»
ia (2w 2\ \]
*W[‘p(“’(”T))“b(“’(“?)ﬂ %
—Tsh_c {(3 1+lT) (22)
B,,(7) = By (T) = & (1) + (e /40D £ (3,143 7), (23)
where i denotes the  function
zp(1+z)=2.°—-§—————c
bt 11 (N + 2) ’
with C denoting Euler’s constant. For the trace as defined by (12) we obtain
31 . 2vl . 2vl
I‘(‘r)— b4, 14T i 2«!31,‘{; [ (3,1+1(T+T>)—-§(3,1+z( _—a—»], (24)
leading to
Vk ~ sin2mlk
DW= X ik 25)
and
u(r) = v, v —’ 1 <2ﬂlmll >"3 2rlmll L 2mlmII\]®
e 15 ot " 20°1 m;rm_l o - OSh< a ) smh( a >] ’ (26)

thus confirming previous results for the mode den-
sity'®*!” and the total radiation energy'® of the flat
parallelepiped with perfectly conducting walls.

IV. QUASIPERIODIC CORRELATION FOR SMALL CUBES

We now go back to the special case L, =L,=L,=L
of the cube-shaped cavity. In our previous paper!
we emphasized the asymptotic expansions for the
averaged complex correlation tensors §,,=6,,T
=®,,, useful for finite but not-too-small TL,
TL=z#c/K, and finite but not-too-long times ¢
<L/c. Now we demonstrate the quasiperidoic be-
havior of the correlation occuring for sufficiently
small values of TL and large values of {. To this
end, we display curves for the three quantities of
physical interest, namely, the degree of first-
order coherence |y(t)| = |T'(¢)/T'(0)|, the phase
angle ®(¢) =argIl'(¢), and the electric field autocor-
relation function (ﬁ(O) E(?)) proportional to ReI'(¢).

The result (13) and the analogous formula (19) in
Ref. 1 are valid for any cavity dimension and tem-
perature as well as for any time {. For very small

r

cavities or very low temperatures as well as for
very long times, however, the computational eval-
uation of these formulas becomes more tedious
than that of the sum representation (10). We thus
compute the above-mentioned quantities for a
variety of values of TL below 1 Kcm as functions
of the reduced time in the range 0=7<5. We com-

0 I 2 3 4 .. 5
FIG. 2. Temporal coherence | y|=|I'(@)/T(0)| for the
cube-shaped blackbody plotted as a function of T=KTt/k
for 7L =0.05, 0.1, 0.2, 0.4, and 0.8 Kcm (solid lines).
The thermodynamic limit 7L — » is shown for compari-

son (dashed line).
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FIG. 3. Phase angle ®=arg[T' (7)/T (0)] for the temporal
coherence function belonging to the cube-shaped black-
body plotted for 7L =0.1, 0.2, 0.4, and 0.8 Kcm (solid
lines) as a function of T =K T¢/# . The thermodynamic
limit TL — < is shown for comparison (dashed line).

pare the results with the aperiodic free-space lim-
it LT = !®

The results for the degree of firsi-ovder tem-
poral coherence are shown in Fig. 2. Almost com-
plete first-order coherence, \-yl ~1, is found in
the limit of very small LT, where the lowest mode
with the wave number % =21/21/L is dominant.
However, |y| relaxes rapidly to very small values
for TL 20.8 Kcm. We point out that the results
for TL=0.8 Kcm and TL -« are similar only for
7=<1. Substantial relative deviations occur, how-
ever, for larger values of 7, where the free-space
limit is described by

lyo|~307t7=. (27)

The time evaluation of the phase angle is displayed
in Fig. 3. A free rotation ® « 7 is found for very
small TL, where the fundamental mode is domi-
nant. This periodic motion is more and more
slowed down with increasing TL, and the monotonic
relaxation towards the stationary value —3 7 finally
appears in the limit TL -, For sufficiently large
7, this free-space limit is described by

b ~-SmeiT, (28)

Finally, we consider the electric field autocorre-
lation function

Rey = (E(0) E(1)) /(E=(0))

=f:2§n(f)<zs:gu(0)>'l. (29)
A=l A=l

T T T TL X —
i i 1/ 1A \ el
! ‘ Lol [kem) /
! T ! \
| 05 \
//\l -
S 2
— L a
'('\’7'7 *A ’\
I Ai, — AW —
8
! I
? o} ‘
z 16
[T S I | I |
o I 2 .. 3 L — 2

FIG. 4. Field autocorrelation function Rey for the
cube-shaped blackbody plotted as a function of 7=KTt/%
(left-hand side) and ct/L (right-hand side), respectively,
for TL =0.05, 0.2, 0.4, 0.8, and 1.8 Kem (solid lines).
Each of the ten plots is meant for the range —1=Rey =1,
and in each plot the thermodynamic limit TL — is dis-
played for comparison (dashed lines).

This quantity is of physical interest because of the
analogy with autocorrelation functions occuring in
time-dependent statistical mechanics, e.g.,
Brownian motion in a finite box.>> We have plotted
the field autocorrelation in Fig. 4 for various val-
ues of TL as a function of the “thermodynamic” re-
duced time T=KTt/% and the “traveling” reduced
time ct/L. Apparently, T is the natural variable
for the thermodynamic limit, where y scales with
T, whereas y is a function of both ¢T and ¢/L in
the case of finite TL. The corresponding plot of y
as a function of c#/L reveals the Poincaré cycles:
The first “return” of the autocorrelation Rey oc-
curs at about the time #=2L/c, i.e., twice the time
the radiation needs for traveling from one face of
the cube to the opposite one. On the other hand,
our results demonstrate that the computer simula-
tion of correlation functions carried through for a
finite subsystem in a small box yields reliable in-
formation on the corresponding thermodynamic
limit for times small compared to the signal trav-
eling time.

V. CONCLUSION

In this paper we have obtained the complete ana-
lytical expressions for the spatially averaged tem-
poral correlation tensors, the spectral mode den-
sity, and the total radiation energy of the electro-
magnetic field in a cuboidal cavity with perfectly
reflecting walls., These results modify the Jeans
number and the Planck and Stefan-Boltzmann radi-
ation laws valid in the thermodynamic limit as well
as the corresponding blackbody coherence proper-
ties.’!® We have discussed the time correlation
for the cube numerically, demonstrating the tran-
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sition from the quasiperiodic behavior in the dom-
inant single-mode case to the aperiodic behavior in
the thermodynamic limit. Thus all of the nonlocal
properties of the cuboidal blackbody with lossless
walls have been calculated.

We should, however, like to point out that the

position dependence of the temporal correlation as
—J

well as of the total and spectral energy densities is
also of great physical interest. The position-de-
pendent temporal correlation tensors have recently
been calculated in the case of the half-space bound-
ed by a perfect conductor.? The starting point for
the analogous calculation in the case of the cube is
given by the equations (8)-(11) in Ref. 1.

APPENDIX

We apply the Poisson summation technique to the various sums appearing in the terms (11a)-(11c) of the
tensor components &,,(¢) and &,,(¢), respectively, and obtain the following results:

The volume term (11a) yields

fic .
W§(4,1+ZT)+ p

—5—1—-3("1’ Y-u [§(2,1+i<7

4ap

_ 3Ly -
8u’

;f +00 - 2 . 2 .
5 2‘;" Zi {—-——————-——[” 0[2(:1 ")][ (3,1+z<7+%>)—§(3,1+2<7_
19V20 V3 ==

a5

)
)

S

+Eﬁ>) +§(2,1+i<7-2
a

2 [zp(1+i<T+%>)—¢(l+i(’r_%>)]}, a1)

where a=#ic/KT, T=ct/a, and p=[(v,L,?+ (v,L,)* + (v,L,)?]'/?, and where § denotes the  function [see

(20)-(23)].
The first two terms of (11b) are equivalent to

‘b raren-2 5 oty [ 55 (AL L) ]

and the last term of (11b) leads to

T 1 orirry (2L0uL, )+, L] >r

416°L, [g 6,1+im)+ ) ;J’ g J< a )dr (A3)
The series of (11c) finally yields (o< {1,2,3}, A +#0)

gif,fv{g(z 1+zr)+—17r u§'[;(2,1+i(r_Z_’;Lx>)+§(z,1+i<r+ﬁ’&L—q>)]}. (A4)

Using the asymptotic expressions for ¢(z,s) given, e.g.,
in the limit a/L

behavior of (A1) and (A4) for ct<2L,,,
pressions analogous to those occurring in (15).

min—0, Where L_,

in Ref. 10, one can easily evaluate the asymptotic
p.=min(L,,L,,L;), and obtain ex-
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