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We derive variational equations for optimization of the orbitals of arbitrary multiconfiguration wave functions.

Expressing the transformation matrix connecting the set of orthonormal trial vectors and the set of final

optimal orbitals as an exponential matrix of independent rotation angles allows a simple derivation of the

coupled variational equations to arbitrary order. We include the explicit results through third order which are
sufficient for cubic convergence in the iterative solution of the optimum orbitals. The equations were

programmed (including all terms), and applications to Hartree-Fock and generalized valence bond wave

functions of the carbon atom, Fep, , and NiCH2 are reported.

I. INTRODUCTION

A number of standard methods for obtaining
electronic wave functions involve the optimization
of orthogonal orbitals for some given form of the
wave function. Examples include Hartree Fock
(HF), generalized valence bond (GVB), and multi-
conf igur ation- self- consistent-f ield (MC- SCF)
wave functions.

Any electronic wave function constructed from
orthonormal orbitals f}f,]- leads to an energy ex-
pression of the form

z=Q (&f ,( h (')+.Q' s, .( () r()))
e, j3 r, a

where the orbitals are denoted by their subscripts,
and (a~h

~
P) and (aP y5) are the one- and two-elec-

tron components of the energy

( la I()) =f&x.(()a())x,,()),

( ))(y5) = fd, d, w(1)x(1)(1/ „)g(2)y(2)

(for convenience we take the orbitals to be real).
For specific types of wave functions, including

general open-shell HF and a restricted class of
GVB wave functions, a much simpler energy ex-
pression is obtained'

E =g 2f (a~h
~

a)+ g (n„&,+b,&„), (2)
&yB

where J ~=(aa~ pp) and K 8=(ap ap) are the usual
Coulomb and exchange integrals.

The simple closed-shell HF wave function (all
orbitals doubly occupied, once with spin up and
once with spin down) leads to

E = g 2& a h
~
a) + Q (u, - fc.,} .

0;=Q T(+X'

such that the resulting energy is stationary.
A common approach, ' often used to solve for the

optimum wave function, begins by varying each or-
bital independently (keeping all other occupied or-
bitals fixed) and finding the resulting change in en-
ergy. This is equivalent to taking the derivative
of the energy with respect to each component of the
transformation matrix T and adding constraints to
ensure orthogonality to the other occupied orbitals.
Upon requiring the energy to be stationary under
such variations, one obtains a set of pseudoeigen-
value equations of the form' ~ '

H'rp, =g e,y, . , alii (4)

(where q, , =
&&,. and where H' depends on Bll the

orbitals), which are satisfied by the optimum or-
bitals (y,.}. In order to solve (4), the usual ap-
proach is to evaluate the operators H' using the
trial functions (}(,), then solve for the resulting
orbitals, and continue the process until conver-
gence is achieved (hopefully). This approach has
been particularly successful for the HF wave func-
tion (2') [in that case all the one-electron opera-
tors (H') are identical]. However, Eq. (4) in no
way specifies the best way in which to modify a
set of nonoptimum orbitals. Thus, even a good
starting guess may converge quite slowly or not
at all.

In order to obtain variational equations which
actually specify how to correct a set of trial func-
tions, one must expand the energy beyond first or-

In order to optimize the wave function, one starts
with a set of trial functions (}f,j and attempts to
find a transformation T which produces a new set
of orbita. ls (y,.):
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der in the orbital variations. However, to obtain
sufficient conditions one must allow each orbital
to vary in all directions, including those occupied
by other orbitals. Because of the orthogonality con-
straints, such variations require simultaneous
changes in more than one orbital.

Hunt, Goddard, and Dunning~ constructed the
transformation matrix a.s T =1+A (where A is
antisymmetric, thus incorporating orthogonality
through first order into the transformation matrix)
and obtained variational equations specifying how

to simultaneously correct all orbitals (through
first order). These equations would lead to qua-
dratic convergence but were not implemented. By
using a restricted form of these results, valid for
pairwise (two by two) rotations, Hunt, Hay, and
Goddard' developed a general program (GVBONE)

capable of optimizing open-shell HF and restricted
(perfect pairing) GVB wave functions [i.e., wave
functions with energies expressible as (2)]. How-

ever, owing to neglect of coupling between pair-
wise rotations, the convergence is not quadratic.

Bobrowicz and Goddard" used an alternative ap-
proach of expanding the energy through second or-
der in all orbital corrections and incorporating all
orthonormality conditions explicitly, leading also
to equations sufficient for quadratic convergence.
Using approximate forms of these equations, Bob-
rowicz, Wadt, and Goddard' developed a general
program (GVBTWO) capable of more rapid conver-
gence than GVBONE but still far from quadratic.

In the above approaches the transformation ma-
trix components themselves are varied directly.
Since these components are not independent (owing
to the required unitarity of T), it is very difficult
to obtain consistent variational equations correct
to an arbitrary order.

Our approach begins with expressing the trans-
formation matrix T in terms of completely inde-
pendent rotation angles 6,, in such a way that or-
bital orthogonality is completely incorporated into
the form of the transformation matrix. By varying
the independent rotation angles 6,.

&
instead of the

components of T consistent variational equations
(valid to any given order) may then be derived for
either the general (1) or the restricted (2) energy
expression. Terms up to third order in the energy
are explicitly expanded, thus giving cubically con-
vergent var iational equations. These equations
were programmed (including all terms) and the re-
sults of several applications are discussed.

Beginning with a set of N orthonormal trial func-
tions fX,), the relationship of the optimum orbi-
tals (p,.j to (y,) can be expressed in terms of a.

transformation matrix T

cp&
= T,.~y„.

[in (5) and subsequently we will. generally use the
summation convention for repeated indices; for
emphasis w'e will occasionally indicate the summa-
tion explic itly j.

Since both sets of orbitals are orthonormal, T
is a unitary transformation. Because the sign of
an orbital is of no consequence, we need only con-
sider special unitary transformations SU(N).
Since we take our orbitals to be real, only ortho-
gonal transformations in SO(N) need be considered.

An arbitrary element of SO(N) may be con-
structed from N(N —1)/2 independent generators.
In order to derive unconstrained variational equa-
tions, we need to express T directly in terms of
N(N 1)/2 in-dependent parameters specifying the
transformation.

We may take the generators to be the set of all
pairwise infinitesimal rotations of the N basis
vectors for the N-dimensional space (i.e. , each
generator is an infinitesimal rotation in the plane
containing two basis vectors). The transformation
matrix corresponding to an infinitesimal rotation
of basis vectors y and p~ (n&P) is given by

(that is, all but two of the N' elements of A are
zero, the nonzero corn, ponents being A ~~=+1, and
w ~=-s).

go.

An arbitrary infinitesimal transformation dR
may be formed by a linear combination of the gen-
erators. Thus the transformation matrix is given
by

TdR -- ] +, PRyg

where

If. ROTATION MATRKES

Given the form of a wave function expressed in

terms of N orthonormal orbitals, we wish to de-
termine the optimum orthonormal orbitals (y,.).

The representation of a finite transformation R
is constructed by repeated application of the infi-
nitesimal transformation dR. Thus
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T" = lim[1 + A' e/n] n

=1+(A"e)+—'(A e)3+-'(A e) +' ' '
6

Hence,

in=4 P Tn(f&yh, cy g T,T, c&y, (ch~yh&)
ktl

Ts = exp(A" e) . (12)
(18)

However, A"8 simply specifies an arbitrary anti-
symmetric matrix. Thus a general form for an
N-dimensional proper orthogonal matrix is given
by'

(13)

where 4 is any antisymmetric matrix.
For convenience of discussion such a transfor-

mation will be referred to as a rotation, and the
N(N —1)/2 independent elements of A (all b, 3
with o(& p) referred to as rotation angles. How-

ever, such a transformation need not be an actual
N-dimensional rotation occurring in some N-di-
mensional plane. where

2B mn mn ~ mn pq@ mnpq

(20)

for all p. & v, where

H "2 "f= f(f h(2(&+ clfkl(o(p I Ãktl)

and summations over i, j,k, and l are implicit.
In order to solve (18) we must express the equa-

tions in terms of the independent rotation angles
(all n,.f with i &j). Thus expanding T leads to

1
JB 6f8 fB 3 ~lk kB 3 fk kl (B

III. ORBITAL OPTIMIZATION

m&n, P&q, r&s;

Pfp=(1 —r„„)(6f 6„3), (21)
A. General energy expression

The energy (1) of a wave function constructed
from orthogonal orbitals may be put in the form

0"p =3(I+& pr„)(1 —r „)(1—rp )(6, 6„p6,),
(22)

E= Q (f ph, p+H 3),
+gB

(14)

where

Tp6

(15)

mn)( p )( Tn)(6fm6np62T63(&)

(23)

(r 3 is the permutation operator interchanging
(r and P). Simila. rly,

and where the functions b ) are denoted by their
subscripts only.

Applying a transformation T to the orbitals h

0'l = Q T(nX&2

leads to a new energy

(16)

H"'"& =H'g + 2~ Pr~ Vagal
aB mn mn OBkt

(24)

(pk'T Jhlklfffkl +qly ylfkl ) + 0(n3)mn pa mn De +BR mnpq I j%&

=+ T, T,. (2 feb +Q T,T„ch„( 2 lyc&) .
kg l where

(25)

~"(&'3= clfkl(op I ~6) (26)
In order for the energy to be stationary, we re-

quire' Substituting (24), (20), and (25) into (18) leads to
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+ (pia~jl~la+ ~iapjiipk'v +Iji apj8~%T )yijl!I ]+O(n3)y.p- fftyl pq p tj Pq mn fftff Pq P& oA'~

('28a)

p &v, m&n, p&q,

X„„=(1 —~.„)H„"jj,

B.„.„=-,'(1+r„.r„„)(1-r„„)(1—~ )[H„„.+2V„"jj„"+8.„H„"jj],

(28b)

(28c)

=-,'(1+r„r„„+r, r„,)(1+I I.„,)(l —T„„)(1—V „)(1—rj,)[V"„ajj+ 6 „(-,'H„",I'+ V"„",~~+-16~H;,'. )]. (28d)

Note that X, B, and C are antisymmetric under interchange of pair indices (i.e., X,„=-X„,, B„„
=-B„„„,etc.) but are symmetric under interchange of pairs of indices (i.e., B„„„=B„,„, C„„„~
= C„„,„„,etc.)." Applying the permutation operators in {28) leads to the expanded form of the variational
equations contained in Appendix {Al).

8. Restricted energy expression

Tile I'es'tl'ic'ted ellel'gy expl'essloll (2) lllay be pili, lll 'tile fol'II1

Z=Q(f II +Ha ),

H„„=f,h„„+P (a,„Jt„+b „K"„„).

Thus, for the energy to be stationa, ry rve require the, t

(31)

H g= fi jj ii+ Q [ I(I&ijPI PjPj)+&ij(iIv'I IPvjj)]

Therefore,

O = [I",'„H'. ,]+n..„[q'„'„H'., +I „'„P„'„(8„H'.,+ 2g'.j„y]

+ (pi Q ajBa JjQ+i a+j8+'j7 + pl a~j8~jY)+ij ]+O'(n3)
pq pa fj v mn mn pq gfj eg gy

(33)

(34)
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where p & v, m &~, p&q,

X„„=(1 —r„„)H„"„, (35b)

8„„„=-(21+v,„r„„)(1—r,„)(1-r „}

0=X„„+hp„„„+&a „n2 C„„R+0(dP), (35a) 2121 32 1l 11 +32 ~l2

C2121( 11 12+~22)

+ 4(c„„c„-„)(J,', P„—)

(C1111+C2222 C2211)+12 &

C2121R1 ( 21 Rl R2 11}

(37c)

x [5„(H„"„—H„"„-H" }+2g„"„„j, (35c} (CRR22 Cl ill C2211 C2121}(~12 ~12}

(C1112 C2221}(2~12 ~12 ~11 ~22) '

x (1, —r„„)(]. 7 )(1, q.~) If the restricted energy expression is used,
then" '2~

Applying the permutation operators in (35) leads
to the expanded form of the variational equations in
Appelldlx (A 2).

C. Pairvrise rotations

X2~ =02~ —B2~,

H 212 1. HRR 11 ll 22 (Cl1 CRR 2CIR)HI 2

+ (b„+b„—2b„)(J„+K,),
R12121 2( 21 H21)

+ 3 (&»+ &22 —2&12+»I+ 522 —2512)(~l2 —~12) .
(37g)

lf only a single rotation (say between orbitals
1 and 2) is to be performed, then the general en-
ergy expression (14) reduces to

F. &2+(flan»-+H»}+(fRAR+H'22)+2(flRIIIR+H12»

where Fo contains all terms independent of orbi-
tals j. and 2. Optimizing the rotation between or-
bitals 1 and 2, one finds

X21 ( 21) 2121 ( 21) C212121 &

X2i H2~ H2~+ Hii +22

D. Energy contributions

In the case of multiple simultaneous rotations,
it is often useful in the analysis of the iterative
process to have an idea of the contribution of each
rotation to the total decrease in the energy.

Glvell a set of 1'otatioII angles [4 „},the to'tal

energy i.s of the form

where m&n, P&q, r&s.
Now suppose that all rotations except the (p. I )

rotation were performed. The difference in ener-
gy would be

=a,„(X.„+n, H„„„+a„a,C,„„,) —(n,„)2(-,'H.„„„+n.„C.„.„„)+(a„„)'(-,'C„„„„.„)+O(~').

Since

tile contribution of 1otatloll (l'lI&) to the change in
the energy becomes

&&here p and v are fixed. NaturaH, y

However, the relative sizes of the 4E""may pro-
vide useful indications of the relative importance
of various rotations.

IV. DISCUSSB3N

A. Order of the convergence

Repeated application of EIls. (28) [or (35)] and

(13) to a set of trial orbitals will cause the initial
wave function to converge cubically toward the
optimum wave function. [That is, sufficiently
close to convergence the gradient of the energy



(X) and the change in the orbitals (Z) both de-
crease cubically from one iteration to the next. P
If the tensor C is ignored, then the resulting con-
vergence should be quadratic. This cubic and
quadratic convergence has been demonstrated for
several prototype systems as indicated in Tables
I-III fox' calculations on C, FeO„and NiCH, .

B. Techniques

Several techniques mere used to solve the varia-
tional equations. The first of these involves form-
ing the matrix B and the vector X, inverting the
matrix B and obtaining the first-ox'der solution
vector S» satisfying 0 =X+8 ~ S,. The matrix
C ~ Z, is then constructed and (B+C ~ Z,) inverted
in order to obtain the second-order solution vec-
tor Z„which satisfies 0=X+(B+C Z, ) b, . Con-
tinuing the process is unnecessary since 6, is al-
ready correct to order 6'. Finally, the trans-
formation matrix T =e~, is constructed and ap-
plied in order to obtain the new orbitals fP,}.

Alternatively, one may solve the system of
equations iteratively by minimizing the scalar
functional

I[6]=X 6+-8 6 Z+-C Z 6 b,

where I is the total energy lowering. Kith this ap-
proach, each component of ~ is optimized individ-
ually, and the process continued until the changes
in each component are sufficiently small.

Both approaches @&ere found to work satisfactor-
ily. On the other hand, minimizing the functional
I= (X + B ~ Z+ C ~ Z ~ Z)' where I is the square of the
error vector, was found to converge more slowly.

C. Results

The above techniques vrere applied to calcula-
tions on C, FeO„and NiCH, with the results
shorn in Tables I-III. "Hamiltonian diagonaliza-
tion" refex's to the usual optimization technique. '
Fox "quadr Rtic" Rnd "cubic" cRlculRtions, the
matrix B and the tensors B and C, respectively,
vrere evaluated. "Uncoupled" implies that only the
diagonal elements of the matrix Bwere evaluated
(and used). '2b

For carbon atom ere used a double zeta basis'
(ten basis functions) and solved for the HF wave
function of the 'D state. Here the trial function
was the GVB(l) wave function" of C('P), a good
starting guess.

For FeO, we employed an effective potential'6
to replace the Pe core electrons (reducing the
system to 24 electrons) and used a double zeta
basis set (33 basis functions). We carried out a
GVB(3) calculation" for the lowest singlet state
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TABLE II. Convergence of the GVB (3) wave function for the lowest singlet state of Fe02. The starting vectors were
obtained from a partially converged calculation. Add —170.473086 to the energy quoted to obtain the total energy (with
the Fe core electrons replaced by the effective potential).

Iteration

Method

A. Uncoupled
Energy

X2

Q2

—0.422 487
8.9E —2
9.6E —2

—0.538 194 —0.553 252 —0.556 851 —0.557 921 —0.558 362 —0.558 535 —0.558 608
1.0E —2 2.8E —3 6.8E —4 2.8E —4 9.6E —5 4.4E —5 1.6E —5
31E—2 11E—2 52E —3 24E —3 10E—3 43E —4 18E—4

B. Quadratic
Energy

X
Q2

—0.422 487 —0.554 568 —0.558 635 —0.558 658 —0.558 658
8.9E —2 2.3E —3 7.4E —6 2.7E —11 2.3E —22

8.6E —2 3.6E- 3 3.1E—5 1.0E —10 6.6E —21

C. Cubic
Energy

Q2

—0.422 487
8.9E —2

4.8E —2

—0.557 547 —0.558 658 —0.558 658
7.0E —4 1.2E —9 7.3E —23
9.4E —4 1.1E—6 6.3E —21

(15 occupied orbitals of which six were involved
in GVB pairs). " In this case the trial functions
were obtained from a partially converged calcula-
tion.

For NiCH, we also used an effective potential~
to replace the Ni core electrons reducing the sys-
tem to 18 electrons. " A double zeta basis was
used (34 basis functions) and we solved for the
lowest triplet state HF wave function. We used
the results of a converged GVB(2) calculation" on
the lowest quintet state for the trial function.

One major problem was encountered in the last
ca.se (NiCH, ). The trial wave function was found
to converge quickly to a stationary point (see
Table III, B and C). However, instead of being
the lowest minimum, this point was found to be a
saddle point. (The first excited state of NiCH, is
only 0.05 eV above the ground state, and there are
a number of excited states within 1.5 eV. )

In order to force convergence to a minimum,
one must be able to determine what type of sta-
tionary point one is converging toward. The ma-
trix B corresponds exactly to the second deriva-
tives of the energy, and thus the eigenvalues of
B give the principal curvatures of the energy sur-
face [in the N(N —I)/2 dimensional rotation space].
Consequently, a necessary condition for conver-
gence to a minimum is that all eigenvalues of the
B matrix be positive. If any of the eigenvalues of
the matrix B becomes negative, this indicates that
the orbitals are outside the radius of convergence
for the lowest minimum. As a result, the expan-
sion of the energy to second or third order about
the current set of orbitals is probably insufficient
to predict the position of the lowest minimum.

Fortunately, it has been found (empirically) that
in such a case it is usually sufficient to move an
arbitrary amount (typically between —,

' v and —,
' v) in

the direction of the eigenvector corresponding to
the lowest (negative) eigenvalue of the matrix B.
In this way the program searches for a region of
rotation space where the energy has positive cur-
vature, at which point it may then converge cu-
bically (or quadratically). (See Table IIID. ) This
has worked extremely well in cases to date even
when several orbitals have had to be interchanged
in order to reach the correct minimum.

The same technique may also be used when solv-
ing for excited states in order to prevent conver-
gence to stationary points with incorrect curvature
(i.e. , the ground state).

V. CONCLUSION

We have shown that by expanding a unitary
transformation matrix in terms of completely
independent rotation angles one may derive varia-
tional equations correct to any order for general
open-shell correlated wave functions. Use of
these equations leads to extremely rapid conver-
gence of the wave function. In addition, because
the derivatives of the energy surface are rigor-
ously evaluated, one may force convergence to
a stationary point corresponding to either the
ground state or to specified excited states.
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APPENDIX A: EXPANDED VARIATIONAL EQUATIONS

The general variational equations of (38) and (35) contain permutation operators. This appendix lists
the expanded form of these equations, with the permutation operators applied. The variational equations
have the form

with p, &v, m &n, but with the sum over p and q remaining unrestricted.

1. Genera1 energy expression

From (27) we have

X~~ H„.—H~g, (A l)

where g & v,'

where p, &v, m &n;

~liPmnpqApq OVVltqf vflmqg vpneJ VUlllqJ) llq ( IIOIIJ pCSIJ flCIIJ PCIII~J ) PC ( II@&j WQ/Il nQlll ~O&l) PC~

+ 5„„([,'(H", +-H„,')+ ,'(V",',',—+V„.',",) ]S„.+,', [(H",', -—H„",.)A, + (a„' —H'„', )~.,])

—5„.[[,'(H'„~+a"„'-,)+ '.(V„"',",', + V",",,',)]~„-+,[(H",', —H'„',.)~„,+ (H",', —a„",.)~.,]]

5„„([-,'(H»+H„,')+ -,'(V», ,",+ VJ,",)]~„+,-', [(H'J -H„",)~., +(HJ -Hf )A„,])

+ [—,'(H„,"-H"",+Hq„' —H"'q) + 2(v„/~,"—V" q~", + Vg'p„' —V" gg'„)]&„

+„-'[(H"„,'-Hp)a .+(H'J, —H„g)&„„—(H»J -H„,')& —(H„'j -H„"])&„]], {As)

where p, & v, m &n, and the sums over p and q are not restricted.

From (35}we have

X„„=H"„„-H'„„,

where p, &v;

2. Restricted energy expression

(A4}

B„„=[5,[H„"„——,'(a" +H"„„)]+2g„"„+5„„[a'„-,'(a» +H„)]+2g"„"„„—

—5 „[a",„—,'(H&„+H"„„)] —2g'„..„-5„„[—a~.——.'(H„' +H„-.) ]- 2g~"„.„}, (A5)

where p. & v, m & n;
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pm Pm + &( vn hatt + vq ~q
'dune gunne+ e(gunne guvne+guvne suune)]~me

tttP tl jl & g tt& ttttl + tttt, tttq+[g...,-g..„+-.(g..., -g „+g....-g...)l&.,
v tt & j vttt pttt + vgguvm'e gpume+ &(g u erne gpvme+ g V erne gpv me) ]+ne

tttv ~v + & ( tt[i ttjl + ttq
gmnue smnue+ s(gmnue g mneme+ g mnu'e gmnue)]~un

+ [-.'(a„"„-a,"„)+„-'(a"„„-a"„„)]d„„+[-,'(a"„„-a'„)+,(a„".-a„)Q„„
+[-,'(a"„„—a„„)+,(a"„„—a"„„)]d, +[-,'(a"„-au )+,(a'„-a, )]S„„
+ 5„[(-,'(a,"„-a ",„)+,(a;„-a",„))d.,+( ,'(a, .—-a",„)+,(a;„-a', „))&„,+(g'„„,—-'(g,',"„„+g,",„„))&~]

+&.„[(-'(a," -a,"„)+,(a; -a, ))d„,+( '(a",„-a-,„)+,(a;„-a,"„))d,+(g,"..„—'(g,'." „+g-',".„))&„]
-t,[(!(a,"„-a,„),—,(a;„-a",.)»„,.(.,'(a;„-a-",„).,—,(a;„-a,"„)»., (g'„"„„-!(g,"„+g,'" „)»„]
- d„„[(-,'(a," -a", )+,(a', -a, ))r „+(q(a",„-a,„)+„-'(a',„-a",„))&,+(g', ", „-e(g', .+g',", .))&„]i,

where p, & v, m & p. md the sums ovex p and q ere not restricted.
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