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The photoionization cross sections and the oscillator strengths for helium, lithium, and
beryllium atoms are calculated in the framework of the random-phase approximation with
exchange. The energy-level shift for discrete transitions is taken into account consistently
in this approximation. The results are compared with other many-body calculations and with
the experimental data. The comparison shows that the random-phase approximation with ex-
change can even be used for systems with a small number of particles.

I. INTRODUCTION

Many-body effects in the photoionization and

photoexcitation of heavier atoms, particularly in
the noble gases, have been investigated with suc-
cess in the framework of the random-phase ap-
proximation with exchange (RPAE). ' ' The re-
sponse of these many-electron systems to a fast
electron (instead of a. photon) acting as a probe
has been treated successfully in the RPAE as
well. 4 This approximation takes into account the
contribution of those Feynrnan diagrams that are
dominant in the case of a dense finite system;
with some justification, the electron shells in
heavier atoms can be considered as a dense elec-
tron gas. The lightest atoms (He, Li, Be) cer-
tainly are not a dense electron gas; indeed, for
these atoms the many-body perturbation theory is
generally successful. ~' It is therefore interesting
to investigate the correlation effects in the lightest
atoms using the RPAE in order to see whether this
approximation can be used even for systems with
a small number of particles.

The use of the RPAE also has some practical ad-
vantages. In fact, using the multiple-basis -set
technique' the contribution of an infinite series of
diagrams can be represented by a single "renor-
malized" diagram; by taking such diagrams into
account up to a certain order, one does much bet-
ter than with just a perturbation calculation. But
even so, several diagrams have to be calculated,
while in the RPAE the contribution of all diagrams
of the selected infinite class (among them, all
first order) is obtained at once by solving the
RPAE integral equation. Unfortunately, uncom-
pensated exclusion-principle-violating (EPV) dia-
grams are then taken into account as well; this
is the price to be paid for not having to calculate

diagrams one by one.
In this paper an investigation of the photoeffect

on the lightest atoms in the RPAE is presented. A
preliminary report on these investigations was
presented elsewhere. " In Sec. II we outline the
theoretical framework for treating the response
of the many-body system (atom) to an external
perturbation (photon). In Sec. III the methods of
numerical calculation are described, particularly
those concerning the manner of solving the RPAE
equation. Finally, in Sec. IV we present the re-
sults of our calculation of the photoionization cross
section and the discrete transition oscillator
strengths, and compare them with other many-
body calculations and with experimental data.
Throughout the present paper atomic units (a = »~

= e= I) are used except in figures, where energy
is expressed in rydbergs,

II. THEORY

The interaction between the electrons of an atom
and the external electromagnetic field is described
by the Hamiltonian

a'=~A- J-8. -k ~

k)t

where A-„(in the Coulomb gauge, k ~ A-„= 0) de-
scribes photons of momentum k and polarization
A. , and J-„denotes the Fourier transform of the
electron current density,

(2)

where p,. and r,. are the momentum and the posi-
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tion of the ith electron. %e consider only the one-
photon processes; thus the transition probabilities
are calculated in first order in O'. The photoion-
ization cross section (to an arbitrary final state
lk„)) is

where (in the dipole approximation)

Also, (7) can be written in matrix form,

where cu is the energy of the photon and J~ denotes
the transversal component of J-„.

The cross section (3) is related to the current
density correlation function" S(k, f) defined by

(4)

the operator Zi(t) is given in the Heisenberg rep-
resentation determined by the atomic Hamiltonian

H„, and T is the time-ordering operator. Because
of the rotation invariance of H „S(k,I) is inde-
pendent of the orientation of k. Comparing the
Lehmann representation of S(k, I) and (3), one
sees immediately that

o ((u) = —(4sj(uc) ImS(k, (o),

where S(k, v) is the Fourier transform of S(k, I).
If the condition for the validity of the dipole ap-

proximation (kR «1, R being the atomic radius)
is fulfilled, the electron current density J-„can be
simplified considerably:

J-„=J-„~—:P =f[H,„D];
P =Z, ,p, is the total momentum of electrons and

D=Zf, r, is the dipole momentum of the atom.
Using the relation between matrix elements of
those operators taken with respect to eigenstates
of H„, one may choose either the velocity form
(V form) or the length form (x form) of the cur-
rent matrix elements in the dipole approximation.
Those two forms are equivalent not only for the
exact (local) Hamiltonian H„b tfuor the RPAE as
well. The V form makes S(k=0, ~)=-S(&u) a, total
momentum correlation function, while the r form
makes it a dipole momentum correlation function,
closely related to the dipole polarizability o(~),
so that a(~) can be expressed also in terms of
Imn(~) "'"

The correlation function S(~) can be related to
II„„&(u), the Fourier transform of the polariza-
tion propagator 11~„8(f, f');" X, g, n, and p de-
note the single-particle states I o.}= (nims), etc.
This is essentially the two-particle Green's func-
tion of the many-electron system. The expression
for S(~) is

where the one-column matrix d (d, = d~z =—&n
l
d

l
p))

and the square matrix II(&u) are labeled by an or-
dered pair of the particle-hole states: s = (n, p);
n &F, P ~ F, or o —F, P & E [n —E and n & E denote
occupied (hole) and unoccupied (particle) states,
respectively] Th.e correlation function can be
represented by Feynman diagrams, as shown in
Fig. 1.

For the photoexcitation, the transition probabil-
ity to a discrete state of the atom can be expressed
in terms of the oscillator strength

This quantity, originally defined in the x form,
can be expressed in the V form as well. From the
Lehmann representation of the correlation func-
tion one obtains directly

f„=(2ju)„) ResS{(u„),

where ResS(&u„) denotes the residue of S(cu) at its
pole ~„=E„-E,.

An approximate value for S(v) is obtained by
selecting and summing a subclass of Feynman dia-
grams; an approximate value for a(&o) or f„ is then
obtained from S(&u).

Taking the free polarization propagator

(u —e + eq+ I(n8 - n )rI

where & and &8 are the single-particle energies

+ 0 ~ ~

FIG. 1. I eynman diagrams for the correlation function
S(~), Eq. (7).
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and n and na are the corresponding occupation
numbers (n = 1 for o ~ F and n = 0 for o &F), the
single-particle approximation for v(e) or f„ is ob-
tained. In our calculations the correlations are
taken into account in the framework of the RPAE.
The RPAE form of II((d) is

11(~}=ilo(~)+ 110(~)r(~)110(~), (13)

where the effective interaction I'((d) satisfies the
equation

o((d)= g~B,(&u)~ 5((d —c +c,).
n)F
g&F

(21)

To calculate the oscillator strengths, the dis-
crete energy differences E„—E, must also be cal-
culated consistently in the RPAE. Denoting (d,
= e, —e8, s —= (c((, P), we see that II', ((d, ) is singular
and so Eq. (17) cannot be solved a,s it stands. We
thus separate II'((d) into two parts, one of them
regular for some fixed transition so= (o„(3,),

r(&) = U+ Uilor(~), (14)

The matrix equations hereafter are to be under-
stood in the same sense as (9).

We express S((d) in terms of the renormalized
photon vertex B((d) defined by

U being the antisymmetrized Coulomb interaction
matrix element

(15)

and

I'(e) = U+ UII" (&u)I'((d)

II", ((d) = (1 —6„)11',((d),

and the other singular,

110"((d)= 6„11,'((u) .

We then define"

(22)

(23)

(24)

a)((d) = d+ I'((d)11'((d)d

and satisfying the equation

&((d) = d+ UII'((o) B((d) .

(16)

(17)

I)'(~) = d+ I'(u))110'((u)d, (25)

which are regular at ~=(d, by construction.
The effective interaction I'(~) and the renor-

malized vertex $((d) are then
Equations (16) and (17) are represented diagrama-
tically in Fig. 2. From (9), (13), and (16) one
gets and

F(~)= r'(~)+ r'(~)11" (~)r(~) (26)

S((u) = dtil'((d)S)((o) . (18) X)((u) =&'(u)) + I"((u) 11"'((d)B((u) . (27)

= —vQ ~a~, ((d) ~'6((u —&~+ s(()
e&F
gcF

(20)

Then o((d) and f„can be expressed in terms of
X)(&u), obtained by solving (17). From (17) and

(18) one obta, ins

S(~)=&(~)'ll'(~)&(~) -&(~)'ll'( )'Uil'( )&( ).
(19}

The second term on the right-hand side is real,
owing to the Hermiticity of U. Therefore (for (d

&0)

ImS((d) = ImK)((d)tii'((d)S((u)

The matrix element corresponding to s, = (o.„P,)
1S

B, ( ) =u,' ((u)/[I —rl,',"((d)I",',, ((u)].

Since (d &0 we have n —n = 1.; thus

31, ( )=( — .,)&.' ( )/I — ., —F,',. ( ) n]—
(29)

(28)

&,' ((d) is regular at (d = u&, ; S, (((() is not only reg-
ular there, but actually equal to zero. By com-
paring (26) and (27), we see that I', , ((d} displays
the same behavior. The pole of both matrix ele-
ments is displaced; it is given by the equation

Q3 —Q)z —Ts 8 (M) = 0 . (30)

Since &u = &u, , I", , ((d) is developed in a Taylorspy spsp
series around ~, and only the first-order term
is retained. An approximate solution of (30) is then
obtained:

az...= . .r. , ( )((
((0Sp

(31)

(b)

FIG. 2. Diagramatie representation of (a) Eq. (16), de-
fining the renormalized photon vertex ~co); and (b) Eq.
(17), satisfied by Q(~).

In principle, one should solve (24} for I'(~). Such
an accuracy, nevertheless, is unnecessary, and
the lowest-nonvanishing -order perturbation ex-
pansion in U is sufficient:
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I",...(Id) = U, , + g i
U, i' ll,'(Id).

SWSp

f (2/~I, )I& o(~I,)I (36)

In the Feynman diagrams discussed so far a
fermion line corresponds to the Green's function
G'(n; t —t') describing the free propagation, both
forward (t&t') and backward (t&t') in time; there-
fore, the time ordering of interactions is irrele-
vant, and only topologically different diagrams are
considered. Since a forward (backward) propaga-
tion corresponds to a particle (hole), it may be
convenient to write GO=G&o+G~&, the first (second)
term vanishing except for n &F, t&t' (n —E, I &I'),
and to associate G&' (G'o) to R. fermion line oriented
in the sense of increasing (decreasing) time, such
lines now being called pa, rticle (hole) lines. Then
the time order of interactions remains irrelevant
only to some extent, i.e. , only those permutations
are equivalent that do not change a particle line
into a hole line, or vice versa. A certain number
of these diagrams correspond to a single Feyn-
man diagram, but their number is considerably
smaller than that of the corresponding Goldstone
diagrams, where different diagrams are obtained
with any change in the time order of interactions.
In the case of the RPAE this separation of GP leads
to the separation of the polarization propagator,
HP= H&P+ HP&. If a diagram contains only H~&this is
a time-forward diagram; a diagram is time back-
ward if at least one HP& appears in it.

The influence of the medium, consisting of a
system of N particles in the ground state, on a
pa.rticle moving through it is expressed by the
irreducible self-energy part Z*(n, ~).' If G'(n, cu)

is expressed in the Hartree-Fock (HF) basis jnj
=—(p;(r), pI", "(r)},where the X functions @,.(r) for
i = n —I" are obtained as the ground-state solution

In calculating I", , , U, , is set equal to zero owing$p$p & $pSp
to the particular choice of single-particle states
(see Sec. Ill). The residue of S(e) at the displaced
pole is determined as follows: %e write

S(u)) =D'(td) II"'((u)G(&u)+d II"{(u)&"{(u) (33)

The second term in (33) is regular in the vicinity
of e = +, and the correlation function may be
written For ~ = ~,, as

$(Id) = iX),
' (Id) i'/[&u —&u, -I", , (~)]+ (regular part),

(34)

from which we see that

(Ress(IJ,) = in,', (Id, )
i
',

with or~= ~„, is obta. ined as the solution of (30).
The oscillator strength, Eq. (ll), is then

of the self-consistent HF equations and Pf"(r) for
k=- a &E is calculated in the frozen-core field of
the HF ground state, then the first -order e -inde-
pendent term of Z* (i.e. , the HF potential) is al-
ready included in OP. Thus the HF self-consistent
field essentially corresponds to an (iV+ I)-particle
proble, except for j—I, where the terms cor-
responding to zth particle cancel due to the ex-
change. To describe an excited Ã-particle state
an analysis of the two-particle Green's function in
the particle-hole channel [or, equivalently, of II(a)
in the case of the RPAE] becomes necessary. It
turns out that is possible to transfer a part of the
electron correlations from I"(&d) to II'(~) by re-
placing Q~" in 6& with (t) &,

.», calculated by omitting
the term corresponding to the given hole i in the
expression for the HF potential (the so-called po-
tential V" ')."" This choice effectuates the sum-
111Rtloll of Rll tlIIle-forwR1'd diagrams fol' II((d)
diagonal in a given hole t. [While one should sum
over all states corresponding to a fermion line in
a diagram, we shall also call a "diagram" any
term in this sum corresponding to same fixed
state(s), such as the hole state t above]. Care
must now be taken not to include once more the
already summed diagrams (see Sec. III).

Ishihara and Poe' have considered in a general
way the possibility of adding a. conveniently chosen
single-particle potential to the HF one such that
the occupied states are not modified but that sum-
mation of an infinite class of diagrams having cer-
tain special structure is achieved, if the HF un-
occupied states are replaced by the new ones. Qur
choice of Q&;»(r) single-particle states is a parti-
cular case of this method. For diagrams of the
Goldstone type, where the time order of interac-
tions is essential, they also proposed the multiple-
basis-set technique, i.e. , using two bases in the
same diagram in order to sum an infinite class of
diagrams which, between certain definite times,
have structure permitting the summation by going
to the new basis but are otherwise identical. For
dlaglams af the type used 1n this pape1, whele
the time order is fixed only to some extent, the
simultaneous use of two bases does not seem
practicable.

There is an equivalent way of calculating o(e)
and f„ in the RPAE. Starting directly from (3) in
the dipole approximation, one can calculate the
initial and final states and the excitation energies
by solving the eigenvalue RPAE equation. This
equation is obtained" by diagonalizing II(ur); the
eigenvalue equation determines the coefficients

C,'"„'-=(e,
i

c~tc,
i
e„) (3'I)

Rlld the excltRtloll ellel gles (d„:—E„—Eo (eltilel' X

g«+, or ~ «+, p&+). Writing
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(38)

and using (3), (13), (14), and the Lehmann repre-
sentation of the polarization propagator, we see
that this approach is exactly equivalent to the one
we used. It was used by Altick and Glasgold in
their calculations. " Alternatively, one might cal-
culate the matrix elements C~"„' by the perturba-
tional development of the initial and final states.
For the initial state, there is no difficulty as long
a,s it is nondegenerate (closed or half-filled shells).
For the excited state the situation is not so simple,
because an excited state is usually degenerate.
Here, in general, we must use the supplementary
hypothesis, namely, that the adiabatic "turning off"
gives approximately a given particle-hole state.
Using the notation of Ref. 11, this means

limU„(~, 0) ~4„) = c&,c&&~0). (39)

If this is satisfied, we obtain"

i=& nB

(40)

Further analysis of (40) gives the perturbation de-
velopment used in Refs. 6-8. The nondegeneracy
of ~4'„) brings about no difficulty if there is some
symmetry (e.g. , rotational invariance) which is
not destroyed in the adiabatic turning off." This
is the case for the atoms we are studying here
(excitations from an s shell); furthermore, we
are using Qs«,. &BB '(r) single-particle functions, ""
where the particle i and the hole 0 are coupled in
an LS state of the atom.

III. CALCULATION

The single-particle wave functions by which the
Coulomb interaction matrix elements are evaluated
are calculated by using our Hartree-Fock pro-
grams, "self-consistently for the ground-state con-
figuration (i.e. , for the single-particle states be-
low the Fermi energy), and, for excited discrete
and continuous single-particle states in the HF
f rozen-core field of remaining electrons corre-
sponding to the definite LS state of the atom, the
functions @«,.&B

'(r). Since these excited single-
particle functions take into account the part of the
RPAE correlations corresponding to all time-
forward Goldstone-type diagrams diagonal in a
given hole, the antisymmetrized Coulomb inter-
action matrix elements diagonal in the same hole
have to be omitted (i.e., set equal to zero irre-
spective of their actual value') in the relevant ex-
pressions, e.g. , in the RPAE equation (17). There-

fore in expression (32) for I", , (&u) the first-order
SgSp

term in U (U, , ) vanishes and the first nonvanish-
0 p

ing term in the perturbation expansion is of second
order.

To evaluate &&(&d), Eq. (21), and f„, Eq. (36), the
integral equation (17) for 3&(&d} has to be solved.
Actually, for evaluation of f„ the equation for
~'(&u) is to be solved, which is, according to (25)
and (24), just the equation (17), but with IIB'(&d)

instead of IIB(«&). After the usual multipole de-
composition of the Coulomb interaction, the inte-
gration over angular variables as well as the sum-
mation over orbital magnetic quantum numbers
and spins has been performed in the relevant equa-
tions. ' It turns out then that the same equations
are valid if the following replacements have been
made: (a) single -pa.rticle —state quantum numbers
n =—n I„i&&,s by n, l, ; (b) relevant matrix elements
by corresponding reduced matrix elements; and

(c) the polarization propagator II,B(&d) must be
multiplied by I/(2l+ 1), where I refers to Ith
multipole component of the Coulomb interaction
[for the photoabsorption processes only the dipole
(I = 1}component contributes]. Also, the expres-
sions (21) and (36), for &&(&B) and f„, respectively,
a,re to be multiplied by B~N„& /(2IB+I) (&3 —F),
where N, is the number of electrons in the sub-

n8 lg
shell.

The integral equation (17) is solved numerically.
The integral over the energy variable has been re-
placed by a sum according to Simpson's rule, the
sum being truncated at sufficiently high energy.
The integration points are equidistant in w = v2&,
E being the integration energy variable. The func-
tion under the integral ha.s a pole [coming from
II'(&d)] and the corresponding integral has to be
calculated in the sense of a principal value. To do
this the numerical integration in the vicinity of
the pole has been performed on the difference
without a pole, "

(41)

x being the residue at the pole I(:, of the function
f(»} under the integral. In such a way the integral
equation (17) reduces to a system of algebraic
equations and the problem of solving it is reduced
to an inversion of a matrix.

IV. RESULTS AND DISCUSSION

The photoionization cross section and the oscilla-
tor strengths for the transitions from the ground
states of helium, lithium, and beryllium atoms
are calculated in the RPAE. The calculated z and
V forms of the cross section and the oscillator
strengths coincide up to the error of calculations
(~2%), as it should in the RPAE.
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TABLE I. Calculated values f&pAp of the oscillator strength in the RPAE. They are com-
pared with the experimental values f„~taken together with their respective error of measure-
ments (given here in parentheses) of Wiese et ~l. (Ref. 21), except for the very recent exper-
imental value for beryllium (Ref. 22). Certain results fM& of other many-body calculations are
given for comparison.

Atom

He

Transition

1s 2p
3p
4p
5p
6p
7p

fRpA~

0.252
0.0703
0.0290
0.0147
0.008 46
0.00540

fexp

0.276 (1%)
0.0734 (1$)
0.0302 (3%)
0.0153 (& 10%)
0.00848 (& 10%)
0.005 93 (& 1070)

0.24
0.071
0.031

fMs

Li

Be

2s 2p
3p
4p

1s—2p
3p
4p

2s 2p
3p
4p
5p
6p

1s 2p
3p
4p

0.758
0.004 07
0.003 86

0.342
0.0562
0.0182

1.36
0.0232
0.001 10
0.000 07
6 2x ]0-6

0.374
0.0354
0.0117

0.753 (3%)
0.005 52 (10%)
0.004 80 (10%)

1.34+ 0.05

0.7575
0.004 06
0.003 84

1.2540, ' 1.378
0.016 76, 0.002 27
0.010 13 0 00102'
0.00549
0.003 21

'Many-body RPAE results from Ref. 23.
Results of time-dependent HF approximation with the time-dependent external field, from

Ref. 24.' Many-body perturbation results from Ref. 5.

Our results for the oscillator strengths are pre-
sented in Table I together with the experimental
values and other many-body calculations. There
is good agreement with available experiments.

The results of our calculations of the photoion-
ization cross section for the helium atom are
shown in Fig. 3. Since the many-body perturba-
tion theory results of Ishihara and Poe' differ from
ours only slightly, they are not shown in Fig. 3.
Our results always lie between their r- and V'-

form data. For the helium atom there is also the
calculation of the cross section (and of oscillator
strengths, as well) by Wendin" in the RPAE, dif-
fering from the present calculation essentially in
the manner of solving approximately the RPAE
equation (1'f), which has been solved iteratively
in Ref. 23. Wendin's RPAE cross section practi-
cally coincides with ours. Wendin also corrected
the RPAE by estimating the additional contribution
from certain higher-order non-RPAE diagrams.
As it is seen from Fig. 3, our calculation and
Wendin's using the RPAE with some corrections
agree with experiment ' reasonably well.

The results of our calculations of the photoion-

O—4—
I—
O
UJ
V)

O
CL

I

2.0
I

2.5 3.0 3.5
PHOTO N ENERGY (Ry)

FIG. 3. Photoionization cross section for the helium
atom (1s &p transition). The solid curve represents the
RPAE results of the present work, the dashed curve the
RPAE with corrections of Wendin (Ref. 23), and the dot-
dashed curve the averaged experimental results (Refs.
25 and 26). Since the many-body perturbation results of
Ishihara and Poe (Ref. 7) (from threshold up to about 2.5
Ry) differ only slightly from the present ones, they are
not shown here.
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ization cross section for the lithium atom, for
both 2s - zp and 1s ap transitions, are presented
in Fig. 4. The cross section for the transition
from the outer subshell (2s -ep) is presented in

Fig. 5 and compared with the experimental data, ""
with the polarized-orbital-method calculation of
Matese and LaBahn, "and with the very recent
many-body perturbation calculation of Chang and

Poe. e Our curve follows the trend of the experi-
mental one, but the perturbation calculation of
Chang and Poe agrees somewhat better with the
experimental data. This probably can be ascribed
to the EPV diagrams (their contribution being con-
siderable in the lightest atoms). On the other hand,
our results are closer to experiment than those of
Matese and LaBahn, who simulate the many-body
effects through the polarization potential.

The results of our RPAE calculation for the pho-
toionization cross section for boih the 2s —ep and

the 1s- ap transitions of the beryllium atom are
shown in Fig. 6. As for the lithium atom, the
cross section for the transition from the outer sub-
shell (2s-ep transition) only is shown in Fig. 7.
It is compared with the earlier RPAE calculation
of Altick and Glasgold" and with the many-body
perturbation calculation of Kelly. ' The difference
between our results and those of Altick and Glas-
gold might be explained by the fact that they used
Hartree instead of Hartree-Fock single-particle
wave functions. Concerning the discrepancies be-
between Kelly's many-body perturbational results'
and ours, itisinteresting to note that there i.s simi-
lar discrepancy between his and our HF results.
This can probably be ascribed to Kelly's rather
inconsistent choice of single-particle states. As

2.0

Li

C3

0.4
0.3 0.5 1.0

PHOTON E N E R 6 'I|'

1.5

there is no experiment to compare the calculations
with, there is as yet no way to decide whose re-
sults are better.

There is a very recent calculatj. on of oscillator
strengths and cross sections for lithium and beryl-
lium atoms by Stewart" in the time-dependent HF

FIG. 5. Photoionization cross section for the transition
from the outer subshell (2s &P) of the lithium atom.
The curve denoted by RPAE represents our calculations;
the CP curve repxesents the results of the many-body
perturbation calculation of Chang and Poe (Ref. 8) (aver-
aged 7' and r curve, since the difference between them is
rather small); the ML curve represents the results of
polarized-orbital-method calculations of Matese and I.a-
Bahn (Ref. 29) (only the 7' form; the r form practically
coincides with our results); the dashed curve gives the
experimental results of Ref. 27; and the dot-dashed
curve gives those of Ref. 28.

flan 1—

C)

0
0 5 10

PHOTON ENERGY (Ry)

FIG. 4. Results of our RPAE calculation for the photo-
ionization cross section of the lithium atom. The jump
of the cross section at about 5.0 Ry corresponds to the
(second) ionization threshold for the transition from the
inner subshell (ls &p transition}.

cn 0.5—

D

0
0 25

FIG. 6. Results of our RPAE calculations for the
photoionization cross section of the beryllium atom. As
for the lithium atom, the jump of the cross section at
about 9.5 Ry corxesponds to the (second) ionization
threshold for the transition from the inner subshell
(is &P transition).
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FIG. 7. Photoionization cross section for the transition
from the outer subshell (2s eP) of the beryllium atom.
The solid curve represents our RPAE calculations, the
dashed curve represents the results of the RPAE cal-
culations of Altick and Glasgold (Ref. 17), and the dot-
dashed curve the results of perturbation calculations
of Kelly (Ref. 5).

they lie below our results except in the region
near the threshold.

The correlation effects in the outer-subshell
transitions (2s- vp, v=n, e) of the lithium atom
on the oscillator strengths and the cross section
belong completely to the intershell effects (only
one electron in the 2s subshell), while in the in-
ner-subshell transitions (1s- vp) it was found that
the nearly complete contribution comes from the
intrashell RPAE correlations, the contribution
from intershell effects being very small, amount-
ing to only about 1%.

The effect of the intershell RPAE correlations in
the outer-subshell transitions (2s- vp, v=n, e) of
the beryllium atom on the oscillator strengths and
the cross section is not significant, but still
amounts to about 10%%. The intershell correlation
effect in the inner-shell transitions (1s —vp) is,
as for the lithium atom, very small, amounting
to about 1%. It should be mentioned that for all
three atoms our calculated RPAE results satisfy
the sum rule within a few percent.

approximation with a time-dependent external field.
While his oscillator strengths practically coincide
with our results, as is seen in Table I, the cross
sections (which are not shown here) disagree with
our calculations and with available experiment;
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