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Many-body theory of hyperfine interaction in the manganese atom including relativistic effects~
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Using the linked-cluster many-body perturbation procedure we have evaluated the magnetic hyperfine
constant A in the spin-Hamiltonian term AI ~ J of manganese atom. The nonrelativistic value of A is found
to be —90.8 ~ 3.0 MHz, composed of —152.6 MHz from the exchange core polarization (ECP) effect and 61.8
MHz from a combination of consistency and correlation effects. We have also made a relativistic calculation
of the ECP effect and used this to make estimates of the relativistic effects on (1, 1) and (0,2) diagrams. On
combining these relativistic results with those from nonrelativistic theory and including the calculated Casimir
contribution of —4.3 MHz discussed by Sandars and Beck, our net theoretical value for the hyperfine constant
A turns out to be —74. 1 ~ 3.0 MHz, which is in the good agreement with the experimental results of
—72.422 ~ 0.002 MHz. Physical explanations are discussed for the trends of the contributions from various
effects and their variations from shell to shell.

I. INTRODUCTION

Theoretical studies of the hyperfine interaction
in transition-metal and rare-earth atoms, includ-
ing many-body effects, are important for several
reasons. The most important of these is that in

contrast to the transition-metal ions where hyper-
fine data are available only in the solid state, the
experimental data for the atoms are available in
the free state via several techniques, including
atomic-beam and optical-pumping methods. ' One
can therefore carry out a comparison between the-
oretical and experimental results without having to
deal with the question of the influence of the envi-
ronment (such as covalency effects) which comes
up in the case of ions.

In the present work we shall be concerned with
the manganese atom, which is particularly conven-
ient to handle because it has a spherically symme-
tric half-filled 3d shell. Additionally, it has a
loosely bound 4s shell which is substantially spin
polarized by its exchange interaction with the 3d
electrons, its contribution to the hyperfine con-
stant being opposite in sign and comparable in
magnitude to the net contribution from the core s
states.

Correlation effects in this atom are expected to
be particularly important for two reasons. First,
because of the cancellation effect between the spin-
polarization contributions from the 4s shell and
core s shells, the net spin-polarization contribu-
tion is reduced, in contrast to the situation in the
transition-metal ions where the 4s shell is absent, '

making the correlation effects more significant.
Second, since the 4s shell is relatively loosely
bound, its spatial character is expected to be sub-
stantially affected by correlation effects which
would lead to corresponding changes in the hyper-
fine constant. Another important reason for
studying the Mn atom carefully is that it affords
a good opportunity to study the role of relativistic
effects. The atom is large enough for one to ex-
pect significant contributions from relativistic ef-
fects, while at the same time it is not too compli-
cated to make quantitative relativistic analysis im-
possible. It will be shown later in this paper, us-
ing the results of a relativistic treatment of ex-
change-core-polarization effects, that relativistic
effects do not always lead to a straightforward en-
hancement over nonrelativistic contributions, as
m. ight be expected from relativistic hyperfine stud-
ies in hydrogen and alkali atoms."

It is evident that for a complete understanding of
the hyperfine interaction in transition-metal atoms
a complete relativistic many-body-theory treat-
ment is necessary. Such an investigation, which
can in principle be carried out by an extension of
the linked-cluster many-body perturbation theory
(LCMBPT) used in nonrelativistic treatments, ' is
expected to be rather complicated and time-con-
suming. The present work is a prelude or first
step towards the understanding of the influence of
relativistic effects on spin-polarization, consis-
tency, and correlation contributions to the hyper-
fine constant. We have carried out both a full non-
relativistic LCMBPT treatment of the hyperfine

13 1669

Copyright 1976 by The American Physical Society-



ANDHIESSEN, HAV, LEE, DAS, AND IKENBEHRV

interaction in the Mn' atom and a relativistic
LCMBPT treatment of exchange-core-polarization
contributions. From the latter, inferences have
been drawn regarding the influence of relativistic
effects on the core and valence orbitals and on
their mutual interaction, and estimates have been
made of relativistic corrections to the important
consistency and correlation diagrams of LCMBPT
theory.

In See. II we give a brief description of the non-
relativistic LCMBPT procedure for the Mn' atom,
with an explanation of the various diagrams. Sec-
tion III deals with the nonrelativistic results for
various orders of perturbation due to electron-
eleetron interaction. The description of the rela-
tivistic LCMBPT procedure used to evaluate ex-
change-core-polarization diagrams and their con-
tributions have been given in Sec. IV. Section V
contains a discussion of oux' resultsy lncludlng 1 el
ativistie effects and comparison with experiment.

porate, as usual, the featux'es of exchange-eore-
polarization (unrestricted Hartree-Fock approxi-
mation) and correlation effects. The zero-order
wave function is the eigenfunction of X„namely,
the determinant 4o composed of the N lowest-ener-
gy solutions Q„ofthe single-particle equations

The linked-cluster expansion allows one to write
the exact eigenfunction 4' of X in the fox'm

fl

E X
O 0

where L, indicates that only linked terms in the
wave functions are to be retained in the corres-
ponding diagrams. Kith this wave function 4 I one
can write the expectation value of the operator 0
as

II. DESCRIPTION OF NONRELATIVISTIC LCMSPT

PROCEDURE FOR THE MANGANESE ATOM

A. LCMBPT formalism

Since the details of the LCMBPT procedure have
been discussed in earlier literature, ' we give here
only a brief description of the procedure and per-
tinent diagrams for the xnanganese atom. The ex-
act nonrelativistic Hamiltonian for the N-electron
atom ean be written as

where T; is the kinetic energy plus the nuclear
Coulomb opexator for the ith electron and v,f is the
Coulomb interaction between the ith and jth elec-
trons. One needs the exact solution of the Schro-
dinger equation

The exact solution of Eq. (2) is not possible; thus
we choose a convenient zero-order one-electron
Hamiltonian X, defined by

&0 = Q ( T» + I'~),

I. indicating here retention only of linked expecta-
tion-value diagrams. In Eq. {'I), nz and n represent
the orders of perturbation. In LCMBPT literature, '
the diagrams are grouped together according to
definite values of m and n and these are referred to
as (m, n) diagrams.

The contact Hamiltonian +, which represents the
hyperfine effect of interest in the present work, is
given by

(9)
j.

whexeas for the experimental determination of hy-
perfine structure one uses the spin Hamiltonian

In Eq. {9)4, is the contact hyperfine-coupling con-
stant. Comparing Eqs. (9) and (9) one can thus
write A, in MHz as

68K p.~ p,&
3 IM~ a~A

x (q (J,M, ) ( +2s, ,w&(r, ) (e(Z, M, )) .

which ean be solved exactly, and treat the differ-

as a perturbation. For our work, we shall choose,
as usual, for the V; the V ' potential for the Mn
atom in the restricted Hartree-Fock (RHF)
scheme. The diagx'ams 1Q vax'1ous olde1 8 lncol-

In general, the hyperfine constant in Eq. (9) can
involve contributions for dipolar and orbital hyper-
fine terms in the Hamiltonian, in addition to A,
In nonrelativistic theory, due to the fact that the
Mn atom is spherical in the ground state the other
contributions besides 4, vanish. Equation (10) can
'be rewritten in the form
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where

K~ =— ', 10 MHz = 221.3246 MHz, (12)
3 IJa~h

using the tabulated values' of p.„a~,h, the nuclear
magnetic moment p~ of "Mn, I=& and J= &, and

TABLE I. One-electron energies in a.u. for bound
1 =1 states of the Mn atom generated in bvo different
potentials.

~op ~np ~np
n {in 3p potential) {in 48 potential) {Clementi )

f}=&+(J;J) I Q».,5(r~) I+(d, &)& (13a)

is the nonrelativistic spin density in units of a& .
In evaluatingD through the perturbation diagrams
of many-body perturbation theory, we make use of
Eq. (7) with 0 given by the spin-density operator

-26.071 49
-2.479 79
-0.231 05
-0.066 00
-0 03495
-0.021 76
-0.014 87
-0.01081

-25.177 31
-2.824 91
-0.132 68
-0.056 05
-0.03127
-0.01997
-0.01386
-0 ~ 010 18

-24.447 42
-2.13067

Q 2s, ,5(r() .

The nonrelativistic one-electron spin density be-
tween states n and n' is given by the expression

(13b)

B. Choice of basic states

The one-electron potential V in Eq. (5) depends
on our choice of zero-order Hamiltonian; as men-
tioned before, we have used for Va V ' potential.
There is no unique way of choosing the zero-order
V" ' potential and a judicious decision has to be
made for it, keeping in mind various considera-
tions such as the nature of the operator used in
Eq. (7) and the type of correlation that is import-
ant for the property concerned. Kith this in mind,
we have obtained the excited s states in the 4s po-
tential. For the p states we have generated two
sets of basic states, one in the 3p potential and the
other in the 4s potential. The motivation for ob-
taining two such sets was twofold. One was to see
how the net result depended on two different
choices of basis sets and the other was to deter-
mine at least the 4p state in the 4s potential be-
cause the 4s-4p excitation is very important for
correlation effects of 4s. It was observed that the
difference between the net results of A, deter-
mined with two different potentials was only 1MHz,
which is proportionately very small compared to
the experimental value. Thus the final results
have the satisfactory feature of not being depen-
dent on the choice of the V ' potential, although
the individual diagrams understandably differ for
the two choices. Thus the energy difference e~
—e4„when the 4p state was generated in the 3p
potential, was found to be 0.01 a.u. , whereas it
was equal to 0.11 a.u. when the 4P state was gener-
ated in the 4s potential. This latter value is com-
parable with the experimental energy difference of
0.22 a.u. between the ground (3d'4s'; S) and ex-
cited (3d'4s4P; 'D) states of the manganese atom. '
This consideration shows that the excited p states

Principal quantum number.
See Ref. 9.

in 4s potential, where 4s 4p excitation is import-
ant for certain reasons, are more physical and

should be used for the calculation. The higher-ex-
cited P states are not very sensitive to the two dif-
ferent choices of potential, as seen from the one-
eleetron energies listed in Table I for these states.
The results of the individual diagrams in this pa-
per which involve excited P states are presented
for basis p states in the Sp potential. For compar-
ison, we have also listed in the last column the 2p
and 3P occupied-state energies from Clementi's
table. ' The 3p energy in the Sp potential is closer
to Clementi's 3P value, as it should be. The d, f,
and g states were generated in the Sd potential.
The RHF wave functions of Clementi were used for
the occupied states to obtain the V" ' potential
used in generating the excited states. The radial
one-electron equations corresponding to Eq. (5) for
different states are given elsewhere, "and for
economy of space we shall not repeat them here.

C. Diagrams

As was pointed out in Sec. HA the diagrams aris-
ing from the expression (V) can be grouped in dif-
ferent orders depending on values of the indices m
and n. Owing to the Hermiticity of the operator 0,
the (m, n) diagram is equal to the (n, m) diagram.
The (0, 0) diagram in the present case gives zero
contribution, since the zero-order many-particle
state is the RHF state of the system, in which the
unpaired one-electron states are d states with
zero density at the nucleus and the contr ibutions
from core s states of opposite spin cancel each
other.

FIG. 1. Exchange-core-pol. arization diagram for con-
tact interaction in the Mn atom.
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The next-order diagram, namely (0, 1), is shown
in Fig. 1. It represents the exchange-core-polar-
ization (ECP) effect. Since the operator involved
in the spin density, Eq. (13) is a 5 function; the
excited states i in this diagram should be only s
states. The (1, 1) diagrams that make the major
contribution are shown in Fig. 2 and the (0, 2) dia-
grams are shown in Fig. 3. Among these, the dia-
grams 1(a), 1(b), and 3(a)-3(d) represent one-
electron effects. Some of these diagrams can be
considered as ladders to the (0, 1) diagram shown

in Fig. 1. For example, Fig. 3(a} with m=n =3s
and Fig. 3(b) with m =3s and q =4s can be consid-
ered as ladders to the diagram in Fig. 1 with m
=3s. Similar definitions apply to the ladder dia-
grams corresponding to rn= ls and 2s. The dia-
grams in Figs. 2(a), 2(b), 3(c), and 3(d) and for
m Wn in 3(a) are termed consistency diagrams.

The diagrams in Fig. 2(c)-2(f) and 3(e)-3(h) are
the two-electron or correlation diagrams, since at
any particular instant of time two electrons remain
simultaneously excited. In each of these correla-
tion diagrams, either a 3d' hole state or a 3d
particle state, or both, should be present; other-
wise the spin cancellation among the s hole states
of opposite spin would make the corresponding dia-
gram vanish. This is understandable since hyper-
fine effects to any order arise in the first place
from the influence of the unpaired 3d states.

In Fig. 4 we have shown some of the important
diagrams of order higher than second. The dia-
grams in Figs. 4(a) and 4(b) represent the influ-
ence on the ECP diagram in Fig. 1 of the pair cor-
relation of the hole state m with other states. The
effect of summing all diagrams obtained from 4(a)
and 4(b) by adding pair-correlation vertices to the
hole line m to infinite order can be incorporated
simply by adding the correlation energy of the

(b) (c)

(e)

FIG. 3. Major contributing (0, 2) magnetic hyperfine
diagrams of the Mn atom.

l jn
3d

/n

state with all other states in the energy denomina-
tor of the diagram of Fig. 1 as described in earlier
literature. ' In this respect, these diagrams rep-
resent their influence of the "dressing" of the hole
lines through pair correlation.

The third-order diagrams 4(c} and 4(d) cannot be
summed to all orders analytically, as could the
dressing diagrams in Figs. 4(a} and 4(b). However,
one can use a geometric-series approximation to
them using their ratio to the parent diagram in
Fig. 1. A similar procedure can be adopted for
summing over higher-order consistency diagrams
4(e) by taking the ratio of diagram 3(d) to Fig. 1.
We should point out that diagrams 4(a}-4(d) have
counterparts where the pair-correlation vertices
and bubbles are connected to the particle side of
Fig. 1. Other diagrams of third and higher order
besides these have been examined and found to be
relatively insignif icant in magnitude.

(o)

qi
5d

~C:
(b)

(o) (b)

hl jq mj' —C

(c) (c)

hj qi

(e) (&)

FIG. 2. Major contributing (1, 1) diagrams of the mag-
netic hyperfine constant for the Mn atom.

(e)
FIG. 4. Some important third-order contact diagrams

for the Mn atom.
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m Unladdered Ladder ed Moment perturbation

1s
2s
3s
4s

Total

0 ' 2
-273.0
-77.0
215.0

-134.8

0 ' 2
-287.7
-80.1
215.0

-152.6

1.6
-289 ~ 1
-70.1
222.1

-135.5

Unpublished calculations by D. Ikenberry and
T. P. Das.

TABLE II. Contributions in MHz from (0, 1) contact
diagrams of the Mn atom shown in Fig. 1 and compar-
ison with the results by moment-perturbation procedure.

III. NONRELATIVISTIC VALUES OF DIAGRAMS

In Tables II-IV we have presented the contribu-
tions from the diagrams up to second order de-
noted, as explained before, as (0, 1), (1, 1) and

(0, 2). In the present system, because there is no

unpaired s electron and the zero-order function of
the atom is RHF in nature, the (0, 0) diagrams
make no contribution. The (1, 1) and (0, 2) dia-
grams are rather large in number; for brevity we
have listed individually only those diagrams for
which the magnitudes are larger than 1 MHz.

The contributions from the (0, 1) diagrams
shown in Fig. 1, representing the ECP effect, are

TABLE III. Contributions from (1, 1) contact diagrams of the Mn atom shown in Figs. 2(a)—
2(0.

Diagram Excitation
Contribution '

(MHz)

2(a)

2(b)

Other consistency diagrams

Total consistency contribution

Consi
q =4s+
q=2s

q =4s+
q =4s+
q = 3p+

q = 2p+

stency
m =4s
m=2s

m =3s+
m=2s
m =3s+
m =2s

10.1
—1.5

6.5
3.0
2.6

—1.7
—0.8

18.2

2(c)

2(d)

2(e)

2(f)

Other correlation diagrams

Total correlation

Net (1, 1) contribution

q=4s
q=3p

q=4s
q= 3d
q=3d
q=3d
q=3d
q = 3d
q=3p
q=3p

q=3d
q = 3d
q= 3d
q=3d
q=3d
q=3p
q = 3p
q=3p
q=2p

Correlation
m=3d
m=3d

m=n=3s
'm=n=4s
m =4s
m=n=3s
m=3s
m=3s
m=n=3s
m=3s

m=4s
m= 3d

m=n=4s+
m =4s+
m=n=3s+
m=3s
m=n=2s+
m=4s
m=n=3s
m=3s
m =n=2s

n=3s

n=3s
n=2s

n= 2s

n=3d
n=3p

n=3s

n=2s

n=3s

n=2s

5.9
3.9

2.3
2.3
2.3

10.3
—1.6
-4.2
19.0

7,2

3.0
-6.4

9.8
—207
12.3
—5.2

1.6
2 ~ 3

—13.2
8 ' 3
2@3

1.4
37.3

55.5

For the sake of brevity, only those diagrams whose magnitudes are greater than 1MHz
are listed.
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TABLE LV. Contribution to the magnetic hyperfine constant of Mno from the (0, 2) diagrams
shown ln Figs. 3(a)—3(h) ~

Diagram Excitation
Contribution

(MHz)

ons 18tency
Nl =38 +=48

tR= 38
HE=28
ppl = 2s
PM=28

3.1
-1.2

9.2

Other consistency

Total consistency

-4.2
31.1

Correlation

m=4s
m=4s
m=3s &=4s
m=3s +=3d

3.0
-15.2
-5.6

1.6
1.0
2.0
3.0

—2.2

2.1

-5.4
2.0

-3.8
2.0
2y7

1.6
1 + 3
1.9

tl =4s
n=3d
t&= 3d
8= 3d
&=3d
+= 3d
+=3d
6=M
8= 3d

-15.9
5.0
1.8

10.7
—1.6
-3.9

3 ~ 2
2 y 1
2.7
2.1

-1.9
—2.0
13.0

3 % 9
-7.0

3.0
4.1

—2 5
2.2
3.0
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TABLE K. (Continued)

Diagram Exc itation
Contribution

(MHz)

3(h)

Other correlation

Total correlation

Net (0, 2) contribution

n=3s m=3s

n=2p
8=2s

m= 3s
m =-2s

n=3s m=2s
q = 3d
q=M
q=3p
q=3d

7 ' 7
—2.4
-1.6

1.7

0.4

—18.4

12 ~ 7

listed in Table II. The second column in Table II
lists the unladdered values; the third column lists
the laddered values involving the diagrams such
as 3(a) and 3(b) described in Sec. II. The total
contribution from (0, I) diagrams, including the
ladder diagrams, is -152.6 MHz. Comparing
the contributions from individual shells of the
atom, one can observe first that the magnitudes
of the contributions from the 2s and 4s states are
larger than 1s and 3s diagrams. This difference
in the magnitudes of the ECP contribution for var-
ious shells can be explained by considering the
combined effects of the size of the density at the
nucleus for the core electrons and the strength of
their exchange with the valence 3d electrons.
Thus, considering the 1s contribution, even though
the density at the nucleus for the 1s wave function
is very large, its overlap with 3d is very small,
leading to a very small exchange effect. In the
case of the 2s contribution, the density at the nu-
cleus is quite large; also, the overlap with 3d is
substantial, thus making the ECP contribution
quite substantial.

The explanation of the substantially smaller
magnitude of the ECP contribution from the 3s
state relative to 2s requires the consideration of
several factors. First, the amplitude of the 3s
wave function at the nucleus is substantially
smaller, so that the response at the nucleus to
the exchange polarization effect is weaker. The
exchange effect for 3s would, however, be ex-
pected to be stronger than for 2s because of the
greater overlap of 3s with 3d. However, the 3s
orbital has one more node than 2s and consequent-
ly the exchange matrix elements in Fig. 1 suffer
from greater cancellations, in the case of Ss,
from different regions in r, leading to reduction
of the exchange effect. In comparing the relative
magnitudes of 4s and 3s contributions, the domi-
nant factor is the substantial larger exchange
interaction between the 4s and 3d as compared to
that between 3s and 3d; this more than compen-

sates for the smaller 4s amplitude at the nucleus.
This substantially larger exchange interaction for
the 4s case is partly due to the stronger overlap
with 3d than occurs in the case of 3s, but, more
importantly, there is less cancellation in the ex-
change matrix element for the 4s state from dif-
ferent regions in r, since the exchange with Sd
occurs mainly at the outer regions of the 4s or-
bital.

The signs of the ECP contributions from indi-
vidual shells also show interesting trends. Thus,
leaving aside the 1s shell which essentially makes
zero contribution, the other two inner s shells,
2s and 3s, make negative contributions, while the
4s shell makes a positive contribution. This trend
can be understood by realizing that the 2s and Ss
shells are internal with respect to the 3d shell and
so have the densities of their parallel-spin elec-
trons diminished at the nucleus by the exchange
attraction towards the Sd shell. The 4s shell, on
the other hand, is more external than 3d, with the
exchange now causing an inward movement of par-
allel-spin 4s electrons, leading to enhanced den-
sity at the nucleus. This type of behavior was
also found in the Fe' atom" and in other heavier
atoms and ions such as in rare-earth systems, "
where the unpaired shell is external to some of
the s shells and internal to others.

Considering next the laddering effect, the re-
sults listed in the third column of Table II repre-
sent the effect of ladders to all orders obtained
from the ratio of the second-order diagrams in
Figs. 3(a) and 3(b) to the corresponding parent
diagrams in Fig. 1 and using a geometric-series
approximation. The laddering contribution from
2s has larger absolute magnitude than that from
3s, but the latter is proportionately larger. This
result can be understood by realizing that the per-
turbations due to the ladder in Figs. 3(a) and 3(b)
depend on the deformability of the core states in
question, the 3s state being stronger in this re-
spect than 2s. In column 4 of Table II we have
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listed the ECP contributions from moment-per-
turbation calculations, "which are seen to agree
quite well with the (0, 1) results of LCMBPT listed
in column 3 of Table II, in common with a number
of other systems where such comparisons have
been ma, de.""

In Table III, we have presented the contributions
from (1, 1) diagrams which are further separated
into consistency and correlation contributions. In
considering the contributions from Fig. 2(a), the
diagrams involving the consistency interaction be-
tween 4s states can be seen from Table III to be
the dominant one. The consistency diagram in-
volving the Ss state is less than 1.0 MHz in mag-
nitude and is not shown in Table III. The corre-
sponding diagram involving 2s states is somewhat
larger ih magnitude than the Ss diagram but sub-
stantially smaller than the 4s. The sizes of these
diagrams depend both on the sizes of the corre-
sponding ECP diagrams in Fig. 1 and the deform-
ability of the s states. Since the 4s state is dom-
inant in both these respects, the largest relative
magnitude of the 4s-4s consistency diagram is
understandable. Figure 2(b) represents the ex-
change counterpart of Fig. 2(a) and exists only
when m W q. The relatively larger contributions
among diagrams in this class for q =4s is under-
standable for the same reasons as in the case of
2(a). However, the contributions from interaction
between other states of same principal quantum
number, such as Ss and SP, and between 2s and

2p, is a consequence of the greater overlap be-
tween such pairs of states.

The diagrams in Figs. 2(c)-2(f) represent cor-
relation effects; from their values in Table III one
can observe that correlation effects among elec-
trons with the same principal quantum number are
relatively stronger than those among states of
different principal quantum numbers, the excep-
tion being the case when 4s is involved. This be-
havior can be understood through some of the
reasons discussed for diagrams 2(a) and 2(b).
The total consistency contribution from (1, 1) dia-
grams is found to be 18.2 MHz and the total corre-
lation effect is found to be 37.3 MHz, leading to a
net (1, 1) contribution of 55.5 MHz, which is about
30%%uq of the (0, 1) contribution and of opposite sign.

We have listed the contributions from various

(0, 2) diagrams in Table IV. The various intra-
shell and intershell contributions to the consis-
tency and correlation effects have the same fea-
tures and trends as in the case of the (1, 1) dia-
grams. On combining the consistency and corre-
lation diagrams separately as in the case of (1, 1),
the net consistency and correlation contributions
are found to be 31.1 MHz and -18.4 MHz, respec-
tively, leading to a net (0, 2) contribution of 12.1
MHz, which, as in the (1,1) case, has a sign op-
posite to that of the (0, 1) result.

To obtain the net hyperfine constant to second
order, we need the contributions from the 1s dia-
grams. The (0, 1) contribution for this state has
been given in Table I and is rather small. In the
(1, 1) and (0, 2) results presented in Tables III and
IV, the 1s contribution was not included. From
the results in Mn+' and Fe+' ions'4' which we have
previously studied, the 1s contribution was expec-
ted to be rather small and it was not felt neces-
sary to study all of the diagrams associated with
it. Instead, from the results for Mn" and Fe"
ions, which are expected to have nearly the same
1s contribution as in the Mn' atom, the 1s contri-
bution was estimated as 4.0 MHz, arising mainly
from consistency diagrams.

Including the 1s contribution (except for ladder-
ing effects to all orders for (0, 1) diagrams dis-
cussed earlier), the net result of our calculation
up to second order is -80.4 MHz, which is com-
posed of -99.3 MHz from one-electron effects and
18.9 MHz from two-electron effects. The one-
electron effects are a combination of ECP and
consistency contributions, while the two-electron
effects represent correlation contributions.
These results are tabulated in Table V. It should
be noted that the two-electron effects in the pres-
ent case seem to have a fairly substantial ratio
(about 18%) as compared to the one-electron ef-
fects, which is a higher ratio than in the case of
Mn+' and Fe+' ions. '»" This larger ratio in the
case of the Mn' atom is, however, a consequence
of the smaller value of the ECP contribution aris-
ing from the cancellation between the net effect of
2s and Ss and the 4s contributions, as discussed
earlier. The ratio of the correlation contribution
to the consistency part of the one-electron effect
is comparable for the Mn' atom and Mn" and Fe"

TABLE V. List of nonrelativistic contributions to the hyperfine constant (in MHz) of the Mn atofQ including 'up to
second order in electron-electron interaction.

(1, 1)
Consistency Correlation

(0, 2) Net
Cons istency Cor relation cons istency

Net
corr elation

Total

—152.6 20.2 37.3 33.1 -18.4 53.5 18.9 -80.4

These results include consistency effects of the ls electron which are not tabulated in Tables III and IV.
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ions, although the correlation contribution is sub-
stantially larger for the Mn' atom. The latter fea-
ture is a consequence of the presence in the Mn'
atom of the diffuse 4s shell, which can be polar-
ized substantially in the correlation process in-
volving its pair interaction with other electrons.

Beyond second order the diagrams are very
large in number. Therefore in studying higher-
order diagrams a selection was made of those
diagrams which could be related to the sizable
first- and second-order diagrams. Thus in Figs.
4(a)-4(e) we have shown some third-order dia-
grams which are related to the (0, 1) core-polar-
ization diagrams by the addition of two 1/r„
vertices. Of these diagrams, 4(a) and 4(b) refer
to the dressing effect on the hole lines due to
their pair correlation with other electrons. Thus
in Fig. 4(a) the hole line 4s, which is being ex-
change core polarized by 3d, also interacts
through pair correlation with another hole state
n, and 4(b) is its exchange counterpart T.he in-
fluence of these pair-correlation effects can be
calculated to all orders by adding the correlation
energy of the mth hole state with all other nth hole
states to the energy denominator of the ECP dia-
gram of Fig. 1 of the mth hole state. The influ-
ence of this dressing depends on the ratio of the
pair-correlation energy to the one-electron ener-
gy of the hole state concerned, and since the hole
states from 1s to 3s have small correlation ener-
gies, it is the 4s hole state which undergoes sig-
nificant correction due to the dressing. The net
pair-correlation energy of 4s, with the other 4s
state and with all electrons with principal quantum
number 3, is -0.0556 a.u. , the major part corning
from 4s-4s and 4s-3d correlation effects. This
number is an appreciable fraction of the 4s one-
electron energy of -0.2451 a.u. , and hence signif-
icantly influences the energy denominator in the
ECP diagram (Fig. 1) for the 4s state. The result
of this is represented by the dressing diagrams
[Figs. 4(a) and 4(b)], which contribute -34.5 MHz
for the 4s state. The corresponding contributions
for the other core states are rather small. The
diagrams in Figs. 4(c) and 4(d) are a few ones
typical of the whole set of diagrams one can get
by joining the 1jr» interaction lines to only hole
or only particle lines or partially to hole and par-
tially to particle lines and the corresponding ex-
change counterparts. The total contribution from
these diagrams, after making a geometric-series
approximation, is 5.6 MHz, the major contribution
coming from 4s-4s correlation. The diagram in
Fig. 4(e) is the higher-order counterpart of 3(d);
we have evaluated the contribution from this and
higher orders by making a geometric-series ap-
proximation utilizing the ratio of Fig. 3(d) to Fig.

1. The contribution from this series of diagrams
is 8.5 MHz. Thus the net contribution of the third-
order diagrams in Fig. 4 and their higher-order
counterparts as included by the geometric-series
approximation is then -10.4 MHz. On combining
this with our second-order result of -80.4 MHz,
we get -90.8 MHz. Therefore the net result from
nonrelativistic theory is -90.8 MHz. %e ascribe
to this an error limit of +3.0 MHz. This error
limit has been estimated from consideration of ef-
fects of higher-order diagrams that have not been
included, possible errors associated with geomet-
ric-series approximation, neglect of excitations
of higher-angular-momentum states than g, and,
of course, the limit of computational accuracy.
This result is to be compared with the experimen-
tal value of 72.422+0.002 MHz. ' Our net theoreti-
cal nonrelativistic result of -90.8+ 3.0 MHz is thus
about 18.4 MHz larger than the experimental value.
If, considering the relativistic effects in hydrogen-
ic or the alkali atoms, ' because of the increase in
the density of the electrons at the nucleus one made
the simple assumption that the relativistic effect
on all diagrams in Mno would be an increase in
density owing to contraction of the orbitals, then
relativistic effects mould be expected only to make
the result go further away from experiment. How-
ever, as we shall see in Sec. IV, which deals with
actual calculation of the (0, 1) diagrams starting
with Dirac-Hartree-Fock zero-order wave func-
tions, one cannot expect that the only effect of
relativistic corrections on different diagrams is
to increase their magnitudes. In fact, we shall
see that there can even be alterations in sign of
the relativistic cox rections, which are connected
with the influence of relativistic effects on the ra-
dial characters of the paired orbitals and their
corresponding influence on both the exchange inter-
action with the unpaired 3d shell and their densi-
ties at the nucleus.

IV. RELATIVISTIC CALCULATION OF (0,1) DIAGRAMS

In attempting to explain the difference of 18.4
MHz between the nonrelativistic theoretical result
and experimental data as mentioned in Sec. III, we
have analyzed the influence of relativistic effects.
The procedure for calculation of the hyperfine con-
stant of a large atom like Mn' in a complete rela-
tivistic many-body formalism is difficult to forrnu-
late. The main difficulty lies in the fact that one
has to use the jm scheme in relativistic theory.
Nonrelativistically the Mn atom has a single de-
terminant to start with, since it is half filled,
which makes the handling of the many-body pertur-
bation theory relatively simple. In the jm scheme,
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the ground state is no longer a single determinant
but is made up of many determinants. As a first
step towards a practical way of handling the entire
many-body problem we have formulated the rela-
tivistic theory in order to be able to evaluate the
contributions of the (0, 1) diagrams after obtaining
a complete set of relativistic basis states. This
was done keeping in mind first that the major con-
tribution to the hyperfine constant A, in nonrelativ-
istic theory comes from these diagrams and second
that their evaluation involves only s excited states.
In the following subsections we describe the theo-
retical procedure used to evaluate these diagrams.

A. Description of the procedure

First we formulate the ground state ('S) of the
Mn' atom in the jm scheme according to the pro-
cedure prescribed by Sandars and Beck." This
can be done by expressing the 3d up spin orbitals
by jm orbitals which in turn are then replaced by
Dirac four-component spinors. " As an example,
a 3d orbital of the Mn atom with m, =-2 and m,
=+& can be expressed in the jm scheme as

(14)

where the kets are in jm notation. Another ex-
ample (given for the 1' state) is

1' = (3/~6) I a 5 &
—(I/~5) I 2 2 & ~ (15)

Similar expressions can be obtained for the other
3d orbitals; at the end all kets are replaced by
Dirac spinors. " After making the choice of the

ground state, the derivation of the Dirac-Fock
equations for the occupied states follows the same
pattern as in the nonrelativistic case." Details of
this derivation of the Dirac-Fock equations are
given elsewhere. "

In order to calculate the excited basis states it
is necessary to make a choice of the potential. In

the present work, we have chosen this potential in
a way analogous to the nonrelativistic formulation,
that is, utilizing a V ' potential, but in the rela-
tivistic formulation a j excited state is obtained
from a g- core state in place of an l state from an
l' core state in the nonrelativistic case. As pointed
out earlier, since our present motivation is to
evaluate the (0, 1) diagrams, we need only the s
excited states. We obtain these by creating the
excited s,&, states in a V" ' potential with a 4s,i,
electron missing. We have created both the bound
and continuum states in the basis by utilizing a nu-
merical procedure developed by Coulthard" and
revised by one of us (J. A. ). We have created four
excited bound states and twelve continuum states.
For the sake of comparison of the bound-state en-
ergies and spin densities at the nucleus for rela-

tivistic and nonrelativistic cases we have listed
these quantities in Tables VI and VII. In Table VI
we have listed the energy values of different ex-
cited states in the V" ' potential. It can be ob-
served that for the low-lying states the energies
are different, being deeper in the relativistic case,
as it should be. However, for higher n values the
difference becomes smaller because the peaks of
the orbitals are further away from the nucleus and
so the relativistic effects become less important.

In order to compare the matrix elements in the
relativistic and nonrelativistic formalisms we first
compare the entities p of nonrelativistic case
with the expression

rel "P„Q„', "P„iQ„dr+ z dy (16)

TABLE VI. Comparison of nonrelativistic and rela-
tivistic one-electron s bound-state energies. The en-
ergies are expressed in a.u. (& /ao).

Nonrelativis tie
energy

Relativistic
energy

—29.472 52
-4.157 95
—0.245 06
—0.080 29
-0.040 63
—0.024 55
—0.01644

-242.968 00
—29.900 16
—4.226 17
-0 ~ 250 71
-0 ~ 080 74
—0.040 78
-0.024 62
—0.016 47

between states n and n' of the relativistic formal-
ism. In expression (16) P equals r times the large
component of the radial functions and Q equals x
times the small component, in relativistic theory,
in atomic units, and + is the fine-structure con-
stant. p" reduces to p"" in the nonrelativistic
limit. 4 We also compare the nonrelativistic radial
integrals

f'"= (P„P,, Il/r, 2 IP„P„,)

with the relativistic counterpart

I"~ =(P„P,~+I I/r» IP~~+P„)+(Q„Q,~+I I/r» I Q,~+Q„).
(17)

In expression (17) 3d+ means that we use the j = —,
'

states of 3d in relativistic notation. The difference
between the (0, 1) result using 3d' and 3d wave
functions was found to be negligible for the Mn'
atom. However, the situation could be different
in other systems. In Table VII we have compared
p"' and I"' with their nonrelativistic counterparts
p "and I, respectively, and it is seen that the
magnitude of p"'is always larger than that of p ",
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TABLE VII. Comparison of p and ~ integrals (in a~ )
as defined by Eqs. (13b)—(15) between states n and n',
The superscripts NR and rel stand for the nonrelativistic
and relativistic integrals.

2.0-

n n' pNR I rel I.Q

2 5

6
7
8

3 5
6
7
8

4 5
6
7
8

13.6458
8.1285
5.5601
4.1128

5.0127
2.9860
2.0425
1.5108

1.0877
0.6479
0.4432
0.3278

14.6444
8.7099
5 ~ 9532
4.4147

5.3861
3.2034
2.1895
1.6237

1.1755
0.6991
0.4778
0.3544

—0.0054
—0.0032
—0.0022
-0.0016

0.0020
0.0012
0.0008
0.0006

0.0115
0.0067
0.0045
0.0033

—0.0052
—0.0031
—0.0021
-0.0016

0.0014
0.0008
0.0005
0.0004

0.0120
0 ~ 0070
0.0047
0.0034

0'

-2.00

FIG. 5. Plot of the Mn ground-state 2s, 3s, 4s, and
3d nonrelativistic orbitals.

as expected. For I"'and I the differences are
less pronounced than for p"' and pN .

B. Evaluation of (0,1) diagrams using the relativistic basis set

We next describe the evaluation and results of

(0, 1) diagrams with the relativistic basis set we
have generated. After obtaining the integrals p"'
and Ire as listed in Table VII, the evaluation of
the (0, 1) relativistic diagrams is relatively
straightforward. In Table VIII, we compare the
contributions from (0, 1) diagrams evaluated both
relativistically and nonrelativistically, including
laddering effects. A very interesting feature can
be observed from Table VIII. The relativistic ef-
fect is seen to increase the magnitude of the 4s
contribution, whereas it decreases the 2s contri-
bution. The 3s contribution increases slightly in
magnitude. This behavior of the influences of the
relativistic effect on different shells can be under-
stood by examining the radial characteristics of
the nonrelativistic 2s, Ss, 4s, and Sd wave func-
tions as plotted in Fig. 5. Relativistic effects
mainly lead to a contraction of the s orbitals,
while the Sd orbital is not subject to as much rela-

tivistic effect since it damps out as r' near the nu-
cleus, which makes its amplitude near the nucleus
very small. Because of the contraction of the 4s
orbital, not only does its density at the nucleus in-
crease but also its exchange interaction with the
Sd orbital increases, since the 4s orbital moves
closer to the Sd orbital, the latter remaining
pretty much stationary after the relativistic effect.
This effect can be seen pictorially in Fig. 6. The
Ss orbital, on the other hand, while it has an in-
crease in its density near the nucleus because of
the relativistic effect, has its exchange with the
3d state reduced because of its moving away from
the 3d orbital, as explained in Fig. 6. Thus in the
case of the 3s shells the increase in density at the
nucleus counterbalances the decrease in its ex-
change with Sd, leading to a substantially smaller
net change of the (0, 1) diagram relative to the 4s
case. In the case of 2s, however, the substantial

TABLE VIII. Comparison of values (in MHzj of
relativistic and nonrelativistic ECP diagrams including
ladder ing effects.

Ng

1s
2s
3s
4s

Total

Relativis tic

1.8
-281.7
—90.7
227.0

—143.6

Nonrelativ is tie

0.2
-287.7
—80.1
215.0

-152.6

3$

34

FIG. 6. Influence of relativistic changes of orbitals on
exchange interaction and contact density. N is the posi-
tion of the nucleus. The arrows show the contraction of
orbitals due to relativistic effect.



TABLE IX. Summary of various contributions to the hyperfine constant (in MHz) in the 1Vlno

atom.

Contribution fx om ECP
Consistency up to second order
Correlation up to second ox'dex'

Contribution from third and higher
ox'der s

Relativistic correction to ECP
Relativistic corrections to consistency

and cox'x'elRt ion
Casimir effect
Net result
Exper iment

-1/2. 6
53.3
18.9

-10.4

9.0
12.0

-4,3
-74.1 + 3.0
-72.422 + 0.0002

See Ref. l.

increase of its density near the nucleus cannot be
counterbalanced by the decrease in exchange with
the 3d state, as the 2s orbital moves away from
the 3d, and in fact we see a decx'ease in the mag-
nitude of the (0, l) diagram shown in Fig. l with
m =2s. In effect this explanation of the trend
draws on the similar considerations of the x'ela-
tive radial characters of the 2s-48 orbitals and
their 1ocations relative to the 3d orbital, as was
the case when we dealt with, in Sec. III„the signs
of the contributions from nonrelativistic (0, l) dia-
grams. From a combination of these relativistic
effects on the ECP contributions from different
paired s states we now get a net increase of 9.0
MHz relative to the nonrelativistic ECP effect
from the laddered (0, l) diagrams. This relativis-
tic contribution reduces the magnitude of the theo-
retical result for A., to -81.8+3.0 MHz, reducing
the gap with the expex'imental value.

The main relativistic effect on the (0, l) dia-
grams was found to arise from changes in the ma-
trix elements involving the orbitals, rather than
the changes in the one-electx'on energies occurring
in the denominator. Considering these changes in
the matrix elements, we have estimated the rela-
tivistic corrections to the (l, l) and (0, 2) diagrams
which make sizable conti lbutlons in nonx'elatlvlst1c
theory, and we have arrived at a total x elativistic
cox rection of 12.0 MHz from these diagrams.
Combining this we get a net contribution from vax-
ious orders including the relativistic effect of
-69.8+ 3.0 MHz.

In obtaining the net theoretical xesult to compare
with experiment, it is necessary to include two ad-
ditional contributions. These are the BDI.SC
(breakdown of LS coupling) effect and the Casimir
effect, as discussed by Sandars and Beck." %'e

found the formex' effect to be negligible, whereas
the latter, evaluated with our relativistic d func-
tions, is2' -4.3 MHz. Our final theoretical result,
including, in pxinciple, aB orders of correlation
and relativistic effects, is -V4.1+3.0 MHz.

To present at a glance the relative iniportance
of all of the physical effects that have been included
in our pxesent analysis, we have listed their net
contributions in Table IX. It is clear from this
table that in order to obtain quantitative agreement
with experiment within the range of accuracy of
our work, each of the effects (ECP, consistency,
correlation, and relativistic effects) must be care-
fully evaluated and incorporated.

V. CONCLUSION

The conclusions of our present work on the man-
ganese atom can be summarized as follows: The
net contribution from the (0, l) diagrams, repre-
senting the ECP effect, is substantially different
from experiment, in contrast to the cases"~ of
Mn ' and Fe" ions. However, by a careful analy-
sis of correlation effects, xelativistic effects, and
their interplay, one is able to obtain very good
agreement with experiment for the manganese
atom, The relativistic effect on the ECP dia-
grams has two intexesting features. First, the
relativistic corrections to the ECP diagx'ams for
the 2s, 3s, and 4s shells are of comparable mag-
nitude and, second, there is a remarkable change
in sign in the relativistic correction for the 4s
state, as compared to the 3s a d 2s states. m'e

have suggested physical explanations for these
features in Sec. IV. %'e expect similar trends for
the relativistic corrections to (0, l) diagrams in
other transition-metal atoms. It would be useful
to verify this coDcluslon by more calculatloDS iD
these systems and a1so to study the trend in the
variations in relativistic effects on correlation
diagrams over the transition-metal-atom series.

%e therefore hope that the present investiga-
tions of many-body and relativistic effects in the
manganese atom will stimulate further efforts in
Dirac-many-body theory in othex' transition-metal
atoms in addition to efforts alx'eady underway in
unrestricted Dirac-Hartree-Fock theory. "
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