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Hartree-Fock states in the thermodynamic limit*
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A two-parameter class of single-particle orbitals, giving rise to long-range order in the local (spatial
and/or spin) density, is shown to satisfy the full Hartree-Fock (HF) equations for occupied states in the
thermodynamic limit. For a 8 interparticle potential, these states are stabler (have lower HF energy) than the
usual plane-wave (or trivial) HF solutions, for suNciently strong coupling and/or high density. Minimization
of the energy with respect to the (new) free parameters leads to sometimes gradual (second-order transition)
and sometimes abrupt (first-order transition) onset of order, accompanied by a "bifurcation" of the new

energy state from the old. The existence of even lower-energy, nontrivial HF states is also mentioned. %e
discuss the relevance to neutron and nuclear matter, to the Pauling "close-packed spheron" model of nuclei,
as well as to the electron-gas problem.

I. INTRODUCTION

In a previous set of paper s' it was shown that the
assumption that, plane waves are the lowest-energy
sollltlolls to tile Hartl ee-Fock (HF) eqllRtlolls 111 the
thermodynamic limit breaks down whenever the
interparticle potential is attractive enough to bind
nuclear matter, for example, in first-order per-
turbation theory. This breakdown, commonly
occurring at densities of 11 of the saturation den-
sity, is manifested by the appearance of a lower-
energy determinantal state corresponding to an
inhomogeneous single-particle density distribution.
(It is further related to the onset"' of unstable
i Rndom-phase-Rppi oxlmatlon Diodes ln the den-
sity-density col'I'elRtloI1 fuIlcti011. ) Tile qllestloll
arises then as to whether this inhomogeneity refers
to (a) surface formation as the (homogeneous den-
sity) llollldeR1 Fel'1111 gRs colldellses wltlllll tile nol'-
malization volume to one or more dmpfets of (also
homogeneous-density) liquid or (b) formation of a
state with inhomogeneous density structure (maybe
with long-range order, as in a crystal) everywhere
in the nox'malization volume. The present work is
related 0111y 'to p0111't (b).

The importance of these possibilities is con-
nected, in case (R.), to a, mechanism for the evolu-
tion of the (presumably) liquid droplet state of real
(finite or infinite) nuclear matter and, in case (b)
'to (1) the posslblllty of R close-pRcked spllel'011

structure in nucle~, as proposed by Pauling, ' in

explanation of, among other phenomena, the nu-
clear magic numbers, as well as (ii) the possibil-
ity of long-range crystalline order in nuclear
and/or neutron star matter, as suggested by the
obser vation of "star quakes". '

In the present paper we study the energetic be-

havior as a function of particle density and cou-
pling of a class of two-parameter single-particle
orbitals —resembling Overhauser' states —which
exPficitly satisfy the HE equations for occuPied
states. The analysis here is restricted to a 5-
function lntex'Rctlon bet%'een pairs of nucleons.
Although this potential can be very uncharacter-
istic of real physical systems, it drastically sim-
plifies calculations. The stabler ordered states
which the 5 intex'Rction yields %'ltI1 i ela, tive eRse,
howevex', are definitely present in a variety of
physical eases, and it is this point which we feel
lends this schematic study a wider significance.
This study is presently being extended to both
"effective, " density-dependent potentials of the
Skyrme kind, ' as well as to "realistic" (adjusting
empirical data) nuclear potentials on the one
hand, and also to the electron-gas problem where
the appearance of a "%igner lattice" is widely
believed.

II. "CORRUGATED-SHEET" DENSITY-Vf AVE

(CSDK) STATE

Consider the determinantal state Co composed of
N» 1 single-particle orbitals with spin and isospin,

k &k~, q & 2k„, Il complex, (1)

which are orthonormalized in the cubic volume V,
to which one applies periodic boundary conditions.
For suffi. ciently lax'ge V
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so that, since 6» 0 —= 0,

d'r p,*(~)q, ,(x) = 6, „,.
az7.~ V

The constant C is then

c=[(1+I~I')v]-'-',

and for n-0, Eqs. (1) and {4) give the usual ortho-
normalized plane-wave states familiar in nuclear
matter studies.

The {global) particle density p= N/V -is given by

n E!==4+!-4 ~, J a!., =v', &, ;
k ~ k&ky

therefore,

p = X/V = (-2/sv ')k' . -

The (local) density distribution p(r) is

p(r) -=2 l&&(r) I'

= p(1+ [2/(1+
I
~ I')]

x [(Ren)cosq r (lma) si -nq r]]

and evidently corresponds to an oscillat, ing density
wave of wavelength

A result, to our knowledge new (since Over-
hauser's' problem was restricted to the one-di-
mensional Hartree case), is that the X occupied
orbitals [Eq. (1)] explicitly satisfy the full HF
equations

&k I-(k'~:/2»~) Ik'&+ Q &kf I~„Ik'1 -fk'& =~,6„
l (occ)

for any translation-invariant [i.e. , independent of
center-of-mass R = 2 (r, + r2)] two-body potential

This is immediately seen by noting that, from

Eq. (1),

6~, -„,„-=0 (»=1, 2, . . . ; k, k'&kr; q ~ 2k~)

so that

i (occ)
(kl I&!„Ik'f—lk') = 5», [ ]+(terms containing 5„-, ~,. and 5~, f„.) .

The sum of the two brackets [ ] then gives the
constant c~. Q.E.D.

The HF energy will be
iV

j=l t&j

+ ' P &k,k, Ir„Ik,k, k,k,&.
2 pr, k2(oce)

The energy is independent of the die'ection of q;
hence the density-wave distribution [Eq. (6)] is
analogous to a "corrugated-sheet, " the energy
[Eq. (12)] being degenerate with respect to the
orientation of the "sheet. " Moreover, as the en-
ergy depends only on the n&agnitude of a, there is
no loss of generality in taking n real in Eq. (6).
Finally, e(4', p) ls obviously minimized ln!f for
q =1, so that the density oscillations, from Eq.
(7), have the familiar v/kr wavelength. The energy
is then

For the present we utilize only the interaction

'l. -' ='t. ~( r . ), 6 = const.
e(P) = —,

' + 4P/(1+ P) + X(1+2),
A. =—2P/(1+P)', X =—v,kr»r/2w~ff',

(13)

(14)
Then, Eq. (10) reduces to

~(q, jj3) =-

20 I3 „3)))g,op 2P
5 3 1+p ~ 4 IT9~2F (].+p)'-'

p= II', e= qi-», »=1. (»)-

where Eq. (5) was used in defining the dimension-
less coupling constant A. . To minimize with re-
spect to P one has, first

~'(P) = 0~ P = {X+2)/(X- 2) ~ 0 ~ & ~ 2 or y & 2,
(15)

the las t inequality ensur ing that P is finite; s ec-
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ondly, we must impose

0&e"(p)(1+p) = ~X( —2,
Bx 4x'

X —2

where the right-hand side of the first inequality
[Eq. (15)] for P was used after doing the second
differentiation. Eliminating p from Eq. (13), again
via Eq. (15), leaves

of a new, lower-energy state, from the old (trivial)
state, at a "bifurcation point" with tangency is
characteristic of a second-Order transition where-
in the corresponding "order parameter" sets in

gxadua/ly from the value zero. Here, the order
parameter is the amplitude of the density oscilla-
tion

e(x) =", + 2/x+ —,'~ (17) =(1 4/x')"', = Iq .1+ Inl X= 2-)))
0+

which is to be compared with the plane-waves re-
sult, Eq. (13) with P=O, namely,

3
epv(X) = s +X .

Finally one has that

«=-e(~) -e,„(~)=2+2/~+-.'~-0 for x-« —2

(Rttl'Rctlve lnteractlon} wltll equR11'ties colllcldlllg.
Figure 1 shows that the equality alluded to corre-
sponds to a "bifurcation point, " since the function
e(x) violates the basic condition p—= la l'~ 0 to the
left of that point (dashed curve). We also note that
the new (self-consistent) lower energy, determin-
antal state appears at a critical coupling (X„«———2)
somewhat stronger than that found in Ref. 1

(X,„,, = —,) to signal the instability of the PW de-
terminant, i.e. , beyond which the existence of a
non-PW state can be established. The appearance

.'UN

A good example of this in an empirically observed
instance is the experimental free energy vs tem-
perature for both normal and superconducting
phases, at low temperatures, showing' two
branches joined at a bifurcation point at critical
temperature.

The corrugated-sheet density-wave (CSDW) state
treated here may be related to the concentric-
shell density oscillations arising from Pauling's
concentr ic packing of "spherons" (alphas or tr i-
tons) in his model' of nuclear structure. Paul-
ing's packing, however, is apparently limited to
finite aggregates, whereas the states considered
here are for the (essentially) infinite-particles
limit. The spherically-invariant state studied
above, though, is not the stablest state, as will be
seen in Sec. III.

But before closing this section, we mention a
rather curious example of an HF state which, for
the 6 interaction studied here, has Isighex' energy
than the PW HF state. This is formed by orbitals
[Eq. (1)]where the vector q is assumed parallel
(or antiparallel) to the vector k, over which one
then sums. The resulting density distribution is

Q s lngJ'
&(r) = P 1+Re

(1 I I
2)

(20a)

and the HF energy per particle, for interaction
Eq. (11), and q =2k~ as before, is then

FIG. 1. Dimensionless HF energies, as functions of
the dimensionless coupling' defined in Eq. (24), for
the {simple cubic) lattice density-wave (I,DW) state and
the "corrugated-sheet" density-wave (CSDW) state
compared to their respective relevant plane-wave (PW)
states with Fermi cube and sphere fillings. Dashed
portion of CSDW curve violates condition p=Io~ 1 )p.
Dashed vertical. line indicates critical A. beyond which
the PW state was found unstable according to methods
of Ref. 1.

E 3h k~ 35 lnl'
X 5 2~n 3 1 + lc I'

+ s t'op[1+0(fi" t')],
which is clearly never lower than the n =0 case.
The conclusion does not necessarily hold for a
finite-range interaction, but this case is consid-
erably more complicated and may merit closer
study, particularly in connection with the Pauling
nuclear model mentioned before.

III. LATTKE DENSITY-%AVE (LDK) STATE

We now form a (simple cubic) lattice configura-
tion for p(r) by introducing the orthonormal orbit-
als
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V, (r) = 4,,(x)4.,(y)4&,(~)X.(a.)X,(r.),
P, (x) =D(e' ""+oe'' ""'"), same for y and z,

LD

These give rise to global p, and local p(r ), den-
sitiess.

p =X/V = 4{k,/v)',

=pf(x)f(y)f(~),
(22) -1

0

.7
I

,9 2 iP /0 &P)

f(x) —= {1+2(I+
~

a
~

') ' [(Ren)cosqx —(Imn)sinqx]] .

1+12 q' + —v,p(i+A)',

2P
A-=( ), , q-=„~l, P=~a~',

which is clearly minimum in q for q =1, so that

e(p) =-, , =1+ +z(I+/I)',2w&E 12P

3n&e,k, 6 -'i'

h 'n' m

(24)

the last equality coming from the relation

k, =(8/~)" k . (2&)

The plane-wave energy, corresponding to filling a
Fermi cube (to make the appropriate comparison
later) of sides 2k„ is then

The above orbitals also satisfy the full HF equa-
tions, a.s is seen similarly as in Eqs. (9). Because
the 5 interaction [Eq. (11)] is separable in x, y,
and z, one readily finds the HF energy per particle

FIG. 2. Extremum condition for the lattice density-
wave (I.DW) tEq. (27)l relating & to P. The three con-
ditions fEqs. (27), (28), and (30)j are simultaneously
satisfied only along full portion of curve. [Inset: Oscil-
lation amplitude, as in Eq. (22), as function of coupling,
showing its abrupt appearance at critical coupling A, „» .l

(28) one has

&"(P) „.—, —24+o(P) «
meaning that, if a solution to Eqs. (27) and (28)
and to

Ae =-e(P) —e» ~0

exists, it must correspond to nonzem P, or that
the transition must be a sudden one to a finite
oscillation amplitude (first-order transition).

Indeed, detailed calculations show that the above-
mentioned three conditions are satisfied simulta-
neously for P ~ 0.2031 corresponding to an oscilla-
tion amplitude 2v P /(1+P) =0.75 (cf. Figs. 1 and 2).
Thus, the lattice density-wave (LDW) state energy
is not tangent to the PW state energy (upper
straight line curve in Fig. 1) at the corresponding
bifurcation point. Evidently, the LD% state is
stabler than the previous CSDW state.

e(0) =—«p„=I+X.

The conditions for a minimum in &(P) with respect
to P are

2(1+P)

(P —1)[1+2P/(1+ P)']

g„,= —2+ o(P),
24 — 1+2Pj(1+P)2

(1+P)' (1+P)'

2P (1 P)'

IV. "CORRUGATED-SHEET" SPIN-DENSITY-Vf AVE (CSSDK j
STATE

The states considered so far are found to be
stabler than the plane-waves state only for (suf-
ficiently strong) attractive forces. In Secs. V and
VI we take up states which become stabler for
xePulsive forces —these are of the "spin-density-
wave" kind, in which spin-up and -down. popula-
tions oscillate out of phase, creating an antifer-
romagnetic structure.

Define the orthonormalized orbitals

(28)

~e note, however, that by eliminating ~ from Eq.

q „(r)= C (e*"'+oS.e*""")X.(a,)X,(&.);

k &kr; q ~ 2kr; C =[(1+ a ')V] '/'

with S,=+1( 1) for spin up (down).

(31)
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The local density distribution each Cartesian coordinate, viz. ,

y, ,(x) = C(e"»"+oS,e'&'»"&"); same for y, z.

a 2
4 ~ ' 1+ In I'

[(»ea)cosy (r [si j F])=p,

S, =+ 1(spin up) or —1(spin down),

~=[(I I
I')I'"]-'"

giving rise to the global density

p =~/V=4(h, /v)' (40)

where the last equality follows from Z, S, =O, so
that there is a "corrugated-sheet" density oscilla-
tion, similar to the CSD% state studied before,
except that it is now for spine up (down) separate-
ly, and these two basic oscillations are out of
phase so as to cancel completely, leaving a homo-
geneous net particle density with underlying long-
range ordering in spins (anti-ferromagnetic-like).

Using the same methods as before, the HF en-
ergy per particle (after minimizing in q to find

q = 2hz) is finally seen to be

2mE 3 4p

(33)

P-=io. i', Z=-mv, hF/2v'h'.2p
(1+p''

As before, minimizing with respect to P now yields

e'(j3) =0~ p=(X —6)/(X+6) ~ O~X» 6 or X c-6

and the local density distribution

p(r) = Q Q lq...(x)l' Q lq...(y)l' Q lq...(z)l'

=-,'p Q [1+S,h(x)][1+S,h(y) ][1+S,h(z)]

= p [1+h(x)h(y) + h(y)h(z) + h(z)h(x) ],
2

h(x) -=,[(Reo) cosqx- (lmo. ) sinqx],1+a'

which is not spatially homogeneous but has a net
(simple cubic) lattice structure, where each lattice
site has an associated spin up (down) surrounded
by spin down (up) nearest-neighbor sites (anti-
ferromagnetic structure).

A somewhat tedious calculation, which nonethe-
less exploits the separability in x, y, and z of the
interaction Eq. (11), leads to the HF energy

e "(p) = [(x+6)'/(2z)'](vz'+@. ) & 0, (35)

where Eq. (34) was substituted after the second
differentiation. The parameter P as given by Eq.
(34) is easily eliminated from Eq. (33) leaving

e(X) = g —6/A. + vZ

p=- ~o. i'; q =-q/2h 1; A—= 2p/(1+ p)',

which is again clearly minimum in q for q = 1.
Thus

e(p)= » =1+ '
+A 1+3A' —42' F. 12/ -, A'

e(p=0) =-ep„=-,'+z. (37) X:—3&7 Uoho/Tf f2

18 mlnlmum also ln )(3 lf

«(~)=-e(~) -e,„(~)=2-6/~-~/6- o «» -6
(38)

6(1+p)
(1 —p)(1+2' —64) z«&

(44)
with equalities coinciding. Note that all three Eqs.
(34), (35), and (36) are satisfied for X ~ 6 (repul-
sive 6). Moreover, for A =6, e(X) =op~, and p
=0—hence this point corresponds to bifurcation
of energies with e (A) tangent to e„„(second-order
transition).

V. LATTKE SPIN-DENSITY-WAVE (LSDW} STATE

Analogous to the LDW state of Sec. III, this case
is also constructed by taking separate orbitals for

24
(1+ P)' (1 + P)'

», [6»-»'-u, , [s-2»[) D.4(p —2), 4(1 —p)'

(45)

Inserting Eq. (44) into Eq. (45) one finds that
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K "(P),= 168+ O(P) )0

so that, provided solutions exist simultaneously
for Eqs. (44), (45), as well as for

nE—:E (p) —cp~ + 0,

(47)

at least one of those solutions will correspond to
a. 13=0 bifurcation point with tangency (second-or-
der transition).

Numerical calculations show that three branches
occur which simultaneously satisfy Eqs. (44), (45),
and (47): branch "g" is second order, whereas "b"
and "c"are first order, as seen in Figs. 3 and 4.
We note from Fig. 3 that the LSDW state (branch
"g") is stabler than both the PW and CSSDW state
for X ~ 6, but that the latter state becomes the
stablest at larger coupling: such a crossing,
barely appreciable in Fig. 3, and which did not
occur for the attractive case, can be associated
with a first-order transition of LSD% to the
CSSB% state.

sity, cf. Ref. 10, i.e. , s=1 is homogeneous but
s ~ 2 are periodic (simple cubic). The first few

such cases of Eq. (49) are graphed in Fig. 3. The
lowest-energy one corresponding to s = 1 and g =2
(homogeneous; ferromagnetic with /ocalized spins,
in contrast to the PW case above). The next low-

est state ha, s s=1 but g=4 (homogeneous; net spin

5 =0 allowing for para- or even antiferromagnetic,
but with localized spine). Successively higher
states have s» 2 and thus are spatially nonhomo-
geneous (periodic) in local density. Note that for
sufficiently strong (repulsive) coupling, all of these
are lower in energy than the PW states, since only
the latter depend on X.

These comments serve only to emphasize that
HF states with still lower energy than those dis-
cussed in this paper are yet to be found.

-80 "60 -40 -20
I I I

Vl. EXISTENCE OF OTHER LOWER-ENERGY HF STATES
V(ITH LONG-RANGE ORDER

The PW state used in all previous discussions
corresponds to a payamaggetic spin state, i.e. ,
spins are spatially at random but cancel out to a
net spin 8 =0 (for even number of particles N) A.
lower-energy P% state, for repulsive o interac-
tion, can be obtained' which has a net spin 8 =-,'N
(ferromagnetic state) with HF energy per particle
[compare Eq. (26)]

92/3
~P% ferro ~ + 3~ '

This is also included in Fig. 3, where the cross-
point between PW (paramagnetic) and PW (ferro-
magnetic) occurs at A, ,;,= —,'(2'i' —1)= 0.8811 (for
cubic Fermi-surface filling) and is a. first-order
transition.

The existence of even lower-energy non-P% HF
states can be established by just constructing non-
PW determinants (not necessarily satisfying the
HF equations) which have lower expectation ener-
gy. For the 5 interaction, there are localized sin-
gle-particle states which give zero potential ener-
gy in one' as well as three" dimensions, so that

e, =s'g'i' (s=1,2, 3, .
; g=2 or 4) (49)

independent of coupling A. . Here, g is the number
of intrinsic degrees of freedom and the integer in-
dex s characterizes the single-particle local den-

5 10 15 20 25
i ~ t t I

30 35

FIG. 3. Dimensionless HF energies (full curves) vs
dimensionless coupling for all states examined in this
paper. (Branch "&"of lattice spin-density-wave (LDSW)
state lies outside graph. ) Results are for '*repul, sive"
and "attractive" {Inset) ~ interaction between fermions.
Dots are "bifurcation points". "Para" ("ferro") refer
to paramagnetic and ferromagnetic spin configurations
for the plane-wave (PW) states. Energy difference bet-
ween Fermi cube and sphere fillings are not distinguish-
able graphically on this scale. Dashed (horizontal)
curves refer to non-HF determinantal states labeled by
net spin value 8 (even%) ~ lowest two are spatially homo-
geneous, higher ones are periodic (simple cubic).
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I"IG. 4. Extremum condition for the l.attice spin density-wave (LSDW) state t Eq. (44)] relating & to P, showing three
distinct branches. The three conditions I Eqs. (44), (45), and (47)] are simultaneously satisfied only along the full por-
tion of curves.

VII. DISCUSSION

The immediate purpose of this papex' ha. s not
been to reach definite conclusions in x'egard to
any specific physical system, but merely to ana-
lyze in some detail the behavior of a certain class
of non-PW HF solutions for many-fermion sys-
tems interacting with a two-body 5 potential. This
has permitted relative ea,se of calculation, reduc-
ing to a minimum the numerical work, and thus
clarifying the main features to be expected (ener-
gy bifurcations with and without tangency, first-
and second-order transitions, presence of more
than one branch, etc )with mo. re realistic inter-
actions where computation is heavier. We wish

to emphasize again, though, that all states re-
ferred to, up to and including Eq. (48), can be
shown, as in Sec. II, to satisfy erp/icitly tlie frill
Harb ee-Fock equntions in the tIEexn&odynamic
/imit, for any translation-invariant two-body po-
tential —and it is this aspect which we feel is of
considerable interest.
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