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A kinetic model based on the Enskog transport equation is proposed as a description of time correlation
functions in a dense hard-sphere fluid at arbitrary wavelengths and frequencies. The kinetic equation has the
desired properties with respect to short-time behavior, transport coefficients, and thermodynamics. It is

capable of describing the dynamic structure factor in liquid argon if the collision frequency were scaled with
wavelength.

Recently we presented a kinetic-theory calcula-
tion of the dynamic structure factor S(l(), (d) in
simple liquids. ' The calculation was based on a
kinetic-model approximation (QSRT) to the linear-
ized Enskog equation modified to give correctly
the second frequency moment of S(Q, (d). By ana-
lyzing neutron inelastic scattering spectra and
computer molecular-dynamics results on liquid
argon, we showed that a calculation which treats
hard-sphere dynamics can account for all the ob-
served spectral features of a simple liquid provid-
ed the collision frequency is given additional wave-
number dependence. This dependence was empiri-
cally introduced by replacing the pair distribution
function at contact g(r, ) by a (([-dependent function

l[(Qr, ), and y was found to be closely correlated
with the behavior of the static structure factor
S(Q) of the liquid.

In this note we examine a. kinetic model which
is a considerable improvement on the QSRT
model. The new model, which we call the wave-
number-dependent triple-relaxation-time model
(QTRT), has the desired short- and long-time
properties, and is capable of giving results for
S(Q, (d) accurate to about 5/q. ' In fitting the neu-
tron and computer data, we find a similar Q de-
pendence in the collision frequency as observed
before. This leads us to conclude that the charac-
teristic behavior of the function y(Qr, ) (see Fig.
2) is kinetic-model independent.

The QTRT model, like its predecessor QSRT,
is an approximation to the generalized Enskog
equation in which a selected number of matrix
elements of the memory function Z are retained.
Using the same definitions and notations as in I,
we can write the QTRT kinetic-model equation as

where the various matrix elements of Z are given
in Table I. In addition, o, (Q) is another matrix
element used to approximate all the diagonal ele-
ments of Z not taken into account explicitly,

n (Q) = nr', v,Wvg(r, )[~625 —2j,(Qr, )] .

%'bile QTRT is a more elaborate model than
QSH, T, it should be noted that one has the same
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parameters and input function in both cases. In
any numerical calculation the hard-sphere diam-
eter r„ the pair distribution function at contact
g(r0), and the static structure factor S(Q) have to
be specified.

Before applying a kinetic-model description to
calculate S(Q, &43), it is important to examine its
properties at short and long times. The short-
time behavior of the density correlation function
is characterized by the frequency moment sum
rules Q~"' = (1/2v) J"„d~~"S(Q, &d). One can show'
that QSRT, QTHT, and the generalized Enskog
equation all give the same Q~" ~ for n ~ 3, and
these sum rules are exact for a hard-sphere
fluid. ' ' In contrast to fluids with continuous po-
tentials, the hard-sphere system has a nonzero
Q~" and a divergent Q~'~, but any finite-order
kinetic model will give a finite value for the Q~'~

sum rule.
Using the methods recently developed" for re-

lating the thermodynamic and hydrodynamic prop-
erties directly to matrix elements of the memory
function, one can show that both QSRT and QTRT
give the following results for the specific heats
and the sound speed c„

C„=su, /2m,

[1+4'(r,)]3
P v 3 0 1 C((})

c, = 34,(1 —33C (0) + -',[1 + 43}g (y,)]'J '~',

where 3) = 3743r',/6 and C(0) is the long-wavelength
limit of the direct-correlation function. These
results agree with the known properties of a hard-
sphere system. ' The advantage of QTRT over
QSRT lies mainly in the description of transport
properties. For the shear q, and bulk g viscosi-
ties and thermal conductivity A. , one finds for the
QTRT modeP

5mep 1
0, — 18&, 40 4, , 0.8+4 488( )),rp Tjgpp

Qg 4'g) g r
7 rp

75k~ vp,' 43i 4, , +1.2+a),43ig(r, )64v v r', 4'(rp)
where a „=0.771, a

&
= 1.037, a~ = 0.7674. These

agree with the conventional Enskog expressions
obtained using the first approximation in the
Chapman-Enskog procedure, except for slightly
different values for the a coefficients; the Enskog
values are a„=0.7614, a

&
= 1.0186, a~ = 0.7574.'

The transport coefficients obtained from QSRT are
significantly different from (4).

We have carried out a limited numerical study
of the convergence of kinetic model solutions for
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TABLE II. Percentage error in kinetic-model calcu-
lations of S(Q, &=0) as measured against converged
numerical solutions to the generalized Enskog equation.

S(O) X(ar, )

(b)

QSRT QTRT

26

12

Comments

nr p
——0.14142, Qr p

——0.694, y* =0.99

nr() ——0.47093. Qr,- =4, y*= 0.9661

2!— 4—
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2!—
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S(Q, &u). By extending the matrix in Table I from
7 to 38 states, we have determined the accuracy
of QSRT and QTRT at selected values of nr', and
QrQ. ' As shown in Table II, QTRT is a significant
improvement over QSRT in the kinetic region
where y*=4nrog(r, )/Qr„a measure of the wave-
length to mean-free-path ratio, is of order unity.
In the free-molecular-flow region (y*«1) or the
hydrodynamic region (y*»1) the kinetic-model
solutions are more accurate than indicated in
Table II.

We have also used the QTRT model to investi-
gate numerically the difference between the gener-
alized Enskog equation [Eq. (2.8) in I] and the lin-
earized Enskog equation in conventional transport
theory. Since the two equations differ only in the
static part of the memory function, deviations be-
tween the two descriptions should occur most
prominently at high densities and short wave-
lengths. A comparison at molar volume ratio
V/V, =1.5, where V, is the close-packed volume,
and Qr, = 'I.2, the diffraction maximum in S(Q), is
shown in Fig. 1.' One sees that the conventional
Enskog equation, which does not give correctly
the second moment sum rule, grossly underesti-
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FIG. 2. Wave-number dependence of the empirical
function X(Qrp) Curves a and b correspond to QSRT and
QTRT models, respectively. Dashed curve, experi-
mental static structure factor S(Q) of liquid argon [J. L.
Yarnell, M. J. Katz, R. G. Wenzel, and S. H. Koenig,
Phys. Rev. A 7, 2130 (1973)].

mates the peak value of S(Q, u) and overestimates
its full width. Correspondingly, the frequency
where the longitudinal current correlation has its
maximum is also overestimated. These discrep-
ancies are upper limits of what one can generally
expect. In less dense fluids or at longer wave-
lengths, thermal fluctuations will not be as sensi-
tive to the static part of the memory function.

We have repeated the analysis of neutron and
computer data on liquid argon near its triple point
using the QTRT model. ' Following the same pro-
cedure reported previously, we have found that in
order to obtain a reasonably good overall fit of the
data it was necessary to replace g(ro) by a, Q-de-
pendent quantity lt(Qr, ) This q. uantity, as deter-
mined from fitting S(Q, 0) and the width of S(Q, ~),
is shown in Fig. 2 along with the corresponding
results from the QSRT calculation. Although the
magnitudes of X differ somewhat, one sees that
their characteristic behavior is the same. The
significance of y(Qr, ) and its relation to S(Q) is
worthy of further study. It would be of interest to
see if the same kind of modification of g(r, ) is
needed in the analysis of self-correlation function
in real dense fluids.

In Table III we show the standard deviations ir
fitting QSR T and QTRT kinetic models to neutr on
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TABLE III. Standard deviation a (%) in kinetic-model
calculations as measured against neutron scattering
data over the range Q = 1-4.4 A ~.

FIG. 1. Comparison of the dynamic structure factor
and the longitudinal current correlation function cal-
culated from QTRT kinetic models based on the general-
ized Enskog equation [curves (a)] and the conventional
Enskog equation [curves (b)], &=0.49, Qrp = 7.2, p(rp)
= (1-0.5g)/(1. -g), and S(Q) is given by Percus-Yevick
theory [N. W. Ashcroft and J. Lekner, Phys. Rev. 145,
83 (1966)].

~(Q 0)

FWHM

max

[&(Q, E) I-., /' &E')

QSRT

9.6

20 ~ 6

18.5

QTRT

9.05

14.2

30.8

32.8
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data. The comparison is not meant to be quantita-
tive since we have not attempted to obtain the best
fit in either ease. However, it is interesting to
note that our results are comparable in accuracy
to generalized hydrodynamics calculations" or
kinetic-theory calculations with model memory
functions. "

In conclusion we believe that the QTRT model
is a tractable kinetic equation which has all the
essential contents of the generalized Enskog equa-

tion. As a dynamical description of hard-sphere
fluids at arbitrary frequencies and wavelengths,
it should be tested against computer molecular-
dynamics data on hard spheres. Moreover, it
should be useful as a first approximation or as a
reference molecular theory for understanding the
dynamics of real dense fluids.
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