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Stimulated absorption and emission of strong monochromatic radiation by a two-level atom
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The time evolution of a two-level system interacting with a classical monochromatic .adiation field is

calculated by Fourier transforming the equations of motion. This can be done exactly if one uses the

convolution of the product of two Fourier transformations, The method produces recurrence relationships for

the transforms. The time-dependent amplitudes of the states and the transition probability are evaluated by

using two such recurrence relationships. The time-averaged probability shows characteristic resonances at odd

multiples of the ratio of the natural frequency of the system to the frequency of the radiation field. The peaks

of the resonances are displaced by the Bloch-Siegert shift. At these resonances the system is completely

saturated with the flipping frequency dependent on the strength of the radiation field. The time dependence

and the frequency spectrum of the dipole moment is determined at the main resonance and at the three-

quantum resonance. The spectrum contains the zero-frequency terms which are responsible for the coherence

resonances.

I. INTRODUCTION

Recently there has been renewed interest in the
solution of the interaction of a strong classical
monochromatic radiation field with a two-level.
system. Muriel' has attempted an exact analytical.
solution, but it was shown by Gupta and Beers
and Nickle3 that his results are not valid for more
than hal. f a period of the radiation field. At about
the same time Gush and Gush published a method
of solution which uses the nonrelativistic Green's-
function operator. Their results are expressed
in terms of continued fractions. Salzman' treats
the same problem by integrating the differential
equations numerical. ly. He gives an expression
for the slowly varying part of the transition prob-
abil. ity; a result which is identical with the ro-
tating-wave approximation. Moloney, Ali„and
Meath' continued the investigation of the time
evolution of a two-level. atom interacting with a
sinusoidal external. field. They discuss an iter-
ative power-series solution and give results using
as many as j.20 terms in the expansion. Some
aspects of this probl. em have also been. presented
by Shir1.ey, ' Stenholm, ' Stenholm and Aminoff, 9

Pegg and Series, ' Cohen-Tannoudji et al. ," and
Ver mani.

%e show in this paper that the Schrodinger equa-
tions of a two-level. atom interacting with a mono-
chromatic wave can. be Fourier transformed by
using the method of convolution of the product of
two Fourier transformations. The resulting re-
currence relationships of the transformations can
then be solved to any desired accuracy.

%e ilt.ustrate the method by calculating analyti-
cal expressions for the time-dependent ampl. itudes
and probabilities of the two states using the first-
and second-order approximation. The approxi-

mations are obtained from different recurrence
relationships. %e also show how these solutions
are related to the rotating-wave approximation.
In addition we calculate the time-averaged prob-
ability of the system. The results show reso-
nances at odd muitipies of the ratio ~,/~, where
&o is the natural. frequency of the system and u,
the frequency of the radiation field. The peaks
of the resonances are displaced by the famil. iar
8 loch-Siegert shift. "

The time-dependent solutions al.so allow us to
calculate the evolution of the dipol. e moment of
the system. In particular we determine the fre-
quency spectrum of the dipol. e moment at the main
resonance and at. the three-quantum resonance,
and we point out how the system can have coher-
ence resonances which appear at even multiples
of the ratio to, /u&, .

II, DIFFERENTIAL EQUATIONS

Ne investigate the solution of the Schrodinger
equation

ei c ~
= fs —[c &Bt

for a two-level atom interacting with a mono-
chromatic wave. The Hamiltonian H is written
in two parts:

H =IIo+Hi,

where H, is the Hamiltonian of the atom and H,
represents the interaction of the atom with the
radiation field. The states of the atom are quan-
tized, but the radiation field is treated classically.
It is convenient to transform the Schrodinger
equation to the interaction representation. If we
write
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H,' = exp(iH t/It)H, exp(-iHot/5)

~C'& = exp(iHot/b))4&,

then Eq. (1) becomes

(3) A. Short-time solution

One can solve Eq. (10) by assuming that b„(t)= 1
for all time. The amplitude b„(t) is obtained by
integrating the second equation of Eq. (10) with
the result

(8)

We write

and substitution of Eq. (t) into Eq. (5) yields the
following set of coupled linear differential equa-
tions for the amplitudes b„(t):

The solution of Eq. (5) is obtained by expanding
the wave function I4'& in terms of the eigenstates
of the Hamiltonian Ho:

Ho
I
'4& =@~&

I &&&.

This solution can be substituted into the first equa-
tion of Eq. (10) and an integration yields an im-
proved approximation for b (t) which in turn can
be substituted into the second equation and this way
one can obtain series solutions for b (t) and b„(t).
For short times and V«+, the series converges
rapidly. For (d, near the resonance frequency ~0
the second term in Eq. (11}is much larger than
the first, and we can write the probability of the
state I[)„& as

i b(t)—
dE

= Q exp[i((d, (d, )t]V»—b~(t) (0 = 1, 2, . . . ). (8)

In Eq. (8) V» stands for the matrix element
I '([t)

I
H,

I
[t) &.

The wave functions of the two atomic states are

I q.& ~d
I q.& with the atom tn sta~e

I qg at t= O.

The initial conditions b (0)= 1 and b„(0)= 0 can he
incorporated into the differential equations by ad-
ding the term ib(t) to the equation for db (t)/dt

The interaction of the atom with the radiation
field ls

At resonance the excitation probability increases
quadratically with time. In addition the solution
does not conserve the total probability of the sys-
tem.

B. Rotating-wave approximation

The differential equations of Eq. (10) contain
terms which depend on the sum and difference of
co, and co, . If we neglect the nonresonant high-fre-
quency terms, the equations reduce to

H, = Vcos(&u, t). (8)

The operator V conta, ins all the space-dependent
terms. Thus the appropriate differential equations
for a two-level atom interacting with a, monochro-
matic wave are

i —b (t) =-,'V exp(- i «dt)b„(t)+ib(t),

i —b„(t) =-,'V exp(in(dt)b (t),
(13)

i—b (t) = Vcos(~o, t) exp(-i(oot)b„(t)+i6(t},

i—b„(t) = V cos((d, t) exp(io]ot)b (t),
(10)

where we set ~('d = Mo —(d&.

One way of solving Eq. (13}is to Fourier trans-
form the amplitudes. We define

oo

b (t)= — . G ((o)exp[-t((d+ 2n(o)t]do),

(14)

where we set V = ([[)
I
V

I [])„&= ([t)„ I
V

I
[t) & and (d, = o)„

m'

CC)

b„(t) = — . G„((d}exp[- t((o ——2a(d)t]d(o,
uOO

(15)

III. METHODS OF SOLUTION tb(t) = — . exp[- i(~+ on&a)t]d&o.
2fri

(18)

Before discussing the exact solution of Eq. (10)
we present two approximations which are frequently
used in the analysis of this system.

If we substitute these transformations into Eq. (13),
we find that the Fourier transforms must satisfy
the equations
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((v+24(o)G (&u) =2VG„(a))+ I,
((u —26(u)G„(&u) = 2VG ((o),

with the solutions
1

CO —2 ~4)
Gm~ =

((u+-,'&(u)(~ ——,'&s)) —(-,' V)' '

1

G„((o)=
((o+-,'&~)(~ ——,'b, (o) —(-,' V)'

(17)

(18)

(19)

p2

(d 0/)'+ V'

Thus at resonance the transition rate is propor-
tional to V.

The time-averaged excitation probability is

The amplitudes in Eqs. (14) and (15) are obtained

by extending the integration over co into the com-
plex plane. The Fourier transforms have poles at

II ~ j[(g~)2 V2]i/2 (20)

and if we displace the poles from the real axis by
adding to them a term —iE we can close the contour
by an infinite semicircle in the lower half-plane.
The integrand is zero over the semicircle. After
the integration we let e-0. The amplitudes b (t)
and b„(t) are equal to the sum of the residues of
the integrands.

Using this procedure we get for the probability

I g„) in the rotating-wave approximation

p2
Ib„(t)I'=, , sin'( —'. [(&(u)'+ V']' 't), (21)(«d)'+ V'

which for V««u agrees with Eq. (12). This is
the familiar Rabi formula. The probability has a
periodicity v=2v/[(A&u)'+ V']'/' and after t = r/2
the transition probability is

(22)

When plotted as a function of &u,/u, the time-aver-
agedprobability is a Lorentzian with a maximum at
ru, = w, and a width at half-maximum of 2(V/ar, ).

C. Exact solution

It is possible to Fourier transform Eq. (10)with-
out making the rotating-wave approximation. We
use the same Fourier transformations for b (t),
b„(t), and 6(t) as in Eqs. (14), (15), and (16), re
spectively, but we set co, =0. We separately trans-
form cos(&u, t) as

1
cos(&u, t) = — [5(&u —&u, ) +6(&u+ v, )] exp(- i&at) du&.

2

(28)

In the first equation of Eq. (10) we have the pro-
duct of two Fourier transformations. By using the
method of convolution we can write

1 00 00

cos(ar, t) b„(t) = — . exp(i —,'ar, t) G„(v —p)(5(p —0/, ) + 5(p+ &@,)j dp exp(- i&et) d0/.
4n.i m00 ~00

(24)

The integral in the square brackets of Eq. (24) is
equal to G„(u —0/, )+G„(a+u,). The remaining in-
tegral over ~ is substituted together with the Fou-
rier transformations of b (t) and 5(t) into the first
equation of Eq. (10). The differential equation is
satisfied if

((u+-,'(u, )G ((u) =-,' V[G„((u —(u, ) + G„((u+ &o,)]+1.

(25)

In a similar fashion we can convolute the product
of the Fourier transformations of cos(0/, t) and
b (t). The substitution of the result together with
the Fourier transformations of b„(t) into the sec-
ond equation of Eq. (10) yields the relationship

(&o z(u0)G„((d) = 2 V[G (0/ —(a&~) + G ((d+ &a&~)]. (26)

For &u, =0 Eqs. (25) and (26) can be easily solved,
and the results give the probabilities of the atomic
states coupled by a static field.

One can obtain the rotating-wave approximation
by neglecting G„((a—&u, ) in Eq. (25) and G (u&+ 0/, )

in Eq. (26), respectively. The modified equations
are

(sr+ —,~,)G (~) = —,'VG„(~+0/, )+ I,

(&u —2 (u, )G„((u) = 2 V G~((u —(u,).
(27)

In order to get an equation for G„(&o), one shifts
the frequency u by an amount -u, in the first
equation of Eq. (27), and substitutes the resulting
expression for G (&u —v, ) into the second equation.
This procedure yields

2V
((O —ur, + —', (u0) (u) —2(O,) —(—,

' V)~
' (28)

The poles of Eq. (28) are shifted from those of Eq.
(20) by+ —,'u, . The amplitude b„(t), however, is the
same as the one obtained from Eq. (19) since the
Fourier transformation used here differs from the
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one of Eq. (15) by the factor exp(-i-,'&u, t).
If we had neglected G„(&u+ ~,) in Eq. (25) and

G (&u —~,) in Eq. (26), respectively, the modified
equations would have yielded probabilities for the
states which do not show a resonance at ~, = ~, but
show one at coo

Neglecting one of the Fourier transforms on the
right side of Eqs. (25) and (26) allows us to make
an appropriate shift of the frequency (d and obtain
equations for G and G„with the same argument
in all the transforms. This is not possible if we
use the exact relationships. A particular shift of
the frequency ~ does not produce an equation in
which all the transforms have the same argument.
We can, however, find recurrence relationships
for G and G„and use them to calculate the ampli-
tudes b (f) and b„(f) to any desired accuracy.

A recurrence relationship for G is obtained by
first shifting u in Eq. (26) by -u&, . This yields an
equation for G„(&o —m, ) in terms of G (u —2&@,)
and G (e). The result is substituted into Eq. (25).
Similarly we shift &u by+&@, in Eq. (26). This re-
lates the Fourier transform G„(&u+ w, ) to G (&u)

a.nd G (a)+2(u, ).
These substitutions give us

X (u)")G ((u) = ((u" + (u, ) (u)" —(u, )

IV. FIRST-ORDER APPROXIMATION

The first-order approximation is obtained by
neglecting G„(&u —2m, ) and G„(&u+ 2&v, ) in Eq. (31).
This yields

G„"'(&u) = Vm'/X„(ur'). (33)

The poles of G„"' are obtained by setting X„(e')
equal to zero. The solution of the cubic equation
in v' gives

0( = gC cos(p Q) + g(do,

0,' =-', C cos(—,'p+-', v)+ —u&„

Q3 =
g C cos(p Q+ ~ w)+ g(do~

where

(34)

X„((u')G„((o)= V~'+ (-,'V)'[((u'+ &u,)G„(u) —2(u, )

+ ((u' —(u, )G„(a)+2u&, )],

(31)

where we defined ~'=(d+-, cu, and

X„((o')= (&u' —u), )((u'+ (u, )(u)' —(u, ) —(-,'V)'(2ur'). (32)

We illustrate the power of this method by cal-
culating the first- and second-order approxima-
tions and indicate the degree of convergence of
the results.

+ (—,'V)'[(&u" + &u, )G (~ —2~, )

+ ((u" —(u, )G (~+2(u, )],

C = [3&@,'+ 6(—,'V)'+ (u', ]'",
(do+ 9(do(p V) —9(do(dg

Q= cos '

(35)

(36)

where we set u&" = &a —u&, /2 and

(29)

(30)

We can generate another recurrence relationship
by shifting e by -2u, in Eq. (29) and substituting
the expression for G„(~ —2&v, ) into the right side
of Eq. (29). Shifting ~ by+2&v, expresses
G„(m+2&v, ) in terms of G (u) and G (u+4a, ).
This results in a new recurrence relationship be-
tween G (~), G (ar —4~, ), and G (&v+4~, ). The
method can be repeated and the substitutions yield
an equation relating G (cu), G (&u —8~,), and
G ((u+ 8(u, )."

We can obtain approximations for G (&u) by ne-
glecting the Fourier transforms with the shifted
arguments in a given recurrence relationship.
The exact solution for G (u) is generated by re-
lating the different recurrence relationships.

In a similar fashion we can get exact recurrence
relationships for the Fourier transform of the
amplitude b„. The lowest-order one is

For small V/&u, the pole 0', is near ~, and the
poles 0,' and 0,' are near -~, and + (d„respec-
tively. In Fig. 1 we have plotted the poles as a
function of ao/~, for V= 0.3&v, . The anticrossing
of the first and third pole near co, = (d, produces a
resonance in the probability of the state ~g„).

The residues of the poles are given by the ex-
pression

ft„(n~) =(G„"'(~')((u' —D~) exp[-i(~' —(u,)f]j„.„,
(p=1, 2, 3), (37}

Qp
6 th )

41p

4 4))

FIG. 1. Poles of G„as a function of ~0 for V=0.3~&.
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and the probability of the atomic state Ig„) is
3

Ib„(t)I' = g Q„(Q~)Q„(A',) cos[(Q~ —0',)t], (38)

the excited state becomes

I&.I'= Z I&.(~,')I'. (38)

where Q„ is the time-independent part of R„.
The probability contains constant terms for p =q

and oscillatory terms for p 4q. At resonance the
probability has a low-frequency variation (O', —0,')
which depends strongly on V and two high-frequen-
cy contributions with frequencies near 2~, . The
time dependence of Ib„(t)I' is shown in Fig. 2 for

0 1 and (do ' Mly p
tively. At resonance the probability reaches a
maximum at approximately t= v/V. This is the
same result as was obtained in the rotating-wave
approximation. The effect of the pole 0,' is evi-
dent in the deviation of the curve from the
sin'(aVt) behavior. The main frequency of os-
cillation is close to the one given by the rotating-
wave approximation. For (do 1 6(d] the deviation
from Eq. (21) is somewhat less pronounced.

If we do not measure the explicit time depen-
dence of the absorption and emission process, we
have to average Eq. (38) over time. The terms
with p+q average to zero and the probability of

In Fig. 3 we have plotted the probability Ib„I' as
a function of Id, /u, for V=0.3td, . The curve has
a maximum at v, =co, with a width at half-maxi-
mum of roughly 0.6', . At the resonance point the
average probability is 2, which means that the
system is completely saturated.

V. SECOND-ORDER APPROXIMATION

The exact recurrence relationship of Eq. (31) is
used as the starting point. We find two new rela-
tionships by shifting the frequency cu by +2~, and

by -2~„respectively. The first equation relates
G„(&@+2',) to G„(Id) and G„(&d +4&v, ), and the second
equation expresses G„(td —2&v, ) in terms of

G„(~—4&v, ) and G„(~). These results are substi-
tuted into Eq. (31). The procedure yields a new

recurrence relationship between G„(ar), G„(&d +4m, ),
and G„(&d-4&@,). Neglecting the Fourier trans-
forms with the shifted frequencies gives us the
second-order approximation:

G„"'((u)=, ((u'X„((u' —2(d, )X„((u' + 2 ', ) + (—,
' V)'[((u' + (u, )((u' —2(u, )X„((u' + 2 al, )

Yn ~

+ ((d —(d&)((d +2(d&)X„((d —2(dz)]) .
The function X„ is defined by Eq. (32) and

(40)

Y„(td') =X„((u')X„(u)' —2 td, )X„(&u' + 2(d, ) —(a V)'[(&u' + (u, )((o' —3(d, )X„((u' + 2(g, ) + ((u' —(u, )((u' + 3(u, )X„((u' —2(u, )].
(41)

There are nine poles in Eq. (40) but for two of
them the numerator vanishes. The remaining ones
are plotted in Fig. 4 as a function of u&o/&u, . Com-
parison with Fig. 1 shows that two of the poles
are closely related to the two poles in the first-
order approximation which anticross near ~p (Jo].

The third pole in Fig. 1 is replaced in Fig. 4 by
two poles which anticross near the main reso-
nance. Two new poles also anticross near co, = co,

and one additional pole is given by the equation
Q~ =-3', . In addition to the three anticrossings
which are responsible for the main resonance,
there are two new anticrossings near cu, =3y.

1.0

0
0

Vt
2 TT

0 4)0
4 4Ji

FIG. 2. Probability of state
~ g„) as a function of time

for 0 =~& and ~0 =1,6g using the first-order approxi-
mation. The initial conditions are b (0) =1 and b„(0)=0.

FIG. 3. Time-averaged probability of state
~ g„) as a

function of ~0 for V=0.3~& using the first-order approxi-
mation.
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They produce the three-quantum resonance.
There are no anticrossings at +p=2co, and thus
the system cannot have a two-quantum reso-
nance. It should be noted, however, that at (dp 2(Ae)y

the poles have equal separations. The physical
significance of this result is discussed in Sec. VI.

The time dependence of the probability of the
state lg„) is given by Eq. (38) and is shown in Fig.
5 for Mp cc)y and cL)p 1 6M' In order to test the
degree of convergence of the first- and second-
order approximations, we solved Eq. (10) by a
numerical integration. The curves in Fig. 5 are
identical with the numerical results.

The time-averaged probability is plotted in Fig.
6 as a function of ~o/&u, . The main resonance
shows a very small Bloch-Siegert shift. For
V 0 3 c0~ the peak is at ~p 0 9998c0y which should
be compared with the result of Ahmad and Bul-
lough. " Their calculation gives (dp 0 9943(dy.
The three-quantum resonance is at (dp 2 9717~„
whereas Ahmad and Bullough find the maximum
at cup =2.9916&v, . As can be seen from Fig. 6 both
resonances are completely saturated. At the main
resonance the probability of the state lg„) is unity
at Vt =v. At the three-quantum resonance the
complete exchange of the probability from state
I g ) to state lg„) takes about 180 times as long.

VI. DIPOLE MOMENT

Thus far we have examined the behavior of the
probability of state

I g„). The other quantity of
interest in this system is the dipole moment,

1.0

0'
0 Vt

of D can be interpreted as the components in
phase and v/2 out of phase with respect to the
applied electric field.

The magnitude of D can be obtained directly
from the population of state

I g„) using the normal-
ization of the wave function:

ID(t)l =2I: lb. (t)l'(I —lb. (i)l')]'" (43)

The dipole moment vanishes when the system is
either in state I(„) or lg ) and reaches a maxi-
mum when lb„(t)l'= lb (t)l'=0. 5. The time depend-
ence is essentially an oscillation at twice the flip-
ping frequency (the frequency of population in-
version).

Using the notation of Sec. IV we can write the
dipole moment as

FIG. 5. Probability of state I P„) as a function of time
for ~p =~& and ~p =1 6~& using the second-order approxi-
mation. The initial conditions are b~ (0) =1 and b„(0) =0.

D(t) =2b„(t) exp(-i sr„t)b*(t) exp(+i&@ t)

=2b„(t)b (t)exp(-i sr t). (42)
D(t) =2 PQ„(Q~)Q (II,")exp( —iw~, t)

P, a

(44)

In a magnetic dipole transition, D(t) represents
the transverse magnetic moment of the atom. Its
x and y components are given, respectively, by
the real and imaginary parts of D. In the classical
description of an electric dipole transition, D(t)
measures the total dipole moment. In the rotating-
wave approximation the real and imaginary parts

with

cop = Qp —0 —(dp. (45)

6 Ib„l*

The poles Q~ are obtained from Eq. (40) and are
plotted in Fig. 4. The poles 0,"are those of the

.5

.4

4)p
4 4)g

0

FIG. 4. Poles of G„as a function of up for V=0.3m&.

FIG. 6. Time-averaged probability of state
I g„) as a

function of (dp for V= 0.3a( using the second-order ap-
proximation.
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