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A Landau theory of the smectic 8-E transition at constant volume is proposed. The cou-
pling constants of this theory are then derived from a previously published microscopic theo-
ry. Coupling between the orientational order and the lattice-strain tensor is then introduced,
and it is shown that this causes the &-E transition to be first order. Elastic neutron scatter-
ing is discussed as an experimental test of the microscopic theory. Finally, interlayer in-
teractions are included.

I. INTRODUCTION

In recent years there has been a great deal of
research in the more highly ordered smectic
phases of liquid crystals. In a number of these
more highly ordered phases it is found the two-
dimensional smectic A liquid freezes to form a
two-dimensional hexagonal lattice characterizing
the smectic B phase. If the long molecular axes
of the molecules are tilted with respect to the
normal to the smectic plane, the phase is called
the smectie H.

A model of the B-H transition based on a soft-
core repulsive potential and a dipole-dipole inter-
molecular interaction has been proposed by
McMillan and the author. ' This model, giving
freeze-out of rotation around the long molecular
axis, is still a subject of controversy.

Recent x-ray studies' have shown that the smectic
E phase is characterized by a two-dimensional ap-
proximately hexagonal lattice and herringbone
symmetry (see Fig. 1). The moiecules are nor-
mal to the smectic plane. Thereisalso evidence'''
that the smectic VI phase has the same structure
as the smectic E phase, except that the molecules
are tilted with respect to the normal to the smectic
plane.

In a previous paper the author' formulated a
microscopic theory for the E, H, and VI phases
by introducing a phenyl-phenyl interaction in ad-
dition to the previously discussed dipole-dipole
term. This phenyl-phenyl interaction was com-
posed of multipole-multipole, Van der Waals, and
soft-core repulsive interaction terms. In that
calculation an ideal two-dimensional hexagonal
lattice was assumed, and the possibility of both
dipolar and herringbone order was considered in
the self-consistent-f ield approximation. It was
found that two order parameters, (2 cosP sing)
and (2 cos'@ —1), reflect the herringbone order in
the E, H, and VI phases. The rotational freeze-
out model has been verified in the smectic VI

phase. '
In this paper a Landau theory of the smectic E

phase is presented. As will be obvious, thisthe-
ory bears formal similarity to both de Gennes's
theory of the nematic phase' and Landau's theory
of the antiferromagnet. ' The relevant parameters
of the Landau theory at constant volume are de-
rived from the previously discussed microscopic
theory. 4 Coupling with the lattice is then intro-
duced, and it is shown that this invariably makes
the B-E transition first order. Elastic neutron
scattering is then discussed as an experimental
test of the microscopic theory of the E phase.
F inally, interlayer interactions are shown to change
the transition temperature but leave the order of
the transition unchanged.

II. SMECTIC 8-E TRANSITION AT CONSTANT VOLUME

The model of the smectic E phase proposed by
Doucet et al. ' suggests the molecular model shown
in Fig. 2. The molecule is represented by a
plate of length approximately 30A and width 6 A.
The rotational symmetry of this molecular model
necessitates the use of a second-rank tensor order
parameter. In this paper only rotations in the
x-y plane around the long molecular axis will be
considered; so our tensor order parameter has
dimension 2.

In the microscopic theory4 two order parameters
reflected herringbone symmetry, (2 cosP sing)

FIG. i. Molecular order in the smectic & phase show-
ing the two types of lattice sites. The line represents
the "axis of symmetry" perpendicular to the plane of the
phenyl rings.
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and (2 cos21l1 —1). Generalizing, our tensor order
parameter takes the form

q,"'=(22 j, —b, ,b„,), (1)

where i and j are two orthonormal vectors linked
to the molecule, while n and P are indices refer-
ring to a frame fixed to the two-dimensional hex-
agona. l lattice. %e shall use a lat:tice coordinate
system corresponding to the a and b vectors of the
lattice as in Fig. 1. The superscripts n and P will
henceforth be dropped. Because of definition (1),
our order parameter is symmetric and traceless;
so only Q» and Q~ are of interest.

This order parameter is similar to the tensor
order parameter (Si ja —b, ,b„a) usedbyde Gennes'
for the nematie phase.

As in the case of the antiferromagnet, ' we have
two types of lattice sites, A and B, as shown in

Fig. 1. The free energy of the lattice of A sites
interacting with its neighbors is given by

F = —aq, ,q11+-b(Q11Q,.1)

FIG. 2. Molecular model; a plate of length & and
diameter D. The phenyl rings lie in the plane of the
plate.

F~ =-C3 ~Qj, j. ~Qyy ~'Qza ~Qzz+
2 c)x Bx Bx Bx

+ —,'c, (aq"„/ax)'+ —,'c, (aq"„/ay)'

+ —,'c, (aq"„/ax)'+ —,'c, (aq"„/ay)'. (2)

2 8$ Bg 8$ 8$

If there is a magnetic field present, there is also
a term

In the above expression, and throughout this pa-
per, repeated indices are summed over. There
is an identical expression I'~ for the free energy
of the 8 sites. The two lattices interact in two

ways, first by

&gqA qB

The terms a and A. are actually the gfqg compo-
nents of a fourth-rank tensor; however, it is not
ne ee s sary to take this into ae count. '

There is also an interaction of the form

F„=—~,[-,'(H', -H', )(q"„+q'„)+H„H„(q", +Q„)], (5)

The total free energy is then
given by

F = 2(F„+Fs+F, + F2+ F„)
The expression for the free energy can be sim-

plified by making the substitutions

fg %fj + lf j and Qf ' PEfg lfge
A 8

The free energy is then given by I" =F +F, +I';„,
where

F = —,'(a+A)(m2„+m2„) + '( b„m2—+m+»2m2»m) + —,'(C, + C,)[(am„/ax)'+ (am„/ax)']

+ 2(C, +C,)[(am„/ay)'+(am /ay)']- ~a, [2(H', -H', )m„+H H m„],

F, = —,(a —&)(l»+ l'„) + ,'b(l'„+ l »—+2l'„l'„) + —,'(C, —C, )[(al „/ax)'+ (al „/ax)']
+ -'(C. —C.) [(» 11/a y)'+ (al 12/ay)'],

in' 2 ( ll 11+ 12l12)+ 2 (lllm12+ lll12 ™llm12llll12)

In a smectic E material with no applied mag-
netic field mf&=0. In this case we need only con-
sider the contribution to the free energy given in
Eq. (9). Below T, we have l„.l&, = —2(a -A)/b. As
usual in Landau theory, we have a —A = 2kT,
&(1 —T,/T). Fluctuations in l» and l» are given
above the B-E transition temperature by

(12 ) l2 e F2lkr di F2lkr
sq ij, q f J2q f/2 Ef f

where I' = —,'A-, l'f& ~. It follows in the long-wave-
length limit that 1',1

= bT/(a —2). Fluctuations in
both l„and l„are infinite through the B-E transi-
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tion.
It should be pointed out here that this Landau

theory predicts that the B-E transition is of sec-
ond order and is completely isotropic with re-
spect to diagonal and off-diagonal terms in the
order parameter (neglecting spacial variation
terms). This holds true only when the lattice is
constrained to the hexagonal lattice of the Bphase.
This constraint will later be removed.

III. DERIVATION FROM MICROSCOPIC THEORY

The interactions between molecules in the smec-
tic E phase have been discussed previously. 4 The
result of this discussion could be viewed as a phe-
nomenological two-body potential of the form

U»(4„y„])=A,(r„)cos'((t), —(t), )

+A, (r») cos(4() cos2(()), + (t),).

The angles Py P2 and ( are defined in Fig. 3. For
a hexagonal lattice in two dimensions, keeping only
nearest-neighbor interactions, the radial depen-
dence can be absorbed into the two constants A]
and A,

On all type-A sites the molecules feel the aver-
age potential

V„((t)) = —,V,Q"„(2 cos'(t) —1)

0

FIG. 3. The coordinate system is fixed to the hexago-
nal lattice vectors a and b. The coordinates x and y are
parallel to the a and b axes of the crystal respectively.
The angle ( gives the angle of the 1-2 intermolecular
vector and the a axis.

m„= —~,H'[(a+A)+ (C, + C,)q', + (C, +C, )q'„] '.

Q",, can then be found from Eq. (7).
Similarly, for H = H(x+ y)e'q' we find

(17)

m» = ~ H2'[(a+A)+(C, + C, )q', + (C, + C )q'„] '.
(18)

We now calculate the response function accord-
ing to the microscopic theory. With the external
field in the j direction the external potential is

+ —,V,Q~»(2 cos(I) sin())). (i3) V,„((q)) = —,X+'e"~''cos2$ (19)

The potentials on type-A and -B sites are related
by V„(Q) = Vs(- q)). It can be shown that V, = 6A,
and V", = —(2A, +8A, ).' The partition function is
given by

where r is the position of the molecule and P is the
angle between the normal to the face of the mole-
cule and the a axis of the lattice. The self-con-
sistent-field method is used. Assume a single-
particle potential on a. type I site of

d()) exp[- V„(q))/kT]. (14) V(r, ())) = ~V,Q,', sin2$ —V, e"~ 'cos2$. (20)

To derive the coupling constants of the Landau
theory, the response of the order parameter Q",

&

to an external field H is calculated according to
both the Landau and microscopic theories, and
the responses are equated. We first calculate the
response function using the Landau theory. Apply
a spacially varying magnetic field in the y direc-
tion. We write

For convenience assume Q,', =0. The single-par-
ticle distribution function is then

f(r p) =Z f e v(( +)Iar-. (21)

As usual, one calculates the average potential
which one molecule feels due to the interactions
(19) and (12). For self-consistency this calculated
potential must equal the assumed potential (20).
This self-consistency equation is

H =jHe'~ '.
The free energy is then

(is)

F = F, + 2(&+A)m'„

+ 2m'„[(C, + C, )q', +(C, +C,)q'„]+ ~~,H'm„.

(i6)

There is no direct coupling to m». Minimizing
F with respect to m», we find

where the sum is over nearest neighbors only. To
perform the necessary operation, f(r„P,) is ex-
panded to first order in V, and then e"~'' is ex-
panded to second order in q. This gives
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—,V,Q"» sin2$, —V,e"q '& cos2$,
= ——,"(2A, +4A, )(sin2@,) sin2&,

+(V /kT){cos'2&2)[SA, —(SA, +SA, )(q,D2) + (SA, —3A.,)(q2D2)]e '~'i cos2@,+ —'x, ff' e 'q ' cos2y„

where

&r(et& & =f.'&e~(ate ~{-,~7 )

V,Q» sin2$

(24}

(25)

distortions make the B-E transition first order
and anisotropic in the diagonal and off-diagonal
terms in l&&.

In this section it mill be assumed that there is
no external magnetic field, and so m, &

=0. Ne-
glecting spacial variations, E, is given as usual
by

m „=,'(V,/k T—)

= ——,'X,H'[(2k T,+ —,'A, }+ 3D'(A, +A, )q',

+SIP(A, -A, )q'„) '.
Comparing coefficients in (17) and (26) gives

(26)

D is the nearest-neighbor distance within the
smectie plane.

Equating coefficients of cos2$ and sin2$ gives
the self-consistency equations for V, and V,. Cal-
culating {cos'2$) and suhstltuting it into Eq. (23)
gives

Note that this expression is isotropie in /» and

l » 0

For small distortions of the hexagonal lattice
the free energy is given by'

Z„=2~,(U„+U„,)'+ X,(U„U„}'+4~-~'„

where U, &
is the two-dimensional strain tensor.

Finally, there are the cross terms which couple
the angular order parameter /, &

to the strain ten-
sor U]g.

a+A. = 2kT, + —'A„

C, + C, = 3D'(A, +A, ),

C, + C, = SD'(A, —A, ),

(27)

(28)

(29}

'K,{trU;, )(—1;&if,)+ rX,
& M&, l„,.

The tensor coupling constant M&„ is symmetric
and of rank 2, dimension 2. Define

where kT, = ——,'(2A, +8A, ).~
A similar calculation can be done for the l;&

mode by using an artificial magnetic field that is
different on the 4 and B sites, giving V,",, ((II))

= —ps, ,(p). The details of the calculation are
almost identical to those above, and will not be
repeated here. The results a.re

1
K2 = gM]] (36)

K, = 2(M„-M22). (37)

The total free energy is given by F =E,+E y+E, .
Minimizing E mith respect to U»+U», U~ —U,»
and U„„me find

a —A=2kT (1 —T,/T),

C, —C, =SD'(A, +A,},

C, —C4 =D'(5A, -A,).

(30)

(31)

(32)

U„+Dye= —(4&,) '(2K, l;) 1,;+K,l„+Mal~),
U„+U„„=—(2A ) 'K2l„,

U„,=-(4~,} 9C, 1 .

(38)

(39)

(40)
This completes the derivation of the Landau

theory of the smectic F. phase from the micro-
scopic theory. The lattice has been assumed to
be rigid in this derivation. This restriction mill
be removed in the next section.

These expressions can be substituted in the
equation for F. When me set l» =0, we find

f (1„=0) = —,'1'„[(a—A) —(2g) -'K,' —(4X,) -'K', )

IV. COUPLING TO THE LATTICE

In this section we will show how lattice distor-
tions modify the nature of the smectie B -E transi-
tion. In particular, it will be shown that lattice

From the presence of the third-order term in l»
it follows that the phase transition is first order.

Setting l»=0 we find



MQI. EQUI AR QRDER IN THE SMECTIC E PHASE

Z(f „=0)= ,'f-'„[(a-A) —(2q} 'ff,'—(4X,) 'M'„j

+ 3f»( 4~1 +1M») &f »(h & 1 Kl)' [.0

I I I

(42)
By comparing Eqs. (41) and (42) we see that as
long as K~4M» the phase transition is anisotropie
ln /» and l~. The ease 3»=0 ls that found exper-
imentally by Doucet et al.' In the case U„„=0and

U„„WU„, the hexagonal la.ttice deforms to give an
orthorhombie lattice. Anothex possible deforma-
tion due to $»=0 gives U„„—U„,=0, U„„w0. The
hexagonal lattice deforms to give a monoclinic
la, ttice, in which the vectors a and b in the smec-
tlc plane are not ol thogonal.

lt should also be noted that U,„+U,„=(Vz- Vs)/Vs,
and Eq. (38) implies a volume change associated
with the B-E phase transition, regax'dless of which
of the components of l, j is nonzero.

O
'

I + I I I I I
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qth Il

FIG. 4. Incoherent elastic structure factor as a func-
tion of q in the smectic & and E phases for values of
M = 6, u = 2.50 A, and e = i .4 =—20&+2 T~/T. The plot for
the & phase comes from Eq. (6) of Ref. i0.

for reasonable VRlues of Q Rnd it ls QecessRx'y to
treat a as a variable param. eter.

V. ELASTIC NEUTRON SCATTERING

Elastic neutron scattering ha. s recently been
used as a. tool to investigate the molecular order
in the smectie P and VI phases. "The results
of that a.nalysis can easily be extended to the
smectie E pha, se, The self-correlation function
at infinite time is give by'0

G" (&) =fq ' g Jtp (r'- r)j) (r')d'r' (43

where P, (r') is the probability per unit volume of
finding particle i at r'.

The incoherent elastic structure fa.ctor is given
by

where the average is over the initial position ro.
Equation (44) reduces to

(~) [,( }]," sin[2qasin(rj/M)]
2qa is(nvrj /M)

r = ~'"+6"+r (47}

where F('' and EI') are from Eq. (8).
The free energy can be diagonalized in lowest

order by making the substitutions

The introduction of weak interlayer interactions
has little effect on the nature of the B-E tx'ansi-
tion. This is easily shown in two simple layer
configurations: tha. t in which ea.ch molecule of
type A. in one layer has an A-type molecule above
and below it, and the configuration in which each
A. -type molecule has a type-8 molecule above
and below it. These are the most likely sequences
although there are other possibilities.

The lnteractlon between ad]acent layex's 1 and 2

in the lowest order can be written as
l ~ ) (X) ) (2)

int 2 jj jj
where the arabic supex'scripts xefex' to layer num-
ber. Then the free energy for the liquid crysta. l
ls given by

xfo[2o cos(2wj/M) j, (45) =n]j+ p;.(x) (48a)
where n = V, /»/2kT

This result is almost identical to that for the
smectic H phase. ' A, (q) is plotted in Fig. 4 for
the smectie 8 and F. phases. This plot shows that
the elastic neutron scattering increases as we go
through the B-E transition. Although the theory
is not good enough to give quantitative agreement
with experiment, the txend of increased elastic
scattering as we go down through the phase transi-
tion should be valid. This trend has been found in
the 0 phase, ' although it has been suggested that
it is a pretransition effect of the 0-VI transition.
Quantitative agreement with theory is not found

~ij +fj Pij'(2)

E=(a-A+n)(n'„+rP»)+(a-A —n)(p'„+ j)'»),

where the p order parameter describes the layer
sequence 121212.. . and the n order parameter
describes the sequence 1111.. . . Thus it is ea,sily
seen that the introduction of interlayer interac-
tions changes the transition temperature but leaves
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the order of the transition unchanged. More com-
plicated layer sequences of the form 123123.. .
have Hamiltonians that can be diagonalized by
transformations similar to Eq. (48), and our
conclusions are unchanged.
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