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A general theory of two-body reaction rates in a relativistic plasma is developed. The most notable results of
this theory are exact expressions for total rates involving only a single integral over the cross section for the
usual case of relativistic Maxwell-Boltzmann or Bose-Einstein momentum distributions. This simplification
arises from the fact that in the relativistic as well as the nonrelativistic case, an effective combined-particle
distribution function can be found analytically. These results are applied to calculate the rates for radiative
Compton scattering, photon-photon pair creation, and pion production in proton-proton collisions.

I. INTRODUCTION

Reactions occurring in plasmas sufficiently hot
for ion or electron relativistic effects to become
significant, play an important role in studies of
supernovas, x-ray sources, black holes, and other
high-energy astrophysical phenomena. ' ' The pro-
cesses of interest include bremsstrahlung and oth-
er photon-producing reactions, lepton and meson
production, and nuclear reactions. Because of the
relative complexity of the equilibrium relativistic
velocity distribution functions and often of the re-
action cross sections themselves, most calcula-
tions to date of the rates of these reactions have
utilized first-order relativistic corrections or
interpolations between extreme- and non-relativ-
istic forms. ' A general formalism for relativistic
distribution-averaged reactions rates has been
given by Stone and Nelson, ' but this is difficult to
utilize in practice since the results are left in the
form of multidimensional integrals and the cross
section is defined in a manner which is not I orentz
invariant.

In the present work, a theory of total relativistic
reaction rates for two-body reactions is developed
in which the originally six-dimensional integral
over the phase space of the particles is reduced to
a single integral over the energy-dependent total
cross section for the case of relativistic Maxwell-
Boltzmann distributions. Rapidly convergent sums
of one-dimensional integrals occur for Bose-Ein-
stein photon distributions. This theory is used to
calculate reaction rates for radiative Compton
scattering (ey-eyy), photon-photon pair cxeation
(yy-e'e ), and proton-proton pion production.

The first two rates are required for the study of
supernova shock waves, "while the third is of
interest in black-hole accretion studies. '

II. RELATIVISTIC REACTION RATE FORMALISM

We wish to find the I orentz-invariant rate per
unit volume, R», at which particles of type 1 and

type 2 intex act to make particles of type 3. In any
given observer frame, the reactants are assumed
to have a distribution of the form n;f;(p;) where
n,. is the total number density of particles of type
i and f,(p, ) d p, is probability that a, given particie
will have momentum p;. For convenience and clar-
ity we will treat first the case where the masses
of the interacting particles, m, and m» are non-
zero, and later relax this restriction.

A. Particle-particle reactions

In the specific case when the type-1 particles
are all at rest and the type-2 particles are all
moving in a beam at relative velocity vR, the re-
action rate can be given directly in the familiar
form

whexe this relation serves to define the laboratory
cross section o(v„).

To find R» for more genexal distributions, we
consider the specific momentum groups, n,f,(p, )
&dp, and n, f,(p, ) dp2, in the observer frame. We
transfoxm to the rest frame of the 1 group to cal-
culate their contribution to the reaction rate, use
the R» invariance to transform back to the ob-
server frame, and then integrate over p, and p2 to
find the total reaction rate:

18, —
~+ ~i2

X f,(p, )f,(p, ) dp, dp. ,

where 6» is the Kronecker delta which has been
intx'oduced to compensate for the fact that inter-
acting paixs have been counted twice when parti-
cles of type 1 and 2 are identical. To evaluate
(n,n, )- consider the invariant scalar product of1 2 yi
the four-vector currents, j, = (n„n,P,) and

j,= (n„n,p,):

j, j,=n,n, (i p, p, )=(n,n, )-„.„-„..
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Here, P, =v,./c, where as usual v; is the velocity of
particle i and c is the speed of light. In a similar
fashion the scalar product of the four-vector veloc-
ities, (y&, y;P&), gives the relation

y,y, (1 —p, p2) =yR (an invariant), (4)

where u = cos8 = (P, P,)/P, P2 and f,(P,.)=.4«P',.f,.(p,.)
so that f,"f;(p;) dp; = l.

Utilizing relation (4) to eliminate u in favor of

p~ =y~p~m2c, we obtain R12 in the convenient form

where y,.= (1 —)8&)
'f' and yR and pR are now specif-

ically understood to be measured in the rest frame
of the type-1 particle group.

The expression for R12 thus becomes

where

y(p )
rRI R

2@12C

12 0

(n,n, ),~c f (p )f,(p, )
' '&f(PR)dp, dp,

yly2

(5)

"f(p )
- rlrR&21'&&R)p)2P f (p )

2 dP2 dP1 .
P2y

&Pa [~1"~g~ m2&

where the subscript "obs" denotes measurement in
the observer frame.

If we now restrict our attention to distributions
that are isotropic in the observer frame and con-
sider any specified p, to be fixed alone the z axis,
(5) reduces to

c(n,n2),~
2(I+5 )

&o &o 1

f,(p,)f,(p, ) &f(P„)dudp, dp, ,
0 ~1 yly2

To further simplify the expression for E(pR), it
is necessary to know the forms of f,(p, ) and/or
f, (p,). We first treat the case where f,(p, ) is
arbitrary, while f2(P,) is a relativistic Maxwell-
Boltzmann distribution (RMB) given by

m', ckT,K,(m,c'/k T,)

where T, is the temperature of the type-2 parti-
cles, K2 is the second-order modified Bessel
function of the second kind, and k is Boltzmann's
constant. We then find

(pRP IArb, f&, RMBf2 2m cK (m c2/kT )2 2 2 2

x ',' exp —[y&2yR2(p, pR)'+1]'f' ' —exp —[y&2yR2(p&+ pR)2+ I)]'f2 ' dp, .
0 2 2

(10)

&pRP
I RMB f RMB&f2 2m cK (&p )K (Q )

—exp —[r,'rR(P&+PR)'+ I]"'02—r, &t), d(r, P&),

In the case where f,(P,) is also an RMB, E&I. (10) becomes

P, p -lr'r*&P-P, )*+)I"*P,.-r P, I}
0

(1la)

where &f&, =m;c'/kT, To evaluate the integral f in this expression, we make the hyperbolic substitutions:

y, =cosh8„ yR =cosh8„, P, =tanh0„ P =tanh0~

yielding

{exp[-Q, cosh(8, —8 ) —P, cosh8, ] —exp[- &t), cosh(8, +8 ) —&P, cosh8, ] ) sinh8, d8, .

Now,

&p2 cosh(8, + 8R) +)p, cosh8, =z cosh(8, + g)

where

z = (4 ', +24+,r, + 4.')"',

&)) = sinh '($2sinh8R/z) .
Using this identity, I can be written in the form

I= e '" "sinh(&u+ g)d&u — e '" "sinh(«) —&C))d«),
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where we have made the substitution e = 8, —P in
the first integral and ~ = 0, + g in the second. Ex-
panding the sinh(Id+ g) expressions, and using the
symmetry of the resulting terms, the integral
reduces to

I=2 sinhg e '"~ cosh+ d~=2 sinhtt)K, z,

m K ()t) )K ()t),)z
(11b)

where the integral definition' of Z, (z), the first-
order modified Bessel function of the second kind,
has been used.

%e thus find

(n, ,).
12 IRMBf~ RrMBfB 1 + 6 It (y )If' (y )

o(X)X'&,(z) dX
z(1+y')" '

where g:—p~P~.
In the case when T, = T, = T, we note kTz is just

the center of mass energy of the two interacting
particles. In the limit when all energies and tem-
peratures of interest are non-relativistic, (12a)
reduces to the familiar form (cf. Clayton' )

RgR 2 Bl /MAL

1+6» "
2zf(m, T, +m, T,)

mm p'
1 2 8 3e"P -2u( T T) '"'" "'

P„y,(1 —P, cos8) =p„', an invariant, (13)

B. Particle-photon interactions

The assumption of massive reactants made in
the previous section ean easily be relaxed in the
case when m, = 0. [For notational convenience in
considering this case, we shall discuss photons
(i.e. , 2-y) though no loss of generality is implied. ]
The analogous expression to (4) is then

where

~ o,, )
))r' f)r ) "'P"'"f.)r~) dr ) ~r

0 Pl )I 1 f 1P y( l~ By}

(
f, ,)

IPy'/&y-P}, /Pyle ~c/2 ~i&i

where P„'is the momentum of the photon in the rest
frame of particle 1, and cos8 = (p, p„)/I3,p„=u
where P, and P„aremeasured in the observer
frame. Expressions (1), (2), and (3) are changed
only in that 2-y, t)s-c, c(cz)- c(p„'), and 6„=0,
and so for general distributions, we find

We now take fy(Py) to be a relativistic Bose-
Einstein distribution (RBE) given by

Bm P~
fy&y) = „B„C,.y.ybry,

y
(is)

p1
R, =(n, ny). b, c f,(p, )fy(py)

f'
Vi P}'

x o(py) dp, dpy,

and for isotropic distributions we find

(14)

where k is Planek's constant, T& is the photon
temperature, and C—= exp( i), y/kT)r wher-e p, y

is
the photon chemical potential, is a dimensionless
degeneracy parameter which is equal to 1 for a
blaekbody distribution and goes to infinity in the
nondegenerate limit. n& and C are related by

or

x o(Py) du de, dPy

(15)

(3)no
16)y(kTy)' ~ 1

g3 hs ~ ~3 Ctt
1t =1

n'/C

&(3)= —= 1.2021 ~ . and n' =I 16v(kT )'
n' ~3 $3ii=1

R, = (n,ny), b, co(P'y)Fy(Py) dPy,
o

(16) For this case, we find

R& P~c
y(Py) IArbyrr RBB f y 2 (yT )2 ~n=l

fr(Pr& e ypym ambry S.~ -yr&y JrnC
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For the case when f, is an RMB, while fy is an arbitrary isotropic distribution, we find

I
py

'/ y RMBf, Abfy 2K (y )

"f(Py) 1 P~exp ——~+~ p, dpy.
py 2 I'y py

(21)

Finally, whenf, is an RMB and fy is an RBE, we find R) to be

(n)ny)obz cQ, ~ 1
" r'o(t')K)(zi))

) y IRMBf), RBEf y 2 K ()t) ) ~ gn
2 1 n=1 0 fl

(22)

where

g= p'yc/kTy and z„'= ()t)')+ 2n)t))f)'f',

and we have used integral 3.324 4 1 of Gradshteyn
and Ryzhik. '

The sum involved here is rapidly convergent,
and vanishes in the nondegenerate limit.

In the limit when the energies and temperatures
of interest are nonrelativistie (except in the ease
of the inherently relativistic photon where we
require p~y«m)c), (22) reduces as required to

8m
TylNRMBfT, RBEfy

fy'y'o(P'y) du~
Pyc/k FyCe

C. Photon-photon reactions

The above formalism is still not in a suitable
form to treat reactions between massless parti-
cles, since it is impossible to transform to a
massless particle's rest frame. It is therefore
necessary to generalize the definition of the cross
section. This could be done by directly assuming
that the definition in (1) holds in a general refer-
ence frame', but this results in a generalized cross
section that is not Lorentz invariant. It is more
conventional" to define the cross section by the
invariant relation

n, n, (1-p, ~ p, )[((P,„IP,")' —m', m', c ]
'f'

lp 2

(23)

In the nondegenerate case, expressions (13)-(23)
can also be obtained as the limits of the equivalent
massive-particle forms when yz-t)yc/m, c' and

m, —0.

t),t), (l —cos t)) =2t)*', =2t)*', =—2p„*' (26)

where pyl and py2 are themagnitudes of the mo-
menta of two specific photon groups and 6 is the
angle between them, while ny, is the photon number
density of group i. The superscript asterisk de-
notes measurement in the center-of-momentum
frame. Here again the trivial but convenient spe-
cialization to the photon case has been made.

The reaction rate for general distributions can
then be written:

+2&„=)*,). , fff)iT, )f)iT, )" ));)&i*T, iTT, *,
f ylPy2

(27)
and for isotropic distributions, we find

&yy =(ny) b c ~(py*)+;(t'y) dt'y
0

(28)

where

menta of particles of type 1 and 2 (assumed to be
in beams) and E, is the. total energy of particle i.
Equation (24c) can be interpreted as defining the
cross section as the ratio of the reaction rate to
the proper particle flux, and reduces to (1) in the
rest frame of one of the particles; while (24d) re-
duces to the natural result, A =n,n, 2ca, in the
center-of-momentum frame for two massless par-
ticles.

The case of reactions between distributions of
massless particles can now be treated in a fashion
analogous to the massive-particle case, except
that a transformation to the center-of-momentum
frame is used. The invariants analogous to (3) and

(4) a, re then

n,n, (1 —cos 8) =2ny, ny2

and

m lm2
( 1 l 2 2 2 Ca'

E,E2
(24b) ,(,) 2

„"f(t„)" f(py. )d
y p2l0 yl P /Py 1 Py2

n, n2(1 —p, ~ p, )p cv for m„m,00

n, n, (1 —P, ~ P, )co for m, or m, =0

(24c)

~here 6', 6'2" is the scalar product of the four-mo-

(29)

Specializing to a relativistic Bose-Einstein photon
distribution, we find
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o 2
" 1

R), ~l„„=(n),)'c ~ ~ ~nt C""
n=l l= 1

x o($)$'K, (2v nl $) d$ (30)
0

where $ = p*c/kT and, as before, the sums are
generally rapidly convergent.

In this case also, the nondegenerate form of (30)
can be obtained as the limit of (12a) if a transform
from lab to center-of-momentum coordinates is
made and the invariance of the cross section is
used.

D. Numerical considerations

In applying the above theory to numerically cal-
culating specific reaction rates, it is convenient
to calculate the quantity

(ov) =- (1+5„)R„/n,n, (31)

III. APPLICATION TO REACTION RATES OF
ASTROPHYSICAL INTEREST

A. Radiative Compton scattering

The differential cross section for radiative
Compton scattering was calculated by Mandl and

Skyrme, "and has been numerically integrated by

Power-series fits to the required K Bessel func-
tions are given by Abramowitz and Stegun. " The
integrands in the rate integrals are often quite
sharply peaked, and the use of an integration meth-
od where the increment size is adaptively deter-
mined" is helpful.

Ram and Wang" to give the total cross section for
the emission of a photon with an energy hv greater
than 5 keV.

For the case of an RBE photon distribution and
an RMB electron distribution at the same temper-
ature T, the total photon emission rate (kv & 5
keV) can readily be found from Eq. (22), and the
corresponding (&xv) is plotted in Fig. 1.

It is evident that the process only becomes im-
portant for kT ~ 0.1m,c' where the photons carry
enough momentum to significantly accelerate an
electron in a Compton collision. In the regime
O. lm, c'6 kT s 10m,c', however, the (vv) for ra-
diative Compton scattering becomes comparable
to that for bremsstrahlung. The small degeneracy
effects apparent in Fig. 1 are primarily due to the
augmentation of the low-energy tail of the black-
body distribution (C =1) relative to the nondegen-
erate distribution (C - ~) and the peak in the total
cross section near m, c'.

The role of this reaction in accelerating radia-
tive equilibrium in supernova shock waves is
treated in Refs. l and 2.

B. Photon-photon pair creation

Jauch and Rohrlich" give the relativistically
correct y -y pair -production cross section in the
form

v mr', 4'[=(2 2+'4- '4) cosh '(I/4)

(1+4')(1-4')'~'], 4 &1

where 4' =m, c'/e&, e& is the center-of-momentum
energy of one of the photons, ro is the classical
electron radius, and 0 is meant in the Lorentz-
invariant sense of Eq. (24). The density normal-
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ized emission rates for a nondegenerate RBE and
blackbody photon distribution have been calculated
from Eg. (30) and are plotted in Fig. 2, along
with a "nonrelativistic" expression for this rate,
obtained by assuming kT& «m, c' in (30) and
1 —4«1 in (32) to find

m'2 2
1T 1'0 7Ã+C ~~Pgyr

NR 4

10"

It is apparent that higher-order relativistic ef-
fects are important even at low temperatures,
owing to the requirement that e& &m,c' for a pair
to be formed. The degeneracy effects are princi-
pally due to the relative depopulation of high-ener-
gy photons in the blackbody distribution by a fac-
tor =&(3) with respect to a nondegenerate distri-
bution, and the peak in the cross section near I
MeV photon energies. For 10&kT & 100 keV, the
nondegenerate reaction rate R

&&
can be fit to

within 2%% by the expression

uT, '~'n', e
R qq

= 1.042 1+0.728 ~, " (ot) gg.m,c'

(34)

while the blackbody rate is smaller by a factor
= [~(3)I'.

References 1 and 2 discuss an astrophysical
application of this reaction.

C. Proton-proton pion production

The experimentally measured cross sections
for pion production in proton-proton collisions
are given by Lock and Measday, "along with
Mandelstam theory" fits to cross sections near
threshold for the case of single n'0 or m' produc-
tion.

The rates for reactions giving rise to one or
more pions ("total" ), single v' production
(PP-Psw'), and single v production (PP-PPv')
have been calculated using Eq. (12a) and are given
in Fig. 3. The total rate is only accurate for
kT & 50 MeV because of the lack of a detailed

10
-18
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-20

1 0
22

10 100

kT (NeV)

1000

FIG. 3. Rates for pion-producing reactions in proton-
proton collisions. The curve labeled "Total" is the sum
of the rates for all pion-producing reactions in such
collisions.

specification of the threshold dependence of the
total pion cross section.

The importance of mo mesons in producing y -ray
emission from matter accreting onto a black hole
is discussed in Ref. 3. In addition, these rates
are of interest in treating pion production re-
sulting from shock waves in nuclear matter"' "
which may occur in relativistic heavy-ion colli-
sions.
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