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Diffusion cooling of electrons in a finite gas
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Diffusion cooling and heating of electrons in a neutral gas is shown to be related to steep-gradient, nonlinear

diffusive effects imposed by the presence of boundaries. A variational method of solution of Boltzmann's

equation is outlined and the effective electron diffusion coefficient is obtained as the minimum of a certain

integral. Gas mixtures and inelastic collisions are considered using model cross sections.

I. INTRODUCTION case, it can be seen that

Diffusion of electrons to the walls of the vessel
containing a weakly ionized gas prevents the elec-
trons from ever coming into thermal equilibrium
with the neutral molecules of the gas. "Diffusion
cooling" of electrons was first observed by Biondi'
in measurements on the afterglow of low-pressure
neon and argon discharges. In general, the space-
charge field and ambipolar diffusion will make an

important contribution, but for the experiments
we wish to analyze' 4 only the effects of free (no
field) diffusion need be considered.

Some understanding of the phenomenon can be
gained from mean-free-path arguments. ' If q (v)
is the diffusion (or momentum transfer) cross
section for collisions between electrons of speed
v and neutral molecules whose number density is
N, then such electrons diffuse at a rate controlled
by the coefficient

D(v) =-,'vX (v),

where X = Qq )
' is the mean free path for mo-

mentum transfer in electron-neutral collisions.
If q (v) varies less rapidly than linearly with v,
then the diffusion rate is clearly greater for faster
electrons and hence more of these are lost to the
walls; the average energy of the remaining elec-
trons is lowered, as is their mean speed, i.e., T,
(electron temperature) & T (neutral gas tempera-
ture), v& vo (mean speed at thermal equilibrium).
The macroscopically observed quantity is

D =-', vX (v) = —', vX (v),

and clearly this too is less than the thermal-equi-
librium diffusion coefficient D, . On the other
hand, if q (v) increases more rapidly than v, then
the diffusion rate to the walls is greatest for the
slower electrons and consequently the average
energy of the remaining electrons is increased
above the thermal-equilibrium value, i.e., T, &T,
v& v, ("diffusion heating"). However, even in this

D&D, .

Only for the special model q ~ v is the diffusion
rate the same for all electrons, with the result
that thermal equilibrium is attained (T, = T, v = vo,

D =Do).
The theory above is, of course, greatly simpli-

fied, and serves mainly to establish the connec-
tion between diffusion cooling (or heating) and the
reduction in D. (It is D which is determined in

experiment, not T, .) To find the dependence of D

upon the geometry of the containing vessel, we
take a macroscopic theory which allows for bound-
ary effects and nonlinear diffusion. This aspect
of the problem is emphasized because of the re-
cent interest shown in finding the limits of validity
of Fick's law of diffusion for electrons' ' and
ions'' in gases. There is an intimate connection
between diffusion cooling and nonlinear diffusion
arising from boundary effects; this is discussed
in detail in Sec. II.

To obtain quantitative results, however, one must
solve Boltzmann's equation for the electron-energy
distribution function under the appropriate bound-
ary conditions. A variational method is outlined
in Sec. III and results are given in Sec. IV for
simple cases (model cross sections and single-
parameter variational trial functions). This ap-
proach contrasts with the previous work of
Parker' (perturbation theory) and Leemon and
Kumar' (polynomial expansion method; see also
Ref. 11) and is perhaps more suitable for dealing
with inelastic collisions. Thus we obtain good
agreement with the recent experiment of Rhymes
and Crompton, ' in which small traces of hydrogen
are added to argon to improve the "thermal con-
tact"' between electrons and gas, thus substantial-
ly inhibiting diffusion cooling (see Fig. 1).

II. EFFECTIVE DIFFUSION COEFFICIENT

The mean free path for energy transfer (aver-
aged over all electron speeds) in elastic electron-
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X,/A~1, (2.1)

and if for simplicity we take plane-parallel geom-

30

neutral collision is

X, =X.(M/2m)'~',

where m and M denote the masses of an electron
and neutral molecule, respectively. Boundary
effects' become important within a layer" of
thickness X, and, in particular, Fick's law of
diffusion and hence the well known diffusion equa-
tion' ' ' are not valid there. In many cases of
interest, X, may be of the same order of magni-
tude as the dimensions L of the enclosing vessel
(typically L is approximately a few cm), and the
classical diffusion equation cannot be applied any-
where in such cases. Fortunately, the problem
is not as serious as it might seem at first, as it
turns out to be simply a matter of replacing the
usual diffusion coefficient with an effective dif-
fusion coefficient dependent upon the size and

shape of the enclosure.
Let A-n/~Vn~ be the scale length for variations

in the electron number density n(r, t). (Since n

varies from a maximum somewhere within the
enclosure to zero at the walls, '"A & L. Later,
we identify A as the diffusion length. ) Then if the
density gradient is at most moderately steep, that
is, if"

etry with L being the distance between walls, the
electron number density is determined from the
following transport equation':

an 9'n
2

9'n—=D +(X )'6 +
gX4

(2.2)

where D, is the familiar (thermal-equilibrium)
diffusion coefficient and the correction terms on
the right-hand side arise from nonlinear diffu-
sion' ' owing to the steepness in Vn imposed by
the presence of boundaries.

There are two points which we mention in pass-
ing concerning Eq. (2.2). Firstly, the spatial de-
pendence of the diffusion coefficient (through n) is
neglected on the basis that the degree of ionization
is very low (n«N), so that mutual electron inter-
actions can be neglected. " This assumption is
consistent with the Boltzmann theory given in Sec.
III, where it is clear from the formulas that sD/sn
=0. Secondly, it is emphasized that modification
of Fick's law through higher-order derivatives is
not in general a valid procedure, with some upper
limit on density gradient as in (2.1) being required
to avoid divergences. ' ' For strong gradients,
this approach is not valid, and one must appeal
to the more rigorous theory of Sec. III for an ade-
quate description of the transport process.

The question of extensions to Fick's law has
also been discussed by de Schepper et al." in
connection with self-diffusion; they find long time
divergences in these higher-order corrections.

With the boundary conditions n =0 at x =0, L, the
solution of (2.2) is

(2.3)

where A, = L/km is the diffusion length for the kth
mode,

(T~) =DP» 1 ——— + ~ ~ ~
x,

D A
(2 4)

120 Torr

60

30

gives the corresponding decay constant ~„and
the A, are constants fixed by initial conditions.

In experiment, ' ' the total number of electrons
within the enclosure is measured at various time
intervals. At long times (t & ~, & r, & ~ ~ ~ ), it can
be seen that the k = 1 mode dominates the sum
(2.3) and hence

Hg

n(x, t) —sin(x/A)e '/",

where we have written A for A, and

(2.5)

FIG. 1. Composition and pressure dependence of the
effective electron diffusion coefficient in an Ar-H2 mix-
ture at room temperature, based upon the model cross
sections given in Sec. IV B. The arrow on the ordinate
indicates the thermal equilibrium value of ND for pure
Ar attained in the limit of high gas pressures.

2 !

T = (Ty):DQ 1 +
Do A

(2 6)

Equation (2.6) defines an effective diffusion coef-



1538 R. E, ROBSON

and

A '=(t, /a)'+(v/a)' (2.7)

fieient D. This is measured in experiment by fit-
ting to the data an exponential decay in time and
using Eq. (2.5).

When X, is small compared with the dimensions
of the enclosure (X,«A), gradients in n are weak,
giving small nonlinear diffusion effects; in addi-
tion, the electrons become effectively thermalized
with the gas molecules, resulting in little diffusion
cooling. The ratio X,/A can be made small in a
number of ways, by reducing X, by increasing gas
pressure (i.e., increase N), reducing ~, by using
a light gas or by using a gas in which inelastic
collisions are significant (see Secs. III and IV), or
increasing the size of the enclosure.

It is clear from (2.6) that D-D, as X,/A —0.
The effect of the speed-dependence of the cross
section is carried by the quantity 5. For example,
when q (v) ~ v, it can be shown directly from
Skullerud's work' that 5 and all higher-order cor-
rection terms vanish. In this ease, D =D, and
there is thermal equilibrium even if X,/A is not
small.

In other eases, the indications are" that 5 is
positive, and hence D &D, . This is in accord with
the simplified argument of See. I, and is confirmed
by the theory given below.

Although we have specifically taken plane-par-
allel geometry as a mathematical simplification,
the form of most of the above equations remains
the same, whatever the geometry, and only the
value of A and the spatial dependence of n change.
For example, for a cylindrical cavity ' "of height
h and radius a, we have for the lowest-order mode

The inelastic collision term is defined by' "
I(f) = Qf( +,)Q ( +,)[f( +,)- "~"f( )]

&Q, (&)[f-(&) &'&~' f(-& -&;)]), (3 2)

and other symbols are defined as follows:

Q.=M[(x, /M, )-(q.), +(x,/M, )(q.),],
Q =-x, (q ), +x,(q„), ,

M ' = x, (M, ) '+ x2(M, )
' .

(3.3a)

(3.3b)

(3.3c)

In writing (3.2) we have made use of the Klein-
Rosseland relation4 to account for collisions in-
volving deexcitation of the jth state, in which an
electron gains energy e, .

Equation (3.1) is solved by making a separation
of variables,

gas of two components, temperature T, molecular
masses M, and M„ in which collisions with spe-
cies 1 are elastic and described by the momentum
transfer cross section (q )„but collisions with
species 2 may be either elastic [cross section
(q ),] or inelastic. If x, and x, are the relative
concentrations of the two neutral species and if
Q, (e) represents the cross section for an inelastic
collision between an electron of energy c = &m v'

and a neutral molecule in the jth excited state in
which the electron loses energy c,, then the
Boltzmann equation for the electron-energy dis-
tribution function f(e, r, t) is'"

n(r, a, I) =Z, ($,r/a) sin(va/h)e '~', (2.6) f(~, r, t) =~(~)R(r)~(t}, (3 4)

where (o is the first zero of the Bessel function
J, and r and z are eylindrieal coordinates.

Finally, we note from (2.2), (2.5), and (2.6)
that the electron number density satisfies a dif-
fusionlike equation; in general, we have

and hence

&'R =-A R, (3.5a)

(3.5b)

Bn= 2—=D~n,
Bt

(2.9)
2m d 2— dFN~'Q P +kT-
M d~, dc

regardless of geometry and independently of
whether or not X,/I. is small. This will be veri-
fied in Sec. III.

III. VARIATIONAL SOLUTION OF BOLTZMANN'S

EQUATION

Parker9 and Leemon Bnd Kumar' solve the
Boltzmann equation for electrons diffusing freely
in a neutral gas of one component and making only
elastic collisions with the neutrals. We take a

m~ '~'
+x.NI(F)+A '

2
D 3F=0 (3 5c)-3'

where A and D are separation constants. A is
determined by solving the eigenvalue equation
(3.5a) with the boundary condition R =0. Only the
lowest mode is important at long times, and for
cylindrical geometry A is given by (2.7).

Similarly, (3.5c) is an eigenvalue equation in
which D appears as an eigenvalue; again only the
lowest eigenvalue is important at long times.
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Note that the electron number density is ob-
tained by integrating f (e, r, I) over all energies;
assuming that F(e) is normalized,

nificant unless K is very small.
These definitions, together with the substitution

in (3.5c) of

1/2
n(r, t) =- f (e, r, t)e'"de

m m 0

F(u) =e "G(u),

yield the eigenvalue equation

(3.7)

and from (3.5a) and (3.5b) it is clear that n satis-
fies a diffusion equation of the type (2.9).

It is convenient at this stage to make all vari-
ables dimensionless; cross sections are measured
in units of Qo =10 ' cm, the new energy variable
is u =e/kT, and the other dimensionless variables
are defined as follows:

u Q e —+&,—I(G)+K u 6-—e "G =0,dG M -u
u du '2m Q

(3.8)

where the inelastic collision term is now given by

I(G) = P (u+u, )Q;(u+u, )e '"'"~'[G(u+u, )-G(u)]

(3.6a)

(3.6b)

-uQ, (u)e "[G(u)-G(u-u;)) (3.9)

where v, „=(2kT/m)'~' and y. and X, are repre-
sentative mean free paths defined as in Secs. I and
II but with the actual cross section q (e) replaced
by the constant Q, . The time constant (2.6) for the
lowest-order mode is thus given by

The lowest eigenvalue 9 of Eq. (3.8) can be found
from a variational principle which relies on the
self-adjointness of the collision operators [the
first two terms in (3.8)]. Thus, for example, if
Qy (u) and Q, (u) are arbitrary functions, then

T =[(2m/M)v, „/X ]K 9 (3.6c)
du Q,I(P,) = du Q, I(g, ) . (3.10)

From the discussion in Sec. II, we anticipate that
boundary effects and diffusion cooling will be sig-

The proof relies upcm establishing the following
identity:

J &" 4 ~I4 I= E & I" "&)Q&I "I ""IA I" ") 4 I"III' I" "~ 4 M1).
0 0

(3.1 1)

If we define

9 = dig u Q e (p')' +K'e "—p' — ' pl(4)„u 2 X2M

Q 2m

X (3.12)

du QI(Q) = g du (u+u)) Q, (u+u, )e ~'"~'

then the function Q(u) which render s 3 stationar y
(actually a minimum) with respect to all other
functions is the eigenfunction G(u) of (3.8) corre-
sponding to the lowest eigenvalue 9; in that case
(9 = 9. The proof follows along lines similar to
proofs given in elementary texts on the calculus
of variations. "

Note that by virtue of (3.11), the last term in
the integrand in the numerator of (3.12) can be
written in the form

form of trial function with one or more adjustable
parameters a„a„.. . , calculate 3(n„n„.. . )
and then minimize with respect to these parame-
ters. The method is first illustrated in the case
of a single-component gas with no inelastic col-
lisions and the results are compared with model
cross section calculations of previous work. ' "

IV. RESULTS AND DISCUSSION FOR MODEL CROSS

SECTIONS

A. Single-component neutral gas, elastic collisions

Since x, = 0 and x, = 1, we have

where y is a constant. As we deal with models
only, it is in the spirit of the calculation to consi-
der only the simplest, single-parameter trial
functions. Hence we choose

x [@(u + u;) —g(u)]', (3.13) y(u) =e (4 1)

which is clearly non-negative.
In practice, we choose a physically reasonable

where n is an adjustable parameter. Equation
(3.12) then gives
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3= 2v 'i' a'r(y +2) ~'r(3 —y}
(I+2a)&+'t' (1+2a)'i'+1 + (4.2)

The values of a which minimize , together with

0 =&;„, are shown below for various y.
y =T~ (constant collision frequency).

a = —', [(1 +4'')'i' 1], g = —'z ' [(1+4m')'t —1].

In this case, (4.1) is the exact eigenfunction, as
can be verified by direct substitution in (3.8).

y =I (constant cross section).

a = (1 —2 v'+ 4~')'t' —(1 —2K'} .

If K&1,

K2 g 2v -I/2(I — K2)

and hence from (3.6b),

fusion heating). Notice that in all cases D&Dp re-
gardless of the energy dependence of the cross
section, confirming the earlier results in Secs. I
and II.

B. Two-component gas, inelastic collisions

The model parameters are listed below:

T = 293 'K, M, =40 amu M, = 2 amu

(q ), =10 ' (ukT) 't', (q ), =8.0.
Molecules of type 2 have excitable rotational
states, quantum number J, and selection rule
~A Ji =2 (Gerjuoy and Stein" ):

Q~ z„(u) =(Z~e &/Z)cr~ ~, ,(u) (j =0, 1, 2, . . . ),
Zq ——(2t + 1)(t +a)(2d+ 1),

D =a,[I-,—', (X,/A)'],
(4.3) 0 if J even,

1 if J odd,

a= ——EK4 2
15

e= 2v '"r(-,' -~)[I--,',~'K'].
(4.4)

(4.5)

Assuming the eigenfunction of (3.8) to be of the
form (4.1), it follows from (3.7) that the energy-
distribution function for the electrons is

F(e}=exp( —e/k T, ),
where the electron temperature is given by

(4.6)

The correct value'" of the coefficient of K' in the
expression for 8 is (approximately) ';, rather than

This minor discrepancy is not unexpected in
view of the simplified trial function (4.1). It can
be seen that equation (2.6), based upon the non-
linear diffusion equation (2.2), gives an expression
for D of the same form as the above.

y=g (cross-section a sPeed).8

a. =0, 9 =1, D =Dp= 3VIhX~.

There is no diffusion cooling in this case. '
Again, (4.1) is an eigenfunction of (3.8), and the
above results are exact.

y =~~+6(b, «I). If 6=0, then n =0 also; hence,
if 6 is small but nonzero, a must be O(h). Re-
taining only leading terms in small quantities in

Eq. (4.2}, we have

3= (2v 't'/g')[a'r(', -) +z'r( —', —6)(1+2ah)],
and setting d3/da =0 gives

z= gz, e '~,
J

U~ =d( J +1)B,/kT, B,= 0.007 54 eV,

cr 1-—'(d+2)(d+1) g~
(2J + 3)(2d + I) ' u

up=(4 J+6)BO/kT, oo =8xQ'go/15,

a p
= Bohr radius,

Q =0.62 (quadrupole moment in units of ea,') .

The above model approximately duplicates condi-
tions for electrons in an argon-hydrogen mixture
at room temperature (argon = 1, hydrogen = 2).

The formulas for the cross sections for excita-
tion of rotational levels of H, are based on the
assumption that the interaction is dominated by
long-range quadrupole force, " and they have been
used by Phelps and co-workers" in calculation of
transport coefficients. Inelastic collisions of
electrons with H, molecules are possible if e
)0.045 eV and are therefore significant at room
temperature. (Inelastic collisions involving ex-
citation of vibrational states can be safely ne-
glected, since the threshold energy is about 0.5
eV.}

To calculate D, we again minimize the integral
(3.12) using the single -parameter trial function
(4.1). Equation (3.12) becomes in this case

T, = T/(l +a) . (4.7)

If the cross section varies less rapidly than lin-
early with electron speed (i.e., y& —,

' in the model
above) then n is positive and hence there is dif-
fusion cooling, with T, & T. On the other hand,
if y & —,', a is negative [Eq. (4.4)] and T, & T (dif-

2m '/"
s(a) =, (I+2a)~t'

K

7g m

(4.8)
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FIG. 2. Variational parameter corresponding to values
of effective diffusion coefficient shown in Fig, 1. Elec-
tron temperature is given by Eq. (4.7).

where

The steep rise in ND (and the steep fall in n) in-
dicate just how effectively the thermal contact is
improved in this way. It is interesting to note
that Biondi' employed a similar experimental pro-
cedure. He used traces of helium in argon and
neon gases, and the increased efficiency of ener-
gy transfer there results from the lighter mass
of the helium atom rather than from inelastic
collisions. Biondi's experimental curves are not
unlike those shown in Fig. 1 (see Ref. 1, Fig. 5).

It is evident from the diagrams that a =0 for
even a, few pexcent H, and that thermal equilibrium
can be considered to be established not far beyond
the maximum in+j9. Under these conditions, we
therefore have from (3.3b), (3.6b), and (4.8) that

8=&(0)

8„(u)-=Q (u+u, ) Q, „,(u+u, )e "~(1 e~-)'.
(4.9)

Figures 1 and 2 show ND and n, respectively,
as functions of hydrogen concentration for several
total gas pressures, assuming a cylindrical en-
closure of the same dimensions used in experi-
ment. ' ' The variation with pressure is as ex-
pected; a decreases (towards zero) and ND in-
creases with increasing pressure, i.e., thermal
equilibrium conditions are approached. The pure
argon equilibrium diffusion coefficient, whose
theoretical value is given bye =29.6x l0" cm '
sec ', has not been measured in experiment be-
cause of difficulties associated with the high pres-
sures required. Thus in contrast to other gases,
like helium and neon, it has not been possible to
determine the momentum transfer cross section
for electrons in pure argon from thermal-equilib-
rium diffusion coefficient data. ' ' ' (The special
interest in the argon cross section derives from
the deep Ramsauer-Townsend minimum. ') The
addition of even a small amount of H, helps to
bring about thermal equilibrium even at quite low
total gas pressures. Electron-H, collisions, al-
though comparatively rare, generally involve a
far greater energy transfer than the (elastic)
electron-Ar collisions and hence tend to ther-
malize the electrons, reducing diffusion cooling.

fqD=XD, = — due "u[x,(q ), +x,(q ),) '.3 em Q

(4.10)

The curves in Fig. 1 slope downward towards the
value for pure hydrogen, &L)Q=4.43&10" cm '
see

The 30-Torr curve for ND is in qualitative
agreement with experixnent; better agreement
would be expected with more realistic cross sec-
tions and a variational trial function with several
adjustable parameters. Nevertheless, the present
simplified calculation is useful because it serves
to establish the existence of thermal equilibrium
beyond the "bump" in the Ng curve; in practice,
we can therefore use Eq. (4.10) to derive the argon
cross section (q ), fxom the experimental data.
(The hydrogen cross section (q )2 is well known, '
so that (q ), can be found unambiguously. ) The
fitting of the experimental data will be discussed
elsewher e.
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