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The generalized off-shell scattering of pairs of constituent fermions embedded in an infinite system of identical

particles having thermodynamic properties characterized by arbitrary values of the temperature and chemical

potential, is examined using a temperature-dependent Green's-function formalism, which treats particle-

particle and hole-hole excitations symmetrically. The important features which emerge are (i) the possible

existence of bound-state pairs (of quasiparticles which are linear combinations of particle and hole states)

which correspond to poles in the scattering amplitude at negative total energies depending parametrically on

the properties of the medium and the total momentum of the interacting pair; (ii) a generalized unitarity

condition from which one obtains a parametrization of the on-shell positive-energy scattering amplitude by a

set of real effective phase shifts; (iii) that these phase shifts completely determine the large-separation

asymptotic behavior of the scattering (positive energy) pair wave functions in a manner which is form

equivalent to two-particle scattering in free space; and (iv) that the small- and large-momentum asymptotic

limits of the phase shifts are related to the number of bound-state pairs in the medium via an analogous, but

modified, form of Levinson's theorem for free scattering. The effects of these pairing singularities on the single-

particle excitation spectrum, and hence on the thermodynamic behavior of the system are outlined.

I. INTRODUCTION

Historically, the scattering of constituent pairs
of particles within an infinite background or medi-
um of like particles, has played a central role in
understanding the observed behavior of many-
fermion systems. ' While not directly physically
measurable, an effective scattering amplitude
serves as a useful precursor in relating thermo-
dynamic and average single-particle behavior in
phenomenological theories and as the lowest-
order building block in an often essential re-
arrangement of the perturbation series in micro-
scopic perturbation theories. ' Perhaps the most
successful application of these concepts resulted
from an analysis of the scattering of electron
pairs in a degenerate electron gas' (the Cooper
problem), for which it was demonstrated that the
formation of bound electron pairs in the medium
gives rise to the phenomenon of superconductivity.

%hile it is generally true that the existence of
bound-state pairs in a many-body medium can be
linked to singularities in the effective scattering
amplitude, this alone does not suffice to guarantee
that the pairs will possess significant boson-like
properties. In this context, the problem of con-
densation of composite bosons has been investi-
gated by Yang, ' and by Kohn and Sherrington, '

who show that condensates of these composite
particles will not exhibit superfluid properties
unless they also possess a long-range (macro-
scopic) off-diagonal order. lt is also believed
that, in fermion systems governed by strongly
repulsive short-range forces, bound-pair forma-
tion is effectively hindered by the repulsive core. '
This belief followed from a series of computations
on the 'He system initiated by Brueckner and
Qammel, ' in which it was found that the effective
T matrix (the off-shell generalization of the ef-
fective scattering amplitude) was strongly re-
pulsive in the S-wave channel, and which led to
the conjecture that liquid 'He is an anisotropic
superfluid in the ground state. In spite of the
validity of this conjecture, the reasoning leading
to it is not precisely correct in that it has been
explicitly demonstrated that bound-paix formation
can occur in the 'He 8 -wave interaction. ' As was
emphasized in Ref. 9, these bound-state singu-
larities arise quite naturally when attempting to
describe the normal 'He liquid within the time-
dependent Qreen's function theory of Qalitskii
and Migdal, " and are presumably unrelated to
the anistropic superfluid phases.

Using techniques of quantum-field theory, a
formalism has been developed which is suitable
for analyzing zero-temperature many-fermion
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systems, using very general properties of the bare
interaction without specifying the nature of the
fermions; and hence a theoretical framework is
available which is valid for both nuclear matter
and liquid 'He. The theory also has a completely
"natural" generalization to systems at finite tem-
peratures, " in the sense that all of the diagrams
enumerated at finite temperature can be placed in

a one-to-one correspondence with those at zero
temperature. The only basic difference arises
from the fact that the one-body propagator be-
comes explicitly temperature dependent.

Despite the appealing theoretical arguments"
in favor of the Green's function method, practical-
ly all of the computations to date" have been
carried out within the framework of Brueckner-
Bethe-Goldstone (BG) theory. " Our underlying
philosophy is that each theory is formally exact
when carried to an infinite order, and hence must
yield identical results in this limit. However,
when terminated at some finite order, they are
manifestly different theories and are to be ex-
pected to give different results. In particular,
the so-called ladder diagrams defining the ef-
fective two-body T matrices in each formalism
are by no means the same. They subsume quite
different physics in each case and possess quite
different properties.

Nuclear matter and liquid 'He are both fermion
systems in which the bare two-particle inter-
action becomes strongly repulsive at small inter-
particle separations, For this reason it is neces-
sary to (exactly) sum the ladder diagrams (and

thereby obtain an off-shell transition amplitude
or T matrix), and then to rearrange the basic
many-body perturbation series so that the bare
potential never explicitly appears. In the Galit-
skii formalism, the sum of the non-time-ordered
Feynman ladder diagrams defines an effective
two-body T matrix, namely the Galitskii-Feynman
(GF) T matrix. These diagrams, obtained by
allowing an arbitrary number of successive two-
body bare potential interactions in which the inter-
mediate scattering states are either pairs of
particles outside or holes inside the Fermi sea,
can be formally summed by an integral equation,
the solution to which is the GF T matrix. Con-
versely, the corresponding BG 7 matrix allows
only those time orderings which correspond to
pairs of particles outside the Fermi sea. Hole-
hole scattering is not included at all in the BG
T matrix, whereas it is explicitly included on an
equal and symmetric footing to particle-particle
scattering in the GF case. The difference is im-
portant in both nuclear matter and 'He systems
in so far as it has been demonstrated' that in each
case the GF T ma. rix has singularities (first-

order poles) which are absent in the corresponding
BG T matrix, and which correspond to the forma-
tion of bound-state pairs in the many-body med-
ium. Calculations were performed in Ref. 9 spe-
cifically for the 'He and nuclear matter systems
using typical phenomenological He-He and nu-
cleon-nucleon potentials, but many of the main
conclusions are almost certainly true for many-
fermion systems in general. The main results
of Ref. 9 can be summarized as follows: (i) The
singularity occurs as a first-order pole in the

energy variable of the S-wave GF T matrix, having
a residue which factorizes in terms of the in-
coming and outgoing relative momentum variables.
(ii) The position of the pole (i.e., the binding en-
ergy of the pair, or alternatively the spectrum of
the composite boson) is a function of two indepen-
dent thermodynamic variables characterizing the
medium (i.e., density and temperature, or chem-
ical potential and temperature), and also of the
total linear momentum of the interacting pair.
(iii) There exist critical values of the density or
chemical potential below which, and of the tem-
perature and total momentum above which, the
pole vanishes. (iv) Whenever hole-hole scattering
is excluded from the intermediate states, as in
the BG 7 matrix, the pole appears to be com-
pletely absent.

The effects of these singularities are difficult
to assess quantitatively, primarily because com-
plete computations using the Green's-function
theory are difficult-appreciably more difficult
than the corresponding BG calculations —but in

general can be understood in the following way.
The pole occurs in the GF T matrix from which
the "exact" proper self-energy function can be
obtained to all orders of perturbation theory. The
lowest-order contribution to the proper self-
energy involves only the first power of the GF T
matrix, and requires an integration over the
center-of-mass (CM) energy variable. The ef-
fect of the integration is thus to "soften" the sin-
gularity. In higher orders each T matrix is ac-
companied by a corresponding integration, and
thus the "exact" single-particle spectrum should
not exhibit such marked singular behavior as the
T matrix itself. The pole will, however, manifest
itself in the building up of a single-particle spec-
trum having a particular analytic structure due
to it.

The purpose of this study is simultaneously to
examine the scattering properties of pairs of con-
stituent particles embedded in a many-fermion
background, focusing on those features of the
system related to the formation of bound-state
singularities (composite bosons), and to establish
a foundation for subsequent finite-temperature
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calculations for the proper self-energy function,
in which the bound-state poles are expected to
play a central role. The basic philosophy and
motivation are that the formation of pairing sin-
gularities in a fermion system is both of interest
in its own right, and necessary to fully under-
stand before attempting approximate calculations
of the average single-particle properties of the
system. In particular, the existence of bound-
state poles place important constraints on the
fully off-shell temperature-dependent GF T ma-
trix. Also, using arguments based on time-
reversal invariance and hermiticity, a generalized
two-particle unitarity relation is obtained. This
requires that the on-shell (positive energy) GF
T matrix in each relative partial wave channel
is, apart from real kinematic and phase-space
factors, unimodular, and hence can be paramet-
rized in terms of a real phase shift. This is an

implicit function of the total linear momentum of
the interacting pair, and of two independent thermo-
dynamic variables (e.g. , temperature and chem-
ical potential) characterizing the medium. In a
complementary fashion, nonlocal wave equations
are derived for the temperature-dependent pair
wave functions. The asymptotic form of these
wave functions for positive-energy solutions is
found, assuming outgoing-wave boundary con-
ditions at infinity, in terms of the on-shell para-
metrization of the QF T matrix. Using these
wave functions and an assumed completeness re-
lation, the number of bound-state pairs in the
medium is related to the asymptotic behavior of
the effective phase shifts via a modified form of
Levinson's theorem. A quantitative correspon-
dence between two-particle scattering in free
space and the scattering of pairs in a many-.
fermion medium is thereby established.

Throughout the remainder of this work we shall
restrict our discussion to a system of fermions
interacting via a finite-range, square-integrabl,
two-body central potential, having the basic fea-
ture of being everywhere attractive except at
short interparticle distances where it becomes
strongly repulsive. It is also assumed, for ease
of discussion, that the free two-particle system
does not have any bound-states, although this
condition can readily be relaxed. The real-time
temperature-dependent formalism is outlined in
Sec. II, and the basic properties of the finite-
temperature QF T matrix are developed along
with the dispersion relation for the bound-state
poles, and the generalized unitarity relation. The
nonloeal wave equations and their asymptotic so-
lutions are given in Sec. III, where an appropriate
generalization of Levinson's theorem is proved.
The important features of this calculation are

summarized, and possible consequences on the
singularity structure for the proper self-energy
are drawn in Sec. IV.

n. REAL-TIME TEMPERATURE-DEPENDENT FORMALISM

The basic principles delineating the application
of Feynman-diagram techniques to many-body
systems have been set forth by Qalitskii and
Migdal'0 at zero temperature, and have been ex-
tended to finite temperature by Abrikosov et aL."
and many others. Compact descriptions of the
temperature formalism are extensively available
in the literature, "and we shall accordingly side-
step any detailed discussion of the formal theory.
The finite-temperature theory differs substantial-
ly from the zero-temperature theory. In brief,
one assumes that the equilibrium thermodynamic
properties and average single-particle excitations
of the system can be completely specified by a
knowledge of the real-time single-particle Qreen's
function, which in turn can be uniquely determined
either from the imaginary-time one-particle pro-
pagator or by direct calculation, using the first
Dyson equation, "

where P represents a, four-momentum variable, P
=(p, P,). The identification of the various terms
in Eq. (I) is as follows. The single-particle pro-
pagator in the noninteracting system is Go; g*
is the (exact) proper self-energy function which
must be determined in perturbation theory using
the Feynman rules; and 6 is the temperature
Green's function which specifies the propagation
of a single particle or hole in the fully inter-
acting system. The bar over each quantity in Eq.
(I) is used here and henceforth to denote the im-
plicit dependence on the two thermodynamic vari-
ables, temperature P

' and chemical potential p..
The behavior of the system in thermal equilibrium
is thus known by calculating observables in terms
of the volume V and the Feynman single-particle
propagator G. For example, the (fixed) total
number of particles in the system is given by

N(j3 ', V, p. ) = lim gV e'~'"G(P),d p
p-0+ (2v)4

where g is the degeneracy factor corresponding to
the internal quantum numbers such as spin and

isospin (e.g., g=2 for spin-~ fermions of one

type). Using this equation, the dependence of
other quantities on the chemical potential ean be
eliminated in favor of the number of particles in
the system, or equivalently the density, thus
maintaining a close correspondence with the zero-
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single-particle spectrum corresponds to the ex-
citations of particles moving in an external po-

FIG. l. (a) Low&est-order T matrix contributions to the
proper self-energy. (b) Ladder diagrams summed
pictorially to give the T-matrix equation.

tential I", and having an internal energy given
by the poles of the exa.et one-body propagator G,

e(p)+6 Cp) =P.+u,
where P, =P,(p) is the solution to the equation

P.=(p'-v)+~*(p, P,).
The functions Z and 7 are both real, and depend
implicitly on the temperature and chemical po-
tential of the system. It should be noted that
throughout this work we use units such that 2M
=& =ke =1(M being the particle mass, and ke
Boltzmann's constant). As in the case of the ther-
modynamic functions, the dependence of the
single-particle excitation spectrum on the chem-
ical potential ean be eliminated in favor of the
number density of the particles using Eq. (2).

The lowest-order QF T-matrix contributions to
Z* are shown in Fig. 1(a), and the la.dder sum
of non-time-ordered diagrams defining the T ma-
trix is shown in Fig. 1(b). Neglecting any possi-
ble spin-dependence, the QF T matrix as given
by Eq. (4)

2 T~', P„p'„P,') = VU „P.; P,', P.')

formally depends on 36 initial- and final-state
momentum variables. As in Eq. (1), G, is the
nonintera, cting temperature Qreen's function,

(p)
Cps)o1 soCp) (5)

p, —(p u)+In p.-(F-u) f-n'-
n(x)=(1+e "* "') '

The quantity g is a positive infinitesimal, and

n, (x} is the usual Fermi distribution function.
Conservation of total four-momentum in Eq. (4)
reduces the number of linearly independent four-

momenta, to three. The potential V is also a
static central two-body interaction which depends
only on the magnitude of the three-momentum
transfer, V = V(lp-p'1); where relative and CM
momentum variables a,re defined as

=Pa(Pi- P), P'=aVi P2), -
'=-'U, +P.) =-'V,'+P.').

Using the above representation and employing the
substitution q-q —P, Eq. (4) can be rewritten in
the form

T(p+P, p P;'+P', '-P') =-~(lp-p'I)+»(2v) '
J &'qM(lp-ql)G, (~+q8.(~ q)T(~+q, '--e;'+P', ' P'), -

where u=—M& 'V =
& V. In this form one can easily see that the kernel and inhomogeneous term are in-

dependent of the variables Po and Po, and hence that the T matrix is only a function of ten linearly indepen-
dent energy-momentum variables, which we write as T(p, p';P„P), and which satisfies the integral equa-
tion

The integration over qo can now be easily performed, and the resulting quantity in brackets in the above
equation is seen to be a function of the variables q, P, and 8, where the CM energy variable 8 is defined
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s Pp + fL P The T-matrix equation (4) now take s the form

T@ i&', , i)= (lg —i&'I) —(2 )- Jdq, (li-t)ll(z&t(, )()(t), i)-z:(i.*)Q&i. i)17(ig', , i);

g, (q, s) =(q' s —-it)) ', Q(q, p) =n, (p+q)n, (p —q), Q(q, P) =[1-n,(P+q)][1-n,(p-q)].

The T matrix is thus clearly seen to represent the scattering of pairs of particles or pairs of holes, from
an initial relative momentum state p to a final momentum state p', in the CM frame of the pair having
a total momentum 2P and energy 2s.

Equation (6) is usually analyzed further by making use of the assumption that the Fermi distribution
functions are not too sensitive to the orientation of the total momentum vector of the pair. In this ap-
proximation the GF T matrix can be expanded as an uncoupled partial-wave series

T ().0';s, )'1= &(, (')-&2 *) 'I &~A &(, ~)(Q(~&)rr(v, )-()(~&br. (s~))& (si',
p

(7)

where

T(p, p';s, P) = g (2l+l)T, (P, P';s, P)P, (P P'),

R, (P, P) =— "d'qq
, u, (P, q)

= [2P qPf 1 —exp[ —26 (P +q' —u )]H
' L (q, P ),

1
Q(q, P)=

2
&f»Q(q, &)

-1
(8)

= [2(3qP(exp[2I8(P +q —p)] —1)] 'L(q, P),

u(lp-p'I) = g (2l +1)u, (p, p')P, (p p').

In this context the angle-averaging reduction of
the functions Q and Q can Pe performed analyti-
cally with the result

1

Q (q, P) = —
J

d» Q (q, P)
-1

(10)

Working by analogy with free two-particle scat-
tering (in vacuo), the interpretation of the pole
as given in Ref. 9 is that it corresponds to the
formation of bound states in the medium which
are linear combinations of pairs of particles and
pairs of holes, and which obey a dispersion re-
lation e(P) =2s,(P). The function e(P), as com-
puted in Ref. &7 using the modified Frost-Musulin
potential"" appropriate to liquid 'He, is dis-
played in Fig. 2 for fixed values of 3 and p. . For
this interaction, e can be parametrized to a very
high degree of accuracy by the functional form

cosh[2P [(P + q) —p. ])
cosh[!,8 [(P —q)' —i), ])

where x=—q ~ P.
Equation (7) has been studied numerically for a

series of phenomenological helium interatomic
potentials appropriate to the liquid 'He system,
and it has been reported' "that the S-wave (l =0)
GF T matrix possesses a first-order pole at
negative energies s =s, (P) & 0, of the form

lim [s -s, (P)]T, (P, P';s,P) = R, (P, P)R, (P', P-),

(9)

where again the bar over the various quantities
denotes the implicit dependence on the parameters
P and p, . The residue functions R, and the dis-
persion relation for the pair spectrum in the lth
relative partial wave can easily be found by sub-
stituting Eq. (9) into Eq. (7) to yield

T(s, P) =u -u[Q(P)g, (s) -Q(P)g,'(s)]T(s, P) . (12)

Matrix elements of this equation can be formed
in the relative-momentum representation, using
operator multiplication defined as

&ilaali')=(2 ) 'Jar&&5(A(t()(i(B(5 ). '

Comparison with Eqs. (6) and (8) then leads to
the following identifications:

The bound pair exists only for P&P„ the critical
total momentum; and each of the parameters
e„P„and A. is an implicit function of P and p. .

In what follows, it will prove useful to evolve
an operator notation, free from any particular
representation, in which the GF T -matrix equa-
tion can be written as
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FIG. 2. Binding energy &, as a function of the average
pair momentum P, at zero temperature and a Fermi mo-
mentum k+=0.82 A ~, for the 8-wave GF bound pair in
liquid 3He, using the MFM potential {Hefs. 18, 19), taken
from Ref. 17. For these parameters, the curve can be
Qtted to Eq. (11) with @0=-0.607A 2, T', =0.566A, and
~ = 2I33o

(plT(s, P)lp') =T(p, p';s, P),

Equations (12)and (14) can be combined respective-
ly with their own Hermitian conjugates to eliminate
the potential u, thereby giving the relations

T(s, P) —T (s, P)

T(s P)[Q(P}-+Q(P)][g.(s) -g.'(s)]T(s, P)

= —T(s»}[Q(P)+Q(P)1[a.(s) -g.'(s)]T (s, P) .

(plQ(P) lp'& = (2v)'f'(p —p')Q(p, P),
(plQ(P) IP'& = (2~)'f'(p - p')Q(p, P),

(pig. (s) lp') = (2&)'{)(p —p')g. (p, s)

If Eq. (12) has a unique solution, then it is easy
to show, using Eq. (4), that T must also be a solu-
tion of the alternative integral equation

T(s, P) =u —T(s, P)[Q(P)g.(s) -Q(P)got(s) lu

resentation and decomposing into partial waves
gives the equivalent forms

T, (P, P';s, P)=T, {P,P';s, P}, s&0,

T) (P, P ', s, P) T)"—(P, P', s, P)
= («/2rci)[Q (», P) +Q(», P)]T, (P, «; s, P)

x T,*(«,p', s, P), s &0,

where z=—+s'~' for s &0. Setting P =P' =x in Eq.
(16) and defining T, («, P) —= T, (», »; «', P) to be the
on-shell T matrix, shows that this fully on-shell
quantity is required to be unimodular, apart from
some trivial real kinematic and phase-space
factors. The on-shell T matrix can thus be para-
metrized in terms of a real effective phase shift
5, (», P) as

T, (», P) = 4v« '[-Q(», P)+Q(», P)] '

xs )
' sing)(«)P) .

These results ean be summarized as follows.
In a many-body medium having a temperature I3

'
and chemical potential p, , the fully off-shell GF
T matrix is the solution of the nonrelativistie
analog of the Bethe-Salpeter equation, 'o given by
our Eq. (12). It satisfies a (modified) two-particle
unitarity relation, Eq. (15), which in turn leads
to the parametrization of elastic scattering of two
particles or two holes in the medium by effective
phase shifts, Eq. (I'I). The development of these
equations closely parallels the development of
two-particle potential scattering in free space. "
Under the replacement Q-1, Q-O, Eqs. (12}-(1V)
give a complete description of two-body scattering
by a potential u. In particular, Eq. (14) reduces
to the ordinary two-particle Lippmann-Schwinger
equation. It should be emphasized that Eq. (12)
contains implicit boundary conditions which re-
quire the scattering solutions to behave asymp-
totically (in the large separation limit) as linear
combinations of outgoing waves (for two particles)
and incoming waves (for two holes). This has the
consequence that the T matrix is analytic in
neither the upper nor the lower half of the com-
plex s plane. It is useful to define an alternate
form of the GF T matrix, namely Tc'~(s, P), which
is analytic in the entire positive imaginary (upper
half) s plane, and for which the scattering solu-
tions behave asymptotically as pure outgoing
waves:

T"(s P) =u -s[Q(P) -Q(P)]u'. (s)T"(s, P)
=cc —T"1(s,P)[Q(P) Q(P)]g (s)cc—.

These equations express the important result that
T satisfies a generalized unitarity relation. Taking
matrix elements in the relative-momentum rep-

The T matrices T(s, P) and T'i(s, P) have similar
properties, and can be simply related by the equa-
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tlon

T(s, P) —T~')(s, P}

T, (P, P';s, P) =T,"(P,P', s, P), s& 0

T, (p, p';s, P) T, '(-p, p', s, P)
= (K/2mi)q (K) P)T, ' (p) K; s, P)

x Tt(K p))s)P)) s &0

(20)

=-T"(s,P)q(P)[g. ( ) -g.'(s)]T(s, P), (18)

which can be written equivalently in a partial-
wave representation as,

[z(P) —s„(P)]
l
)p„(P)& = 0,

2k, v=k
s, ,(P), v=(i, l); i= 1, , N, .

(25)

The operator Z(P) is non-Hermitian, and we
shall initially assume that its eigenvalue spectrum
s„(P) is composed of two branches, viz. a con-
tinuous positive energy branch [v-k; s„(P)-k'],
and a discrete branch having N, bound states in
the lth relative partial-wave channel
[v-(i, l); i= 1, , N, ;s„(P)-s„(P)&0]. We also
assume that the corresponding eigenvectors form
a basis for 2(P),

and where w—= +s"' as before, for s&0. Exactly
as in Eq. (17), one can define phase shifts 62~')(K, P)
by taking the on-shell version of Eq. (20}. One
then finds

With these assumptions it necessarily follows
that there exists a reciprocal basis, "

l
it „(P)&,

satisfying the equation,

[Z '(P) —s„*(P)]P„(P)&= 0, (26)
T,' (K)P) =T) (K, K; K, P)

= —4KK '[q (K, P) Q(K, P)]
]
—(+)

x e' 2
'" ' sin6,')(K, P), (21)

and in terms of which the usual completeness and
orthonormality conditions are

Pl e.(P}&&&.(P) l= 1 &y.(P)
l
y" (P)&=5-"

III. WAVE EQUATIONS AND A GENERALIZED
LEVINSON'S THEOREM

Although the GF T matrix is the essential quan-
tity which serves to calculate the proper self-
energy function, the modified form defined by
Eq. (18) leads to a description of pair scattering
in the many-body medium which closely parallels
the usual picture of free two-particle scattering.
In this picutre we have particles described by
asymptotically free states, interacting via a two-
body potential, and giving rise to well-defined
scattered waves outside the range of the inter-
action. Using the two-particle Green's function
g(s, P) and a generalized wave operator X(s,P),
defined operationally as

ug(s, P) =—T"(s, P)g,(s), uX(s, P) —= T"(s,P),

(23)

then Eq. (18) can be represented as,

g '(s, P) =g, '(s)+[Q(P) -Q(P)]u
= Z(P) —s i)}, — (24)

where it is immediately seen from Eq. (6) that
Z(P) is given by,

Z(P) = ~H, + [Q(P) Q(P)]u.

where the relation between the two phase shifts
5, and 5~'~ is

—(,)( /'q(K, p) +q(K, p)
(q(K, P) -q(K, P)

(22)

and

ef (p; P) = (2v)'5(P —k)

Q(p P) T) )( k'k P)
p -k -271

The pair wave function in coordinate space is
accordingly given in terms of the half-shell T
matrix T" by

,;;.; Q(p, P) -Q(p, P
k (2v)2 pk k2

xT"(p) k;k' P) (28)

The asymptotic form of this wave function,
)Pf (r; P), in the limit ) -~, can easily be found
in the following way. The T matrix is defined
in a mixed representation, by

2") k k' P)=(2 ) 'f kp ""T"tp k 2' P)

so that the pair wave function can be written in
the form

(27)

We shall focus attention on the positive energy
solutions of Eq. (25) having outgoing-wave bound-
ary conditions at infinity. In a relative-moment-
um representation,

4f (p; P) = &p
l 0; (P)&,

we find by comparison with Eqs. (23) and (24),



COMPOSITE PAIRS AND E F FECT IVE T%'O-BODY. . .

(r. P) eif'r dry P e(i (r"-i') Q(Pr ) Q(Pl ) T(~)(rI k. k2 P)
(

PTER

p

In the limit
~

r ~- ~, the term in brackets becomes

jkRdp;,".a Q(P P)-Q(P, P) e'
[Q(k P) Q(k P)](2v)' p' k' —i)l " " 4vR

Substituting back into the previous expression,
and making use of the expansion,

i%]r-r' I

= g(2l+ 1)j,(kr') k("(kr)P, (f' r"'),

gives the desired results,

(t)f(r;P), e'"' ——(e' "lr)f (k'r;P)~

f (k r";P) =(4v) '[Q(k, P) —Q(k, P)]

)& Q (2l+ 1)P,(r "k)T,"(k,k; k', P)
I,=o

= (2ik) ' Q (2l + 1)P, (k ' r )
I=O

When employed in our formalism, this process
requires cancellations which arise from the inter-
change of different limits in the normalization
of wave functions, as we shall see be1ow. In what
follows we shall adopt the policy that any am-
biguities due to this procedure can be correctly
resolved by fix'st reformulating the scattering
problem in a finite volume (-a'), then carrying
out the prescribed operation, and finally pro-
ceeding to the infinite volume (a-~) limit. Again,
we shall assume a many-body system containing
X, bound pairs in the /th partial-wave GF channe1. ,
together with a continuous branch of the two-body
spectrum, as described by Eq. (25). We also
consider that this spectrum of states satisfies
the completeness relation of Eq. (27), which we
now write as

and

x [e2(()) (kl P) I] (29)

gl
(l)„,(r;P)„„e'""'—"' sin[kr ——,lv+ 5,"(k;P)], or by decomposing into partial waves as

4';i(r; P)0;)*(r',P)

(t)f(r;P) = Q (21+1)P,(k r)(t)»(r;P).

lim (l)„"(r;P)= lim P„"(r;P), (31)

In a completely analogous manner, it is easy to
show that

[i )(»)j i(kr') (l p)(r; P)T(),*)(r'—,P)].~

~

"dkk
0 2F

By setting ~' =z in the above equation, integrating
the resulting equation over all space, and using
the orthonorma. lity relation of Fq. (27), we obtain
the basic relation,

We shall demonstrate that, just as in free two-
body scattering, the existence of bound states is
directly related to the asymptotic behavior of
the phase shifts in the same relative partial-wave
channel. Using Eqs. (22), (25), (27), (30), and

(31), an analogous relationship can be established
between the asymptotic values of the GF phase
shifts 5, and the number of bound pairs N, in a
particular channel. We shall follow a procedure"
in which the size of the system is maintained as
a free pax"ameter until the end of the calculation.

dk k'—' = lim, drr'j, '(kr) —l»(a)
4m , „ 2m'

(32)

f„(a)= drr'p»(r; -P)(l +, (r; P).

The calculation of f»(a) now follows from the
coordinate-space representation of Eqs. (25) and

(26) in a particular relative partial wave l,
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+k' (j)„(r;P)L(L+1)

where

4..()J dr'r"(;(, ';P)(„(;Pl=0,
0

1 d, dD2 =— r'-r dr dr

and

4 v dr' r'2F, (r, r'; P )u (r') &j&» (r'; P ) = 0,
0

(33)
Dz —

2
+k' g~, (&;P)

l(l +1)

where we have made the substitution z =2ka, and
have taken the limit a-~. This equation has
solutions for the asymptotic phase shifts, given
by

(l)I, + &)v = &,"'(0;P)—dI')(;P),
where

0, 5,"'(0;P)=nv
A. =

—', ( l)', 5I"(0;P) =(n+-', ) v,

where n=1, 2, . . . , ~. If the scattering amplitude
does not have any poles at exactly zero energy,
then ~ is always zero. That is, apart from the
rather artificial case of a bound state of exactly
zero energy, we have the result(((';p) =, J ),(s~)(Q(q, P)'

0
~5, (0;P}+a,(;P)= II, x, P2&&i (34}

—Q(q, P)li, (e&') .
The first of Eqs. (33}is now differentiated with
respect to k (where we denote such differentiation
by a, prime), after which it is multiplied by the
factor r'g~*, (r;P); and the complex conjugate of
the second of Eqs. (33) is multiplied by the factor
r' j'(()r;p). The difference of the resulting two

equations is then taken, and after integrating on
the variable r over the range (0, a}, we obtain the
result

where we have used Eq. (22) to relate the two
phase shifts &, and &,"'. This result is the exact

P=0

I~, (a) = (-2k) ' drr'(g, *, (r;P)D„'P~, (r;P)

—4')(r;P)D', g, (x; P)],
where terms which vanish as a tends to infinity
have been ignored. Integrating this final result
by parts, and using the asymptotic form of the
wave functions given by Eqs. (30) and (31), one
obtains

—2TT—
0 I.O 20 30

, sin[2ka —1 +((25 "I( kP)],

as a correct result in the limit as a-~. This
equation, together with the relation

a sin(2ka —lx)' "'t("")=- 2k 4k'

when substituted into the basic relation of Eq. (32),
gives

vtV, =&I')(0;P) -&I")(-;P)

+ — —(sin[z —l)t+2&I" (0;P)]
1 "dz

0

—

sin�(z

—l&)],

Relative Mome()turn, k ( j( ')

FIG. 3. Comparison of the S-wave free scattering
phase shift with the corresponding effective phase shifts in
the GF and BG formalisms. The GF effective phase shift is
defined in Eq. (17), and the corresponding BG quantity
is obtained similarly by turning off hole-hole scattering
(Q 0) throughout. The potential is the MFM (Befs. 18,
19) appropriate to liquid 3He, and the curves are shown
at zero temperature and a Fermi momentum, kz = 0.8 A ',
and for zero total momentum of the pair. The presence
of a single GF bound state, and the absence of either a
free or a BG bound state can be seen by using the appro-
priate (modified) form of Levinson's theorem [Eq. (34)]
in each case. (Note that each of the phase shifts tends
to zero at infinite relative momentum k.)
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GF analog for pair scattering in the many-body
medium of the usual Levinson's theorem for free
scattering, and in particular the sign of the right-
hand side of Eq. (34) should be noted. A numerical
example illustrating the result of Eq. (34), as cal-
culated in Ref. 17, is shown in Fig. 3.

IV. SUMMARY AND CONCLUSIONS

In summary we wish to emphasize the following
points. The simultaneous description through the
GF formalism of both pairs of particles and pairs
of holes embedded in a many-body medium of
identical particles, can be placed in a close cor-
respondence with two-particle scattering in free
space. The fully off-shell scattering amplitude
in this formalism is the solution of the nonrelativ-
istic analog of the Bethe-Salpeter equation. It
satisfies a generalized unitarity condition which is
the analog of two-particle unitarity, and it simi-
larly leads to a parametrization of the positive-
energy on-shell GF T matrix (corresponding to
scattering solutions) in terms of real effective
phase shifts. Also, nonlocal wave equations for
the scattering states can be obtained with appro-
priate boundary conditions, and the asymptotic
form of the pair wave functions can be related to
the on-shell GF T matrix in a way which is form
equivalent to the free scattering counterpart. The
dependence of this asymptotic form on the tem-
perature and chemical potential of the system is
solely restricted to the dependence of the effective
phase shifts on these quantities.

As in free scattering, the GF T matrm can have
bound-state poles, the existence of which will, in

general, depend on the properties of the kernel
of the T-matrix equation (or the equivalent wave

equations). This kernel depends parametrically
on the thermodynamic properties of the medium,
and also on the total linear momentum of the in-
teracting pair. The properties of this kernel are
different from those of both the corresponding free
scattering equation and the BG equation which
neglects simultaneous hole-hole scattering. In
particular, for a potential for which there exist
no bound states in the free hvo-body system, the
GF matter T matrix can sustain bound states which
depend implicitly on the properties of the medium
(and see Ref. 9). The existence of bound pairs in
the medium (being linear combinations of particle-
particle and hole-hole states) having a negative
total energy can be inferred from the behavior of
the positive-energy on-shell scattering amplitude
via a modified form of Levinson's theorem.

For a many-body system in which the GF T ma-
trix contains a (bound-state) pole, the expansion
for the proper self-energy contains additional
terms which can be written in the form

g+ n * )=g+ +Y'+pP & ~ O' POle baCkgrOUfld &

where the contribution from the so-called back-
ground term is exactly that given by the usual
expressions for Z* in the absence of any poles.
Because of the pole, there mill be combinations
of particular values of p and po for which Z,*„,and
Z*,.„k„,„„dwill become infinite, which, by Eq. (3),
will make an important contribution to the single-
particle energy spectrum and to the thermody-
namic functions describing the system. Suffice
it to say that numerical calculations for these
systems are difficult. We are currently perform-
ing such computations for (the normal phase of)
liquid 'He and for nucleonic matter, and shall
report them elsewhere.
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