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Measurements of the intensity autocorrelation of light scattered from diffusing microspheres suspended i»

a normal fluid show that if the particle radii satisfy the condition l SXO. where 'Ao is the wavelength of the

incident light, and if the suspension is polydispc rse {a finite-width particle-size distribution). the experimental

diffusion constant displays a dependence upon the scattered wave number k which is qualitatively the same as

that for a critical fluid system in the nonhydrodynamic {k(21) regime. These experimental observations

have led us to propose a model of a critical fluid in which the order-parameter fluctuations are considered as

spherical molecular clusters, or droplets, performing Brownian motion in a normal host fluid. The droplets

are assumed to have a Gaussian index of refraction spacial profile, and a particle-size distribution X{l)char-

acterizing the suspension determined from the requirement that the scattered light intensity be of the mod-

ified Ornstein-Zernike form. In a first approximation, the droplets are assumed to diffuse without chang-

ing size for times of the order of the characteristic diffusion time. The intensity-autocorrelation function of
light scattered by our model system of diffusing droplets is evaluated, and the effective Rayleigh linewidth

is found to agree to within a constant factor of order 1 with the ansatz for the critical part of the Rayleigh

linewidth chosen by Perl and Ferrell. The resulting line-shape function is nearly Lorentzian, except in the

wings where experimental detection of a departure from Lorentzian behavior becomes extremely difficult.

Our droplet-size distribution is very similar to that which results from the static droplet model of Fisher

which has been applied successfully to describe static critical phenomena in fluids below the critical tem-

perature. In the diffusing droplet model, the k dependence of the diffusion constant extracted from light-

scattering measurements on critical fluids is seen to be an artifact introduced by the light-scattering process,

and introduces no new physical information concerning the critical fluid behavior which is not contained in

the droplet-size distribution function.

I. INTRODUCTION

The Rayleigh linewidth I' of light scattered qua-
s ielas tic ally from order -para me ter fluctuations
is the essential experimental parameter used to
test the mode-mode' ' and decoupled-mode' '
theoretical descriptions of the dynamical behavior
of critical fluids. The behavior of I' for a specific
fluid as a function of temperature for T & T, may
be described simply. For finite wave number k,
and for T —T, large enough that the hydrodynamic
condition k(«l is satisfied, plots of I'/k' as a
function of T —T, all fall on the same straight
line, for all scattering angles. [k is specified by
the relation k = (4mn/I, ,) sin(8/2), where )., is the
light wavelength in vacua, n is the index of refrac-
tion in the sample, and 6) is the scattering angle;
$ is the Ornstein-Zernike correlation length. ']
Thus the effective diffusion constant D = I'/k' is
independent of k in the hydrodynamic regime. As
T —T, is reduced and k$ ~ 1, the nonhydrodynam-
ic, or critical, regime is entered where condi-
tions of local thermodynamic equilibrium no
longer apply. In this regime, the experimental
diffusion constant becomes a function of the wave
number k, showing an increase with increasing
scattering angle.

The mode-mode coupling theory of Kawasaki'
and Kadanoff and Swift' and the decoupled-mode

theory of Ferrell, 4 provide descriptions of the
critical' part of the Rayleigh linewidth I' which
is valid for general values of k$. Although the two
theoretical methods predict slightly different be-
havior for I' for large values of k(, the essential
form of the result is as given by Kawasaki,

f"' = (ksT/6wr($')F(k, f),
where g is the macroscopic shear viscosity, T is
the absolute temperature, and F(k, $) is a function
which describes the modification of I' due to the
nonlinear response of the fluid in the regime
k)~1. In the limit as k$ «1, both the Kawasaki
and Ferrell theories predict that the critical part
of the diffusion constant becomes

D = ke 7/6vq(.

This is an extremely suggestive result, since it
represents the Einstein-Stokes diffusion constant
for microspheres of effective size $, diffusing
through a host fluid characterized by a shear
viscosity q. This correspondence between fluid
order-parameter fluctuations in the hydrodynamic
regime and a system of diffusing microspheres
has been previously recognized. ' ' In particular,
it has been suggested" that the details of the
structure of the diffusing units become important
near the critical point, where the effective size
of the fluctuations becomes larger than k ', and
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that the scaling function F(k, $) might take this
structure dependence into account. In other
words, Eq. (l) represents a modified Einstein-
Stokes equation which retains validity into the
cr ltlcal regime.

The purpose of this paper is twofold. In Sec. II
we provide experimental evidence that the analogy
implied in Eq. (2) between microspheres diffusing
in a normal host fluid and order-parameter fluc-
tuations of size ( diffusing in a critical Quid under
conditions such that k$ «1 can be extended into
the critical regime. In particular, we shorn tha. t
if microspheres are selected whose sizes com-
pare to $ in a critical fluid near T„and if apoly-
disperse (finite-width size distribution) rather
than a monodisperse (single-particle size) sus-
pension in a normal fluid is studied, then the dif-
fusion coefficient inferred from the intensity auto-
correlation of visible light scattered by the micro-
spheres shows a wave-number dependence which
is qualitatively the same as that for a critical
fluid in the nonhydrodynamic regime.

In Sec. III we discuss a very simple model of a
critical fluid in which the order-parameter fluc-
tuations are considered as a. Paxticulm size dis-
tribution of diffuse microspheres with a time-in-
dependent structure, performing Brownian motion
in a host fluid characterized by a normal back-
ground shear viscosity. This model is applied to
the calculation of I" for a critical fluid system.
Section IV consists of a summary of conclusions,
and discussion of the relation of this model to
static droplet models of critical behavior influids.

II. INTENSITY-AUTOCORRELATION STUDIES ON

POLYDISPERSE MICROSPHERE SUSPENSIONS

The intensity autocorrelation of light scattered
at a particular scattering angle by a dilute mono-
disperse suspension of microspheres is"' ~

(I(t)I(t+ r)) =I'(l+N 'e 'D' '),

where N is the number of coherence areas inci-
dent on the detector, D is the particle diffusion
constant, and k is the scattered wave number. If
the constant background term can be successfully
subtracted from the total signal, a decay rate
1'= 2Dk' will be determined. Thus, a mave-num-
ber-independent diffusion constant given by D
= I'/2k' results for a dilute monodfsPerse system
of diffusing microspheres even if the microsphere
size is not small compared to Ao. This result is
similar to that found for critical fluids in the hy-
drodynamic regime. However, in a critical fluid
when the condition k$ «1 no longer is satisfied,
I'/k' increases with increasing k. ln this section

we show under what conditions the analogy between
a system of diffusing microspheres and a critical
fluid can be extended into the nonhydrodynamic
regime. These observations on systems of dif-
fusing microspheres will lead us to propose a dif-
fusing droplet model for critical fluids.

There are two key factors involved in the exten-
sion of the correspondence suggested by Eq. (2)
into the critical regime. The first is the effective
particle size. The characteristic size of fluctua-
tions in a critical fluid scales with temperature
as $ = foe ", where the critical exponent v = 3,
e =—(T —T,)/T„and where to=—3 A in a typical fluid
or fluid mixture. For the case of visible light
scattering which we are considering, if we are to
attach a particle significance to the order-param-
eter fluctuations, then the effective particle size
will not be negligible compared to k. p for small
values of e. As a result, the scattering process
must be treated in terms of the general electro-
magnetic theory of scattering from dielectric
particles, which me mill refer to as Mie scatter-
ing. " The second key factor is polydisPexsi~y.
Although $ in some sense defines a characteristic
cluster size for a critical fluid, since a fluid is a
many-body system, statistical consider ations
dictate that there be a distribution of cluster sizes.
Thus, in continuing the microsphere-critical-
fluid analogy, the critical fluid must be considered
to be a p0)ydispexse suspension of effective Brown-
ian particles.

To provide experimental evidence in support of
the importance of these two factors in the contin-
uation of the analogy into the critical regime, we
measured the intensity-autocorrelation function
of light scattered from two systems of polydis-
perse suspensions of microspheres of varying
relative concentrations.

System I was made up of microspheres 0.109
p, m and0. 234 dmin diameter; system II was made
up of microspheres 0.234 and 0.500 p, m in diam-
eter. The microspheres were obtained from
monodisperse samples of Dow polystyrene latex
spheres. Their index of refraction is 1.59. They
were suspended in distilled mater which had been
filtered with a 0.05-p, m millipore filter. Three
monodisperse suspensions were made, one for
each microsphere size, each at a concentration
of 1:10'by meight. The polydisperse systems
mere made by mixing various proportions of the
monodisperse samples.

In the light-scattering experiment, the light
source was an argon-ion laser operating at a
wavelength of 5145 A. The incident light pomer
never exceeded 10 m%, and no effects due to
small variations of the intensity about this figure
were observed. The light mas focused by a lens
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FIG. 1. Plot of the diffusion constant D as a function
of scattering angle &„.„. The theoretical lines are cal-
culated from Eq. (6). Each set of data and theory is
labeled with the concentration by weight of the smaller
microsphere relative to the larger. The dashed lines
represent the diffusion constants for monodisperse
systems for sizes 0.109, 0.234, and 0.500 pm, for the
top, middle, and bottom, respectively.

into the scattering cell, which consisted of a test
tube 18 mm in diameter with a bubble blown in it
of approximately 200' of arc horizontally around
the circumference of the tube. This bubble elimi-
nated the reflected image of the beam and back-
scattered light fromthewalls of the tube, thus
eliminating spurious scattered light. Measure-
ments on monodisperse samples using this sys-
tem showed no k dependence in the diffusion con-
stant to better than 1%. The cell temperature was
measured before and after each experimental run,
with a run taking about 15 min. The temperature
was constant to within +0.1'C during a run. The
scattered light was collected by a small aperture
and pinhole. The pinhole diffracts one coherence
area onto the cathode of an ITT FW 130 photo-
multiplier tube. The pulses from the photomulti-
plier tube were passed to an autocorrelator"
which produced the intensity-intensity autocor-
relation function of the scattered light. The auto-
correlation functions for each run were analyzed
by a least-squares fitting routine with an on-line
computer to determine the diffusion constant. The
experimental results, along with our theoretical
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FIG. 2. Plot of the relative Mie scattering intensity
as a function of particle diameter in micrometers

and parametrized by the scattering angle, for micro-
spheres with a relative index of refraction of
m = &.59/1.33 =1.20, and for Q =0.5145 ILIm.

curves, are given in Fig. 1, where the measured
diffusion constant is plotted versus the scattering
angle. The major sources of error were in de-
fining the scattering angle and in the measure-
ment of the diffusion constant by autocorrelation
methods. A k-dependent diffusion constant is ob-
served in both systems.

To understand the origin of the k dependence,
one must examine the M ie scat te r ing function for
a dielectric sphere. The key to this understanding
is to plot the relative light-scattering intensity
against the particle size, using the scattering
angle as the curve parameter as in Fig. 2. The
Mie functions were obtained from standard tables. '~

In this way, it is easy to see how the relative
light-scattering intensities for different sized
particles change with scattering angle. For ex-
ample, the ratio of the relative light-scattering
intensity of a 0.20- pm particle to a 0.15- p, m par-
ticle is 4.8:1 at a scattering angle of 45', whereas
at 135' this ratio is only 1.6:1. Thus for a system
consisting of an equal number concentration of
each size, one would expect the larger balls to
dominate the spectrum at small scattering angles,
but as we go to larger angles the smaller balls
would begin to contribute more and more to the
spectrum. The measured diffusion constant is
some average, dependent on the relative Mie scat-
tering intensities.

To derive the theoretical curves, we put these
ideas into a more precise mathematical form. The
field correlation function of the scattered light
from a system of Brownian diffusing particles
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radius r and diffusion constant D(r) is

Here the second set of angular brackets indicates
an average over ~. We make the usual assumption
of Gaussian scattering statistics" and find the in-
tensity-intensity autocorrelation function of the

scat te red light to be

((II(i))) = ((~E ~'))'+&((E*E(t)))', (6)

where A. is a constant independent of the radius.
To compare theory and experiment, we use Eq.

(6) to generate an average correlation function for
the different experimental values of concentration
and microsphere size. Because Eq. (6) predicts a
nonexponential correlation function, we account
for both the first and second cumulants in the ex-
perimental data and the simulated data from Eq.
(6) by fitting to the form exp(- at+ bt") using a
least-squares routine. The details of this fitting
scheme are given elsewhere. " This form fits the
data and Eq. (6) quite well, and we find that both
the experimental and theoretical autocorrelation
functions are nearly exponential ~ That is, the
ratio 5/a' is . 0.04.

The agreement between experiment and theory
is good for all the suspensions studied. In partic-
ular, the k dependence of D for systemI, which

consists of microspheres whose diameters are
slight:ly smaller than A.„ is qualitatively similar
to the behavior shown by the diffusion constant for
critical fluids in the nonhydrodynamic regime.
That is, D increases with increasing k (increas-
ing scattering angle). The k dependence for sys-
tem II is more complicated due to interference
effects from the larger (0.5 1(j.m) microspheres
(see Fig. 2). %hile this is consistent with theory,
such effects are not observed in critical fluids.
However, these strong interference effects can be
shown to be markedly reduced for a microsphere
whose index of refraction does not change dis-
continuously at its boundary.

We conclude that a polydisperse suspension of
dielectric microspheres of size comparable to the
incident light wavelength will produce a k-depen-
dent diffusion constant when investigated by light-
scattering techniques. This diffusion constant in-
creases with increasing wave number just as does
the diffusion constant for a critical fluid when

We write the intensity of the scattered light from
particles of radius r as the Mie scattering inten-
sity, I (r), times the probability density N(r) for
that particle size, I(r) = N(r)I (r). The average
field correlation function is then given by

((E E& I'))I= f & &I I&.I )

k( 1.
We describe the origin of this wave-number de-

pendence and its relation to particle size and

polydispersity in the following way. When the
particle radius I does not satisfy the condition
l «A.„ the scattered-light intensity becomes a
very sensitive function of f (see Fig. 2). When
light is scattered from a polydisperse suspension
of particles, the diffusion constant inferred from
the intensity autocorrelation of the light scattered
by the particles represents an average over the
diffusion rates of all the particles weighted by the
particle-size-dependent light intensity, and the
particle-size distribution. For small scattering
angles (small k) the larger particles in the dis-
persion provide the dominant contribution to the
scattered light ~ Since the diffusion constant for
a specific particle size varies inversely with the
particle diameter through the Einstein-Stokes
relation, the D extracted for small k is small. As
the scattering angle is increased, inspection of

Fig. 2 confirms that: the relative contribution of
the smalle& particles to the scattered intensity
increases, leading to an average D which in-
creases as k increases.

III. DYNAMIC DROPLET-MODEL INTERPRETATION
OF LIGHT-SCATTERING EXPERIMENTS ON

CRITICAL FLUIDS

In analogy with the polydisperse microsphere
systems discussed in the previous section, we
proposed" a new model to explain the k-dependent
Hayleigh diffusion coefficient of a critical fluid.
We assume that the order-parameter fluctuations
in a critical fluid may be considered as a polydis-
Pevse suspension of molecular clusters diffusing
like Brownian particles in a host fluid character-
ized by a normal background viscosity. These
clusters are assumed to have a spherically sym-
rnetric Gaussian density distribution in a single-
component fluid (a spherically symmetric Gaus-
sian concentration distribution in a binary mix-
ture). The Lorentz-Lorenz relation coupled with
the assumption of a Gaussian cluster profile in-
sures that the index of refraction will also cor-
respond to a Gaussian distribution of the form

m'(r, l) —1=2jm(r, l) —1]=Aexp( —r'/l'), (7)

where m(r, l) is the yelaiii e index of refraction of

a cluster of size /, A is an amplitude factor which

is taken to be the same for all cluster sizes, and

r is the distance measured from the center of the
cluster. The cluster size distribution we deter-
mine is

N(l ) = Bexp( —l'/2P)/l "~
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I(k) = i N(l )I(l, k) dl

= (A'Bk4v/32R')(k'+ g-2)-"&'1(2 q)D „„(0).

Here, k, =2vn/Ao, R is the distance from the scat-
tering volume to the point of observation, I' is the
gamma function, and D „„is the parabolic cylin-
der function of order 2 —g. Fo r s mall g, Eq. (9)
becomes

I k — A Bk()
32R'(k'+ $ ')' ""' (10)

which is the Fisher-Ornstein-Zernike result for
the light intensity scattered from a critical fluid.

To this point we have shown that a model in
which the order-parameter fluctuations in a criti-
cal fluid are considered as a polydisperse suspen-
sion of spherical clusters, each with a Gaussian
index-of-refraction profile, and in which the
degree of polydispersity is represented by Eq.
(8), can reproduce the experimentally verified
form for the scattered-light intensity. In thi s
process we have identified the parameters $ and

q in Eq. (8), with the Ornstein-Zernike correla-
tion length and the Fisher critical exponent g,
respectively. ~e find that our size distribution
function is very similar to that arising from the
static droplet model, "'"as applied to critical
fluids for T ( T, . In fact, by simply multiplying
our form for m'(r, I) by l" ~, a N(l) would re-
sult which is in agreement with that for the static
droplet model on the coexistence curve. This

where B is an approximately temperature-inde-
pendent factor related to the density of the fluid,

( will be identified with the Ornstein-Zernike cor-
relation length, and g is a variable exponent which

will be identified with the critical exponent intro-
duced by Fisher. " The determination of our spec-
ific cluster size distribution was dictated by the
requirement that the calculated expression for the
scattered-light intensity agree with the Fisher-
modified" Ornstein-Zernike form for light scat-
tered from a critical fluid, I(k) - (k'+ $ ') ""~'. It
is of interest that our resultant distribution func-
tion is very similar to that used in the static Chop-
let model description of critical phenomena. "'"

We use the Rayleigh-Debye theory" to calculate
an analytic expression for the scattered intensity.
For the index-of-refraction profile assumed in

Eq. (7), the cluster size distribution corresponding
to Eq. (8), and assuming single scattering from
clusters, the total scattered intensity at a specific
scattering angle, for an incident intensity of unity
is

f,"dl N(l)I(k, l)k'keT/6vr)~l

f~ dl N(l)I(k, I)
(12)

where I(k, l) is the Rayleigh-Debye scattered in-
tensity for spheres of size l and for a specific k.
Equation (12) yields

k T k(, ), f. (II n) D -(o)
6vq, I'(2 —q) D, (0)

' (13)

When this expression is evaluated near q =0, the
effective diffusion rate reduces to

&/2k T
Dk' = r = — k'(1+ k'$')'~

2 6m'~(
X/2

k'D(k, 5).

(14)

In deriving Eq. (14) we assumed that the experi-
mentally determined decay time of the scattered-
light correlation function is a fit to the t-0 part
of the spectrum. We have performed computer
calculations on the resulting field autocorrelation
function for q = 0 by evaluating the slope at the
1/e point and have found

I', i, D, i, k' = (0.88) D(k,——$) k'. (15)

In addition, for q-0, one can Fourier-transform
the time variable in the field correlation function.
The resulting line shape can be determined exactly
as

modification would amount to weighting the ampli-
tude of the relative index of refraction for the
larger droplets more heavily.

The extension of our model to cover the dynamic
aspects of light scattering from critical fluids is
direct. We assume, that in fihst apphoximation
the order-parameter droplets act as physically
hard spheres of radius l, and that they execute
Brownian motion without growing or decaying ap-
preciably for times of the order of the measured
diffusion time. " The normalized field autocor-
relation function for light scattered from a mono-
disperse system of hard spheres is given in Eq.
(4), and is easily generalized to include a size
distribution as shown in Eqs. (5) and (6). The
correlation function which is weighted by N(l ) will
in general not be an exponential, but for a dilute
polydisperse suspension of noninteracting clusters
it will be very nearly exponential. A reasonably
good value for the diffusion rate can be deter-
mined by looking at the slope of the correlation
function near t = 0, that is,

d (( E(0)E*(f)))
«(( &(0)&*(0)))

where ~ is the effective Rayleigh linewidth. We
find"
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D(k, $)k2 1 D(k, $)k' D'(k, $)k'
I I I I I IIII I I I I I IIII

D(k, t') k'
(16)

where erfc is the complementary error function.
This line-shape function can be fitted by a Lo-
rentzian except in the wings, where it decays more
slowly, and where detection of such a departure
would tend to be obscured by shot noise correc-
tions and the requirement for a background sig-
nal subtraction to determine the critical part of
the signal. The half-width of this line-shape func-
tion is found to be I',

&,
——(0.96) D(k, $)k'. Thus, in

general, the measured diffusion rate seems to be
given by

IO—
r»

M

gO I I III I I I I I IIII

I I »I IIII
O. I I

C~ Q

I I I II
IO

I I I I IIIII

I' =Dk' =yD(k, $)k',

where y is a number of order unity, the value of
which depends upon the method of analysis used.

Our primary result, Eq. (14) is of some interest.
In particular, it differs only by a numerical factor
of order 1 from the ansatz for the critical part of
the Rayleigh linewidth chosen by Perl and Ferrell'
as a starting point for their theory of critical vis-
cosity,

r = Dk' = (k, T/16I), t)k'(I+ k'~')'", (18)

where p, was treated as an adjustable parameter.
Equation (18) provided a good fit to the experi-
mental linewidth data for a specific critical binary
mixture" (3-methylpentane-nitroethane). In addi-
tion this expression has been used by Swinney and
Henry' to fit linewidth data for a serie&of critical
fluids and binary mixtures.

To compare our results with experiment, we
convert the experimental linewidth data to a scaled
linewidth with the equation

I';=(6xq, /k, Tk )r. (19)

This form is the same as that used by Swinney and

Henry' except we use the background viscosity q,
instead of the critical viscosity g, because our re-
sults indicate the background viscosity is the re-
levant parameter.

We are left with the single parameter y which we
consider adjustable in the process of fitting our
theoretical result, Eq. (17), to experiment. An

example of the agreement between our result and
the raw Rayleigh linewidth data of Thiel et al."for
the binary fluid system carbon tetrachloride-per-
fluormethylcyclohexane is included in the lower
half of Fig. 3. The results of measurements of the
viscosity of this system performed by the above
authors" was used to extract the background vis-
cosity required to relate I'nI' to I' through Eq. (19).
Here we find the best fit of Eq. (17) to their data

IO—

D

»III
O. I I

Kg

Ag
I I I I I I I II

IO

FIG. 3. Top: Comparison between the scaled linewidth,
r*„=6~rq, /k, Tk', extracted from the Rayleigh line-
width data of Thiel et al. (Ref. 23) on carbon tetrachlo-
ride-perfluormethylcyclohexane and the mode-mode
theory prediction. Bottom: Comparison of I D =6«&)&/
k&Tk for the same system and the prediction of the
diffusing droplet model, Eq. (17), for y=l. 16.

for y =1.16 The fit is better than that provided by
the mode-mode theory shown in the upper half of
Fig. 3.

At the present stage of development of our mod-
el, the physical significance of the parameter y
remains unclear. If y —= I7~/l)„our Eq. (17) could
be reformulated into the form of Eq. (18). How-

ever, our model, with the static-droplet-size as-
sumption, should be considered as a first approx-
imation to a more realistic picture of fluid critical
behavior. In its present form the model predicts
a nonexponential autocorrelation function, with a
departure from exponentiality large enough to en-
able it to be detected in a careful measurement.
As a result, the value of y depends upon the man-
ner in which a decay time is extracted from the
scattered field autocorrelation function. A prelim-
inary attempt to relax the static-size-droplet re-
striction led to results which suggest that much of
the deviation from exponentiality of the autocorre-
lation function may be an artifact following from
the static assumption. Thus, until a more real-
istic treatment of droplet growth and decay is in-
cluded in the model, and the question of the form
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of the line-shape function is settled, we will treat
y as a fitting parameter whose value should be
constrained within a narrow range about unity.

IV. SUMMARY AND CONCLUSIONS

We have shown that polydisperse suspensions of
dielectric microspheres in a, normal fiuid yield a
k-dependent diffusion constant when studied by
visible-light scattering techniques. If the spheres
are of a typical size, l ~ X„where X, is the free-
space wavelength of the incident light, the re-
sultant k dependence of D is qualitatively similar
to that observed in criIica/ fluids. This observa-
tion led us to propose a very simple model of a
critical fluid in which the order-parameter fluctu-
ations are considered as independently'4 diffusing
microspheres forming a polydisperse suspension
in a normal host fluid. This model leads to an
essential justification of the ansatz of Perl and
Ferrell' for the critical part of the Rayleigh line-
width associated with light scattered quasielasti-
cally by the fluid. In its first-approximation form,
the model assumes that the effective ~nicrosPheres
diffuse without changing size" or shape in a time
corresponding to the characteristic diffusion time.
A Gaussian index-of-refraction profile is assumed
for the droplets, and this, along with the require-
ment that the scattered intensity be of the form
given by Eg. (10), leads to a particular cluster-
size distribution function. This function is es-
sentially like that resulting from the static-droplet
model of Fisher, "'"with the exception that our
N(l) varies as l "~', while the Fisher distribution
function, which is consistent with scaling require-
ments, varies as l ".The comparison between
our size distribution and Fisher 's could be made
exact by adjusting the form for the index-of-re-
fraction profile, "but there exists no physical
justification for such an adjustment. It should be
noted that essentially, any finite-width distribution
of particle sizes will lead to a diffusion constant

which shows a k dependence similar to that for a
critical fluid in the nonhydrodynamic regime. Even
a rectangular size distribution produces, qualita-
tively, the correct dependence upon k. The re-
quirement placed on the behavior of the scattered
intensity and the assumption of a Gaussian index-
of-refraction distribution limits N(l) to the form
in Eg. (8).

It is of interest to compare the significance of
the wave-number dependence of the Rayleigh line-
width as interpreted by the mode-mode theory, for
example, and by the cluster model developed in
this paper. From the mode-mode point of view,
the divergent behavior of the response function of
the fluid as the critical point is approached leads
to a nonlinear coupling of the macroscopic normal-
mode solutions of the linear hydrodynamic equa-
tions. The onset of wave-number dependence in
the diffusion constant reflects, and in a sense is
a probe of the nonlinearity of the fluid response to
order-parameter fluctuations. In the cluster mod-

el, all of the physics which specifically pertains
to the critical behavior of the fluid is contained in
the cluster-size distribution N(l). The clusters
move through a normal host fluid, chara. cterized
by a background viscosity qb. The onset of k-de-
pendent diffusion behavior reflects the growth in
average size of the clusters and the resulting
sensitivity of the scattered-light intensity to par-
ticle size. In the cluster model, the k dependence
of the effective diffusion constant is an artifact re-
flecting the prejudicial averaging with respect to
particle size of the light-scattering process, and
it provides no information about the fluid dynami-
cs,l behavior that is not conta, ined in N(l).
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