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We derive variational equations for optimization of the orbitals of arbitrary multiconfiguration wave functions.
Expressing the transformation matrix connecting the set of orthonormal trial vectors and the set of final
optimal orbitals as an exponential matrix of independent rotation angles allows a simple derivation of the
coupled variational equations to arbitrary order. We include the explicit results through third order which are
sufficient for cubic convergence in the iterative solution of the optimum orbitals. The equations were
programmed (including all terms), and applications to Hartree-Fock and generalized valence bond wave
functions of the carbon atom, FeO,, and NiCH, are reported.

I. INTRODUCTION

A number of standard methods for obtaining
electronic wave functions involve the optimization
of orthogonal orbitals for some given form of the
wave function. Examples include Hartree Fock
(HF), generalized valence bond (GVB), and multi-
configuration—self- consistent-field (MC-SCF)
wave functions.

Any electronic wave function constructed from
orthonormal orbitals {x,} leads to an energy ex-
pression of the form

E=;(2faﬂ<oz|h|ﬁ>+§caﬂy5(aﬁlya)>, (1)

where the orbitals are denoted by their subscripts,
and (o|% | B) and (aB|y5) are the one- and two-elec-
tron components of the energy

(alnlp)= [ an xLnWx),

(@Bly)= [ dr,dm, x(DxD(A/722)x,(2)xe(2)

(for convenience we take the orbitals to be real).

For specific types of wave tunctions, including
general open-shell HF and a restricted class of
GVB wave functions, a much simpler energy ex-
pression is obtained!

E=Z 2fa(a|h|a)+2 (@agd st b osKag), (2)
o a,B

where J,,=(aa|pp) and K ,,=(aB| ap) are the usual
Coulomb and exchange integrals.

The simple closed-shell HF wave function (all
orbitals doubly occupied, once with spin up and
once with spin down) leads to

E=Y 2(a|h|a>+§ (2] o= K o) - 2"

In order to optimize the wave function, one starts
with a set of trial functions {x,} and attempts to
find a transformation 7 which produces a new set
of orbitals {¢,}: -

(pi=Z TiozXa (3)
@

such that the resulting energy is stationary.

A common approach,? often used to solve for the
optimum wave function, begins by varying each or-
bital independently (keeping all other occupied or-
bitals fixed) and finding the resulting change in en-
ergy. This is equivalent to taking the derivative
of the energy with respect to each component of the
transformation matrix 7 and adding constraints to
ensure orthogonality to the other occupied orbitals.
Upon requiring the energy to be stationary under
such variations, one obtains a set of pseudoeigen-
value equations of the form?:3

ﬁ‘(pi='2 €,;9,, alli (4)
7

(where €,;=¢,, and where A* depends on all the
orbitals), which are satisfied by the optimum or-
bitals {¢,}. In order to solve (4), the usual ap-
proach is to evaluate the operators Hi using the
trial functions {x,}, then solve for the resulting
orbitals, and continue the process until conver-
gence is achieved (hopefully). This approach has
been particularly successful for the HF wave func-
tion (2) [in that case all the one-electron opera-
tors (H?) are identical]. However, Eq. (4) in no
way specifies the best way in which to modify a
set of nonoptimum orbitals. Thus, even a good
starting guess may converge quite slowly or not
at all.

In order to obtain variational equations which
actually specify how to correct a set of trial func-
tions, one must expand the energy beyond first or-
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13 ORBITAL OPTIMIZATION

der in the orbital variations. However, to obtain
sufficient conditions one must allow each orbital

to vary in all directions, including those occupied
by other orbitals. Because of the orthogonality con-
straints, such variations require simultaneous
changes in more than one orbital.

Hunt, Goddard, and Dunning® constructed the
transformation matrix as T7=1+A (where Ais
antisymmetric, thus incorporating orthogonality
through first order into the transformation matrix)
and obtained variational equations specifying how
to simultaneously correct all orbitals (through
first order). These equations would lead to qua-
dratic convergence but were not implemented. By
using a restricted form of these results, valid for
pairwise (two by two) rotations, Hunt, Hay, and
Goddard! developed a general program (GVBONE)
capable of optimizing open-shell HF and restricted
(perfect pairing) GVB wave functions [i.e., wave
functions with energies expressible as (2)]. How-
ever, owing to neglect of coupling between pair-
wise rotations, the convergence is not quadratic.

Bobrowicz and Goddard®'® used an alternative ap-
proach of expanding the energy through second or-
der in all orbital corrections and incorporating all
orthonormality conditions explicitly, leading also
to equations sufficient for quadratic convergence.
Using approximate forms of these equations, Bob-
rowicz, Wadt, and Goddard® developed a general
program (GVBTWO) capable of more rapid conver-
gence than GVBONE but still far from quadratic.

In the above approaches the transformation ma-
trix components themselves are varied directly.
Since these components are not independent (owing
to the required unitarity of 7), it is very difficult
to obtain consistent variational equations correct
to an arbitrary order.

Our approach begins with expressing the trans-
formation matrix 7T in terms of completely inde-
pendent rotation a;gles 4A;; in such a way that or-
bital orthogonality is completely incorporated into
the form of the transformation matrix. By varying
the independent rotation angles A;; instead of the
components of T consistent variational equations
(valid to any given order) may then be derived for
either the general (1) or the restricted (2) energy
expression. Terms up to third order in the energy
are explicitly expanded, thus giving cubically con-
vergent variational equations. These equations
were programmed (including all terms) and the re-
sults of several applications are discussed.

II. ROTATION MATRICES

Given the form of a wave function expressed in
terms of N orthonormal orbitals, we wish to de-
termine the optimum orthonormal orbitals {¢,}.
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Beginning with a set of N orthonormal trial func-
tions {x,}, the relationship of the optimum orbi-
tals {¢,} to {x,} can be expressed in terms of a
transformation matrix T

?1=TiaXa (5)
lin (5) and subsequently we will generally use the
summation convention for repeated indices; for
emphasis we will occasionally indicate the summa-
tion explicitly].

Since both sets of orbitals are orthonormal, T
is a unitary transformation. Because the sign of
an orbital is of no consequence, we need only con-
sider special unitary transformations SU(N).

Since we take our orbitals to be real, only ortho-
gonal transformations in SO(N) need be considered.

An arbitrary element of SO(N) may be con-
structed from N(N - 1)/2 independent generators.
In order to derive unconstrained variational equa-
tions, we need to express T directly in terms of
N(N -1)/2 independent parameters specifying the
transformation.

We may take the generators to be the set of all
pairwise infinitesimal rotations of the N basis
vectors for the N-dimensional space (i.e., each
generator is an infinitesimal rotation in the plane
containing two basis vectors). The transformation
matrix corresponding to an infinitesimal rotation
of basis vectors ¢, and ¢, (a>p) is given by

Za8=l+_1}_a3d9’ (6)
where
A%5=0;405— 81054 (M

(that is, all but two of the N elements of A®# are
zero, the nonzero components being A§§=:1, and
AgB=—1).

An arbitrary infinitesimal transformation dR
may be formed by a linear combination of the gen-
erators. Thus the transformation matrix is given
by

r®=1+2kap, (8)
where
AR= Y rphne (©)
a> B
and
D (rap?=1. (10)
a>B

The representation of a finite transformation R
is constructed by repeated application of the infi-
nitesimal transformation dR. Thus
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TR =im(1 + AR/

=1+ (ARg)+ 2(aR0)2 + L(ARQP+--+ . (11)

Hence,
ZA =exp(é§9) . (12)

However, éﬁe simply specifies an arbitrary anti-
symmetric matrix. Thus a general form for an
N-dimensional proper orthogonal matrix is given
by7,8

T=e®, (13)

where A is any antisymmetric matrix.

For convenience of discussion such a transfor-
mation will be referred to as a rotation, and the
N(N -1)/2 independent elements of A (all &,
with a> g) referred to as rotation angles. How-
ever, such a transformation need not be an actual
N-dimensional rotation occurring in some N-di-
mensional plane.

III. ORBITAL OPTIMIZATION

A. General energy expression

The energy (1) of a wave function constructed
from orthogonal orbitals may be put in the form

E=Z(faﬂhaB+H:g)) (14)
o,B
where
ha8=<a|hlﬁ> ’
H= foplu|h|0)+ 2 Capo(hr]v0), (15)
7,6

and where the functions {xm} are denoted by their
subscripts only.
Applying a transformation T to the orbitals {xa}

;= Z TiaXa (16)
@

leads to a new energy

E'= Z <2fij<(pi |h | ¢j> + Z cijh[(qp{(pj I %ﬁp,))
Ryl

[
= Z T{aTJ‘B<2 f;,ha3+2 T 3T 16€ s s (B |75)) .
iyd 1

(17)

In order for the energy to be stationary, we re-
quire®

_3E

O_BAW
=4 aT{a
=43 aa Lis fijha8+2 T T 16 1ma( @B 70)

2% uv Ryl
or

_8Tia .

*“aa,, Tioflad” 18)

for all u>v, where
H(“;gwjzf“ha5+cum(aﬁl(pk(pl) (19)

and summations over ¢, j,k, and ! are implicit.

In order to solve (18) we must express the equa-
tions in terms of the independent rotation angles
(all A;; with i>5). Thus expanding T leads to

- 1 1 4

Tip=05F Dp+ 20,855+ 5 8,8,,4,5+0(4%)

= JB 4 L B
85+ A PIE+3A, A, Q)

mn~ mn mnpq

+3A_A, A SiB

mn= pg rs" mnpgrs

+0(AaY), (20)
where

m>n, p>q, r>s;

ani= 1- Tmn)(éjmﬁnﬁ) ’ (21)
Q=21 +7,,7, )1 - 7,)1-17,)(5,,5,5,)

(22)
s;’netpqrs = 1_12(1 + TmPan * TmrTns + Tprqu

+ TmrTnsTmanq + TMquTmDTna)

x (1 - Tmn)(l - Tﬁq (1 - Trs)(éjménﬂﬁarasﬂ)
(23)

(7 45 is the permutation operator interchanging
a and B). Similarly,

aT;
—tia - pi i i
9 Auv P ug + AMQ u-?lmn + Amn Aﬂqsuzmnpq

+0(4%),
(24)
mn” mn’ aBRY

L0, =i ijk
H%i®i=Hi},+24, PY VLl

L} 1617ijk1 1 1jkl 3
+ A’M APQ(Pm);lPﬂq VO!JB'VG + Qm);lpq Vajﬂk'y) + O(A ) )

(25)

where
Vgtjﬂ’lr'ti:Ciju(aﬁ‘?’é) (26)

Substituting (24), (20), and (25) into (18) leads to
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0=[Ple+a, @iz +4& A S N6,tA,PE+3a,,8,Q8 1

wymn mn— pq - uvmnpq mn

XH 4 +28,, PRVYSL+ 8,8, (PR P 5,04 )VER]+0(&),

mn= pq mnpq

J 4+ zvikll

i
wymn wyvs maV aB aklﬁ)]

0=[PizHY ]+ 4, (@, HY +PaPIE(H

+Anmqu[sm Hij.*_%(Qla ij+Qia piB +Qia P"B)(szs‘*'zV“”)

uvmnpe” " aj uwymn™ pq uvpg” mn mnpq- LY aklB

+ (PLTIP{;P::_‘_PLQ(P}BPW +P£anBPk7)Vijkl ]+ O(Aa) X

v® pg” mn mn” pg- wv/ " aBrl

Consequently

O=XMV+A"I"BMV"IH+ A A C

g +0(a%),

wymnpq
where
w>v, m>n, p>q,
= - wj
X, =Q-7,)H,

Bomn =20+ 7,7, (1= 7, )1 =7, HEm+2VEEm+ 6 HEI],

um - vn

Corommpg =21+ T, T, + TuoTod L+ T, T A =T ) (1= 7, (1 =7, )[Vimei + O (2HEP + Vuike

vngj

Note that X, B, and C are antisymmetric under interchange of pair indices (i.e., X, ==X

=-B,,.m» etc.) but are symmetric under interchange of pairs of indices (i.e., B

+16,,HA)].

uvmn "~

1685

(27

(28a)

(28b)
(28¢)

(28d)

i etc.).!'® Applying the permutation operators in (28) leads to the expanded form of the variational

equations contained in Appendix (A1l).

B. Restricted energy expression

The restricted energy expression (2) may be put in the form
E= Z (fahaa+Hga) ’
o

where
HY,= fahut ) (@aydt, +b o, KL,) -
'

Thus, for the energy to be stationary we require that

0olE _, 2T
E7N aa,,

uy

T,BH:g, uw>v
where

Hoh= fihogt Z la,(aBlo;0,)+b, (av,|B))]

_ iv _ij ir Pib yi j ij 3
'fos’*' ZAm,.anyngL]ﬁjr"' Amnqu(PmZ,qugawa + anynpqgalﬂjr) +0(4%)

and
ghine=a,(aB|yd)+3b,,[(av|B6)+(ab|py)].
Therefore,

0=[PLSHL 1 +A,[QL0, Hiy+ PLoPin (8, Higt 28¢,54)]

wvmn LyT mn

+ Amrlqu[siLﬁmnﬁquxl + %(Q‘a P!B+Q‘a PJB +Qf';MP{-LBv)(6uH:!B+ Zgyijﬁ)

wymn= pq Bvpq” mn

+(PLSPJAPY + PLEPILPIL + PLPIPY) g o]+ 0(%)

uv® mn mn" pg uv

Thus!!

(29)

(30)

(31)

(32)

(33)

(34)
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0=XHV+Am’fBUVm"+A A c

mn"pq - Lvmnpq

+0(4%), (35a)
where u>v, m>n, p>¢q,

Xuv=(1 - Tuv)Hu (35b)

uy

B = —%(1 +7, 7, )(1— Tuv)(l - T"‘”)

wymn um vn

X[6,(HL —HE —HY)+2g4m 1. (35¢)

Knymn

C =3(1+7,, 7T, +T

wymnpq um'vn u-pTVq

A+71,,T,)

XQ-7,)0=-7,)1-7,)

x éum[(g:::w' g::nv) + %épv(Hqun - %H:n)] .

(35d)

Applying the permutation operators in (35) leads
to the expanded form of the variational equations in
Appendix (A 2).

C. Pairwise rotations

If only a single rotation (say between orbitals
1 and 2) is to be performed, then the general en-
ergy expression (14) reduces to

E =E0+ (fllﬁll +Hii) +(f22}-1’22+Hg§) + 2(f12512 +Hi§ ’

(36)

where E, contains all terms independent of orbi-
tals 1 and 2. Optimizing the rotation between or-
bitals 1 and 2, one finds

0=X,, +(85,)Bsyp, +(85)°Caa101 (37a)

where
X21=H§f‘Hé;+Hf11"H§; ’ (37b)
d

AE"=4A,, X, +4, (5, B

Byyp =Hyp + Hi; - Hyj — Hip — 4H}3
20515, (J); = 2J 5+ Jp,)
+4(Ca1 = Co111) (12 = I23)
+2(Cy111 F Cozoo = 2€2211)K 5 (37¢)
Corzizy = 2(Hzy ~ H + Hpp — HYY)
+3(Caa02 + €111 = 2C2211 = 4C2101) (15 = J3p)

+ 3(61112 - C2221)(2J12 + 4K12 - Jl]. - J22) -

(374d)
If the restricted energy expression is used,
then!!»122
Xp =H; - Hy, s (37e)
By, =Hy, — HY + H ~ H2, +2(ay, + ayy ~ 2a,,)K,,
+(by t by —2b,) (T, + K, , (371)

Caiziar = 2(H;, — H3)
+3(ay, + @z — 2ay,+b,, + by — 2b,5)(J75 - sz) .

(37g)

D. Energy contributions

In the case of multiple simultaneous rotations,
it is often useful in the analysis of the iterative
process to have an idea of the contribution of each
rotation to the total decrease in the energy.

Given a set of rotation angles {Am}, the total
energy is of the form

— R0 1
E=E +Amnan+2AmnAPqB"mPa

+3A A A C +0(a%) (38)

mn= pq rSs mnpars

where m>n, p>q, 7r>s.

Now suppose that all rotations except the (uv)
rotation were performed. The difference in ener-
gy would be

L 1 4
mn'~ pymn "~ 2 AuVB uvuv) + Al.w[AmnAch pymnpg Auv(AmnC wyuvmn = 3 Au.vc uuuvuv)] + O(A )

=4,(X, +4a,, B

mn" pymn

+A_ A, C

mn"pq - Hvmnpq

Since

X +B A +C A =0

uy uwymn =" mn uvmnpg “mnpg " V>

the contribution of rotation (uv) to the change in
the energy becomes

AE" = (A8, 0(3B,, .+ 4,,C

wy gy mn> uy I-Lllm")

+(A,, )3 (5C y+0(a%), (40)

Ky Ly py

where p and v are fixed. Naturally

At 2 Y~ AR, (41)
my

)~ (Auv)z(%B wour ¥ Amnc

uvuvmn)+(Auv)3(%C uuuvuv)+O(A4) . (39)

r

However, the relative sizes of the AE*” may pro-
vide useful indications of the relative importance
of various rotations.

1V. DISCUSSION
A. Order of the convergence

Repeated application of Egs. (28) [or (35)] and
(13) to a set of trial orbitals will cause the initial
wave function to converge cubically toward the
optimum wave function. [That is, sufficiently
close to convergence the gradient of the energy
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(X) and the change in the orbitals (&) both de-
crease cubically from one iteration to the next. '
If the tensor C is ignored, then the resulting con-
vergence should be quadratic. This cubic and
quadratic convergence has been demonstrated for
several prototype systems as indicated in Tables
I-III for calculations on C, FeO,, and NiCH,.

B. Techniques

Several techniques were used to solve the varia-
tional equations. The first of these involves form-
ing the matrix B and the vector f, inverting the
matrix B and ob—taining the first-order solution
vector &, satisfying 0=X + B-X,. The matrix
_C_-Kl is then constructed and (B+C - Kl) inverted
in order to obtain the second-order solution vec-
tor A,, which satisfies 0=X+(B+C-A,)4,. Con-
tinuing the process is unnecess—ary—s'mce Kz is al-
ready correct to order A®. Finally, the trans-
formation matrix 7 =e42, is constructed and ap-
plied in order to obtain the new orbitals {¢,}.

Alternatively, one may solve the system of
equations iteratively by minimizing the scalar
functional

I[R)=-X-E+1B-3-E+3C-3-3-5, (42)
where I is the total energy lowering. With this ap-
proach, each component of A is optimized individ-
ually, and the process continued until the changes
in each component are sufficiently small.

Both approaches were found to work satisfactor-
ily. On the other hand, minimizing the functional
I=@+B+A+C-K-AF, where [ is the square of the
error v_éctor, was found to converge more slowly.

C. Results

The above techniques were applied to calcula-
tions on C, FeO,, and NiCH, with the results
shown in Tables I-III. “Hamiltonian diagonaliza-
tion” refers to the usual optimization technique.!
For “quadratic” and “cubic” calculations, the
matrix B and the tensors B and C, respectively,
were evaluated. “Uncouplgd” im-fﬂies that only the
diagonal elements of the matrix B were evaluated
(and used).!?® -

For carbon atom we used a double zeta basis'*
(ten basis functions) and solved for the HF wave
function of the !D state. Here the trial function
was the GVB(1) wave function!® of C(®P), a good
starting guess.

For FeO, we employed an effective potentiall®
to replace the Fe core electrons (reducing the
system to 24 electrons) and used a double zeta
basis set (33 basis functions). We carried out a
GVB(3) calculation®® for the lowest singlet state

The starting vectors were obtained from the GVB (1) wave function for the P

Convergence of HF wave function for the !D state of carbon atom.

state. Add —37.0 to the energy quoted to obtain the total energy (in Hartree).

TABLE I.

-,

X? is the square of the gradient of the energy (X?=0 is the necessary condition

is the square of the change in the wave function.

2

A

for an optimum wave function).

Iteration

Method

A. Hamiltonian

diagonalization

-0.627017
4.3E-16

-0.627017
9.1E-15

-0.627017
2.3E-13

-0.627017
9.1E =12

-0.627017
5.1E-10

-0.627017
2.8E-8

-0.627015
14E-6

—0.626 944
6.2E~-5

—0.626 048
1.7E-3

gy

Ener;
A2

B. Quadratic

L)
~ o~
- -y
2
a K|
©
o ™™
! k>
~
— 0 b~
2
o |
© N ™
(= ]
|
©
N W ™
N |
N KRR
© © ™
o~ &
|
>
By 5
ottt
<1
=

—0.627017
5.3E —21
~7 E-25)°2

4.3E-10
8.6E-9

-0.627017

-0.626 226
1.6E -4
2.3E-3

1687

3 Estimated.
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TABLE II. Convergence of the GVB (3) wave function for the lowest singlet state of FeO,. The starting vectors were
obtained from a partially converged calculation. Add —170.473 086 to the energy quoted to obtain the total energy (with

the Fe core electrons replaced by the effective potenj:ial).

Iteration 1 2 3

Method

A. Uncoupled

Energy —0.422487 -0.538194 -0.553252 -—0.556851 —0.557921 —0.558362 —0.558535 —0.558608
X2 8.9E-2 1.0E-2 2.8E-3 6.8E—4 2.8E—-4 9.6E-5 44E-5 1.6E-5
P 9.6E—-2 3.1E-2 1.1E-2 52E-3 24E-3 1.0E-3 4.3E-4 1.8E—-4

B. Quadratic

Energy  —0.422487 —0.554568 —0.558635 —0.558658 —0.558658

X2 8.9E -2 2.3E-3 74E-6 27E-11  2.3E-22

& 8.6E—2 3.6E—3 3.1E-5 1.0E-10 6.6E-21
C. Cubic

Energy  —0.422487 —0.557547 —0.558658 —0.558658

X 8.9E -2 7.0E—4 1.2E-9 7.3E - 23

Y 4.8E—-2 94E -4 1.1E-6 6.3E—21

(15 occupied orbitals of which six were involved
in GVB pairs).” In this case the trial functions
were obtained from a partially converged calcula-
tion.

For NiCH, we also used an effective potential®®
to replace the Ni core electrons reducing the sys-
tem to 18 electrons.” A double zeta basis was
used (34 basis functions) and we solved for the
lowest triplet state HF wave function. We used
the results of a converged GVB(2) calculation!® on
the lowest quintet state for the trial function.

One major problem was encountered in the last
case (NiCH,). The trial wave function was found
to converge quickly to a stationary point (see
Table III, B and C). However, instead of being
the lowest minimum, this point was found to be a
saddle point. (The first excited state of NiCH, is
only 0.05 eV above the ground state, and there are
a number of excited states within 1.5 eV.)

In order to force convergence to a minimum,
one must be able to determine what type of sta-
tionary point one is converging toward. The ma-
trix B corresponds exactly to the second deriva-
tives of the energy, and thus the eigenvalues of
B give the principal curvatures of the energy sur-
face [in the N(N - 1)/2 dimensional rotation space].
Consequently, a necessary condition for conver-
gence to a minimum is that all eigenvalues of the
B matrix be positive. If any of the eigenvalues of
the matrix B becomes negative, this indicates that
the orbitals are outside the radius of convergence
for the lowest minimum. As a result, the expan-
sion of the energy to second or third order about
the current set of orbitals is probably insufficient
to predict the position of the lowest minimum.

Fortunately, it has been found (empirically) that
in such a case it is usually sufficient to move an
arbitrary amount (typically between £ and %7) in
the direction of the eigenvector corresponding to
the lowest (negative) eigenvalue of the matrix B.
In this way the program searches for a region of
rotation space where the energy has positive cur-
vature, at which point it may then converge cu-
bically (or quadratically). (See Table IIID.) This
has worked extremely well in cases to date even
when several orbitals have had to be interchanged
in order to reach the correct minimum.

The same technique may also be used when solv-
ing for excited states in order to prevent conver-
gence to stationary points with incorrect curvature
(i.e., the ground state).

V. CONCLUSION

We have shown that by expanding a unitary
transformation matrix in terms of completely
independent rotation angles one may derive varia-
tional equations correct to any order for general
open-shell correlated wave functions. Use of
these equations leads to extremely rapid conver-
gence of the wave function. In addition, because
the derivatives of the energy surface are rigor-
ously evaluated, one may force convergence to
a stationary point corresponding to either the
ground state or to specified excited states.
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APPENDIX A: EXPANDED VARIATIONAL EQUATIONS
The general variational equations of (38) and (35) contain permutation operators. This appendix lists
the expanded form of these equations, with the permutation operators applied. The variational equations
have the form
0 :qu +Am,,(B“,,+ Cuvmnl’aAM)
with g >v, m >n, but with the sum over p and ¢ remaining unrestricted.

1. General energy expression

From (27) we have
Xy HE| -, a1
where u >v;

Buymn =A[H+2VEIEm+ 30, (HE + HY) |+ [HYn +2ViPRn + 36, (0] + H )
= [Hym+2Viihm+ 50, J(HY + HY)] = [Hon +2VhiEn+ 38, (] + B I, (A2)

where u>v, m>n;

— pmpj vnp j vmpj unpj upmj vpnj vpmj 1png mppf PV mpvj npy j
Cuvmmoapa ={(Vimai + Vimas = Vimer = Voma)Bpq + (Vo + Viords = VIRT = VIl )8y + (Voesd + Vit = Vias = VieasD Aot

+0m WG+ 1) + 2(VARG + VIR 1A o + (Y] = HEDA + (H G = HEDA, )

+ 8y A[aW e+ HUD) + 2Vl Vi) Wpq + (BT = HIDA m + (HE = HEDA, T}

mj
= Ounl [ (HG + H Q)+ 3(VIRe + VERDIA po + S = HEDA L+ (HY - HA, T}
= Oyl [ty + Hyg) + 2(V il + Vi) 8pa + (B = HiA no+ (HG ~ HIDA I}

1 q Ha vn pnn Lovvika Hika vikn Bik
+ [4 (H‘y.‘m - Hun +Huq- Huq) + 2( pikn = Vujkn + Vuikq - VU;kZ)]Ama

L rruq 4 fm ymy , L ik vik ] Vjki
+ [Q(va - HZm +Huq _H).uz) + 2(V5;k:| - Vu;kgn + Vl‘/‘jjkqm = Vll;k’an)]Ana

1(prnv v Lopnik ®
+[3(H g = Hug +H S = Hy) + 5(Vidhe = VI + ViIbe vk a,

1 o np mq nq 1rrmik iR mjka R
+ [4(1{:!"0 —Hoya+Hy/ -H mu) + Z(ankqu - Vet Vaiep — V'vlnjkq/.l) ]Aw

+2[(H ] = HEA gy + (Hyly = HIA = (HE = H)A,, = (HY) = HIA T (A3)
where p>v, m >n, and the sums over p and g are not restricted.

2. Restricted energy expression

From (35) we have

— M v
qu_Huu"Huw

(A4)
where u >v;
Byumn = {0 umlH Y = 2(Hon + H )]+ 281 + 60 n[Hym = 3l + Hip) 1+ 280
- 5mu[IIZﬂ - %(Hﬂn +H7m)] - zgz’;mn - 6“"[}1,‘,"," - %(Hzm"'Hle)] - Zgﬁ;l/mn} ’ (A5)

where u>v, m>n;
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Cu vm npaAN

- 1
‘{[gﬁ’;llnq - g:’x’;nq"" E(g';lz?/nq 'gﬁ?mq"'gl;}iqunq— gﬁqunq)]Ama

nv

m n 1 my nq maq
+ [g m‘; va —gm‘;uq*' Z(g mnvq _gmnuq+gmnuq‘ gmm}q)]Auq

vm

+GH Y, - HY )+ 5 WH - H )b+ [

un vn 1 pm vq Ha
[guumq"guuma"' Z(gpvmq-guvmq+guvmq ‘gpv mq)]Anq
my v 1 ny ny ne maq
[gmnuq" Tmnpat Z(gmnua ‘gmnua*'gmnuw‘gmua)]AUq

Txm—HZm)+1'l'2(Hﬁm—H;Tm)]Avn

+[3H Y, ~H]) +EH = HEDA oy + [3H = HY) + 5 (H Y = Hyw) 18 g

+0, (GG, = H ) + 5 HS = H D +(GH Ty = H ) + 5 (HE = HYy DB +(8 55y = 38 pens+ &5 m))Bpe]
+8, (G Uy = HY,) + 5 (HE = HTNA o +(GH T = HT) + 5 (HY = HE A g + (85 = 5( gy + 8 5imu DA
- 6mu[(%(H an—Hap) +é an— r;n))Auq +(§(HZL- H:u) +1%(ng -qu))Anq'*'(gg’:nu- %(gﬁ"mu+g:f‘mu))A,q]
=8, [GG(HY = HYp) + A (H = H DA+ (GH Ty = HD) + 2 (HY = HY)A g+ (&5 = 2(8 s + & bamu) Aot

(A6)

where u >v, m >p and the sums over p and ¢ are not restricted.

*Partially supported by grants MPS74-05132 and
DMR74-04965 from the National Science Foundation.

T National Science Foundation Undergraduate Research
Participant, summer 1975.

{w. J. Hunt, P. J. Hay, and W. A. Goddard III, J. Chem.
Phys. 57, 738 (1972).

C. C. J. Roothaan, Rev. Mod. Phys. 32, 179 (1960);
R. K. Nesbet, Proc. Roy. Soc. Lond. A 230, 312 (1955);
F. W. Birss and S. Fraga, J. Chem. Phys. 38, 2552
(1963).

3W. A. Goddard III, T. H. Dunning, Jr., and W. J. Hunt,
Chem. Phys. Lett. 4, 231 (1969).

‘W. J. Hunt, W. A. Goddard III, and T. H. Dunning, Jr.,
Chem. Phys. Lett. 6, 147 (1970).

5F. W. Bobrowicz and W. A. Goddard III, in Electronic
Structure, Vol. II of Modern Theovretical Chemistry,
edited by H. F. Schaefer III (Plenum, New York, to
be published).

¢F. W. Bobrowicz, Ph.D. thesis (California Institute of
Technology, 1974) (unpublished).

If complex orbitals are allowed, A must be an arbitrary
anti-Hermitian matrix. B

8Because TT' =el eff=ele™L =8 L =el=1
we find that T is unitary (as required).

SWithout loss of generality, we may assume that ¢;
has the same symmetry as @j|kl). That is,

Cijrt =Cjirt =Cijie =Cjite = Cr1ij =Criji = Cirij = Cirji -

The permutation operators for X, , Bmnpq » 204 Coupars
are [, [7[2], and [7£](%], respectively. The general
form is o't}; [W. A. Goddard III, Phys. Rev. 157, 73
(1967)].

%, and By, ,, had been derived previously in essential-

ly the same form by Hunt et al. Their B matrix is
slightly different due to differences of O(A?) in the def-
inition of T in terms of A,

122) The GVBONE program' uses the first-order form
of (37a),

0=X p +8g1Byip (37h)

and the form of X and B given in (37e) and 37f).

12b)Our uncoupled approach differs from that in GvBONEin
two respects: (i) we use (37h) also for the virtual or-
bitals (rather than oCBSE) and (ii) after obtaining the
A;; from (37h) we insert in (13) to obtain the trans-
formation matrix, whereas the usual approach is to
obtain new orbitals using 7=1+A and then reortho-
gonalizing.

3Throughout Sec. IV, vectors (such as X or A) and
tensors (such as B or C) are assumed to reside in the
N(N-1)/2 dimensional rotation space. However,
as noted in Sec. II, lis equivalent to an N -dimensional
antisymmetric matrix A which is used to construct the
transformation T.

Y47, H. Dunning, J. Chem. Phys. 53, 2823 (1970).

15A GVB (p) wave function differs from the HF wave
function in that p doubly occupied orbitals (of HF) are
described as correlated pairs.!

186C, F. Melius, B. D. Olafson, and W. A. Goddard III,
Chem. Phys. Lett. 28, 457 (1974).

1"R. Bair, W. A. Goddard III, and B. D. Olafson (unpub-
lished).

18\, J. Sollenberger, W. A. Goddard III, and C. F.
Melius (unpublished).

19, Rappé and W. A. Goddard III (unpublished).



