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It is shown that the angular distribution of photoelectrons ejected on absorption of left or right circularly
polarized light by a mixture of randomly oriented dextrorotatory and levorotatory optical isomers behaves as

A ~ Bcos8+ Ccos'8, where 8 is the angle between the photoelectron momentum and photon direction of
incidence and ~ Bcos8 is introduced by the presence of unequal numbers of each isomer. All coefficients of
cos"8 are of order a, and analysis shows that B can be as large as A and C.

It is usually considered" that the angular dis-
tributions

f(6) = g b~Pz(cos8)

of photoeleetrons ejected by unpolarized atomic or
molecular targets contain only even orders of P~,
regardless of the polarization of the photon. This
belief, which restricts the experimental param-
eters available for analysis of the target atoms or
molecules, depends on the assumption that the re-
action is dominated by incident photons of a single
parity; in practice, this means electric-dipole
photons which have odd parity. More specifically,
the electric-dipole photon has unit angular momen-
tum. This means that the squared modulus of the
amplitude, from which Eq. (1) is derived, can be
characterized by total angular momenta L whose
magnitudes occur in the interval 0 & L & 2. The
terms corresponding to L=1 (as we shall see in
the ensuing analysis) disappear unless three con-
ditions are met simultaneously: (i) that the angle
of ejection be defined such that it is measured
from the polar axis normal to the plane containing
the polarization vector of the photon, which, in
practice, can mean circular polarization with the
angle of ejection defined as the angle between the
momentum of the photoelectron Sk and the direc-
tion of incidence of the photon; (ii) that the eigen-
states of the target system be states of indefinite
parity; and (iii) that the symmetry of the target
system be low enough such that the effective po-
tential in which the photoelectron moves shows an
inequivalence as a function of azimuthal angle, re-
sulting, in turn, in an inequivalence of wave func-
tions for positive and negative values of azimuthal
quantum numbers.

Circular polarization and conditions (ii) and (iii)
are the same conditions necessary and sufficient
for the existence of optical activity in discrete
absorption, i.e., the optical rotatory dispersion

and circular dichroism exhibited by "chiral" mol-
ecules. Condition (ii) must obtain for the existence
of the microscopic terms responsible for these
phenomena when the molecule is oriented in space;
however, condition (iii) must obtain for these
terms not to vanish by cancellation when the in-
tensity is averaged over all molecular orienta-
tions appropriate for an experiment involving a
sample of randomly oriented molecules. The an-
gular distributions characteristic of the terms re-
sponsible for optical activity (terms due to elec-
tric-dipole-magnetic-dipole interference) and of
other terms depending on higher multipoles of the
photon will be analyzed in a later paper.

Thus, the belief that b, of Eq. (1) disappears
also depends on the assumption that the target
atoms or molecules are in a statistical state
which is symmetric under space inversion. For
this to be true, it is sufficient that (a) each target
atom or molecule is in an eigenstate of definite
parity, but not necessarily all in the same parity
state or (b) for each target atom of molecule not
in a parity eigenstate, as in a dextrorotatory (D-
isomer) sugar molecule, there is another in the
corresponding space inverted eigenstate, as in a
levorotatory (L-isomer) sugar molecule. Assump-
tion (a) is used in most discussions of photoelec-
tron angular distributions, but some form of as-
sumptions (a) and (b) is always used" to prove
that b~ =0 for odd L.

The purpose of this paper is to point out that
these assumptions fail for chiral molecules when
the sample has a preponderance of one chirality,
and therefore some new experimental parameters
become available in principle. In practice, the
most useful case is the parameter b, for circularly
polarized light in the electric-dipole approxima-
tion. Since the vanishing of b, requires space-in-
version symmetry and does not follow from any
rotation invariance alone, that coefficient can be
expected to be significant whenever the electric-
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dipole matrix element depends significantly on the
chiral structure of the molecule. The I =1 term
should also exist for the angular distribution of
molecular fragments produced on photodissocia-
tion of chiral molecules in which the chirality is
not destroyed by the bond cleavage. We shall pre-
sent this analysis in a later paper.

According to condition (iii) above, the symmetry
of the molecule must be low enough such that an
effective potential in which an electron moves
shows an inequivalence as a function of the azi-
muthal angle. In other words, V(r, 8, y)

V(r, 8, -y), where the polar axis in the co-
ordinate system in which the potential surface is
defined is taken along the highest-order rotational
axis of the point group to which the molecule be-
longs, in this case C, . Physically, the absorption
of a left or right circularly polarized photon will
selectively populate a single fine-structure level
of an oriented molecule according to the selection
rule m&=mo+1, respectively, where m& and mo
are the azimuthal quantum numbers for the final
and initial states, respectively. For random ori-
entations of the molecule an equal mixture of the
fine-structure levels is populated. As long as mz
or mo levels are equivalent as a result of the con-
dition V(r, 8, y) = V(y, 8, -y), then terms linear in
cos8 cancel on the summation over all possible
azimuthal quantum numbers which occur in the ex-
pression for the angular distribution. However, if
the magnetic sublevels, which are mixed by a mo-
lecular field of symmetry so low, are inequivalent
for mz and/or m, equal to plus and minus values,
then a "memory" of the population of a single level
in the oriented molecule will remain in the uno~i-
enled molecule. This "memory, " as we shall see,
occurs in the matrix elements as a result of dif-
ferent radial amplitudes in the two eases, and &s-

comPlete cancellation occurs in the summation.
Thus, the term linear in cos8 survives, and has a
"sense" or sign depending on the left or right cir-
cular polarization of the photon and on the left or
right handedness of the molecule. Each "enantio-
meI" of a pair of "optical isomers" will show the
opposite sense, and the terms linear in eos6 will
cancel for the angular distribution for a pair of
optical isomers, the simplest "racemic" mixture.

Let us construct a potential surface for an elec-
tron moving in the field of a ehiral molecule or
molecular ion. It has the form

in the wave function calculated in the potential;
hence the wave function for an electron moving in
this field will also be of the form

g-y, (r, 8)+q„(r, 8) cosy +y„(r, 8) sing+ ~ ~ ~ .

If the wave function is recast in the form of a
spherical partial wave expansion

(4)
lm

then it is easy to show (within a phase factor) that
the radial wave functions for / = 1, m =+1, and m
= —1 behave as

y1+1 4 1C + ~ ylS ~

yl -1 y1c ylS ~

respectively. The phase factor must be chosen,
on physical grounds, such that y, +, = y, , when

y„=0, which occurs when V„(8, rp) =0 in the limit
of nonchiral molecules. The presence of the y„
components causes an addition rather than a can-
cellation of terms linear in cos6 on summation
over the azimuthal quantum numbers. The sign of
V„ in Eq. (1) is taken to be that for a single hand-
edness, say left handedness. For a molecule of
the opposite handedness, then V„--V„, y„

'P18& yl+1 y1+1& an y1-1 yl-1'
We will now give a mathematical demonstration

of the preceding statements and present the re-
sults of a model calculation. The general expres-
sion for the differential cross section is

where ~ is the fine-structure constant, ao is the
Bohr radius, and, in atomic units, E~ and k are
the photon energy and photoelectron velocity, re-
spectively. The functions g; and g are the ini-
tial and final eigenstates of the system, the (-)
superscript designating normalization to satisfy
incoming boundary conditions. First, we specify
the form of the unit vector of polarization of the
photon pp

P r = (-', v)'i'r Q V, ,(8„,y„)D~"*(oPr)(1 —25, ),

V(r, 8, y)- V,(r, 8)+V„(r, 8) cosy

+ V„(r, 8) sing + ~ ~ ~, (2)

where we have used the addition theorem for
spherical harmonics' and the transformation equa-
tion'

where V„(x, (9) =0 for a nonchiral molecule. The
terms in the potential behaving as cosy and siny
will cause admixtures of terms of identical form

I'*,(8~ y~) = Q I'*p(8p q'I)Dp', (~Ps)

for relating spherical harmonies defined in the
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molecule-fixed frame (left-hand side) to those de-
fined in the laboratory frame (right-hand side),
where D ".are the rotational matrices, whose
a,rguments are the Euler angles. The index P takes
on a single value corresponding to a fixed polariza-
tion of the photon, +I for left or right circular
polarization, respectively, in the plane normal to
the direction of incidence, taken to be along the
polar axis in the laboratory frame, or 0 for linear
polarization along the polar axis, where the direc-
tion of incidence in this case must be taken along
x or y in the laboratory frame. The angles 6}„,q„
specify the direction of r in the molecule-fixed
frame, and the angles 6&, y,. and 8~, cp~ specify the
directions of the unit vectors associated mith P~ in
the molecule-fixed and laboratory frames, respec-
tively. The latter set take on a single set of values
for each polarization according to the geometrical
definitions just given.

Next me consider the forms of the bound and con-
tinuum wave functions in Eq. (6). In general, these
mill be Slater determinants, appropriate for a
many-electron system. However, we mill restrict
the discussion to a one-electron picture. This
simplification mill not affect the general validity
of our results, which depend in part on the details
of the motion of the photoelectron in a potential
field of the form given by Eq. (2), which in an
actual calculation mould be constructed within the

framework of fixed-nuclei theory. ' The form of
y('-' is

' =4m Q u~, ' (r)I', (8„y„)y,* (8, y)

where 6}, y specify the direction of the beam of
ejected electrons in the laboratory frame (also de-
fined as the direction of kk, the momentum of the
ejected electron). This wave function (within a
phase factor) is the transform of Eq. (2.2) of Ref.
8 on the application of the operation of time rever-
sal' to the latter function; hence the wave function
obtained on application of the time-reversa, l opera-
tion to Eq. (9) (or its complex conjugate) wouM be
appropri. ate to describe a beam of incident elec-
trons in a scattering experiment. The factor 4m

normalizes the result such that the partial-mave-
resolved plane wave is recoverable in the limit of
zero potential. %e note that the angles (9, y and
(9~, y~, the latter of which specify the direction of
the

erne

rging beam in the molecule-fixed frame,
are arbitrary with respect to the axis of quantiza-
tion for the molecular eigenstates, as they must be
for experiments involving randomly oriented mol. -
ecules. The form given by Eq. (9) is appropriate
for the calculation of the continuum wave function
in the single-center approximation. "%e note,
however, that me can cast the theory in more gen-
eral form if me perform the summation over l;m;
and mri. te

0' '=4~ g g&. '.(r)I'&*. .(8, q )D","'*(~A), (10)

mhich is just the partial-wave resolution of
'(r, k) with respect to k. This form makes it

clear that the validity of the results do not depend
on the method used to calculate the mave func-
tions.

Substitution of Eqs. (7) and (10) into Eq. (6) and
performance of the average of the result over the
Euler angles" yield the result

@'(P; X&p, l,m, Ip, lm.,L.; 8). =(,-l)~' " &(2I, + l)(2l&+ I)'~'(2x,. +I)'~'

(lib)

In deriving Eqs. (11) we have made consecutive use
of tmo sum rules" to perform the summations over
m,'. , which casts the angular distribution in the
form given by Fano and Dill, "' and over j, a
total angular momentum quantum number' de-
fined as j =T,. +1, respectively.

The following selection rules are readily appar-
ent from the conditions for the existence of the
3-j symbols. According to the second 3-j symbol,

0 «I «2. Also for p=0, L cannot be odd by the
rule that 1+1+2be even. These conditions imply
Yang's theorem' that the angular distribution be-
haves a,s A. +C cos'6) for a linearly polarized pho-
ton and unpolarized target. For P =+1, however,
L can be odd, and
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(13)

on summation over all allowed values of the set
m, such that complete cancellation results.

This cancellation would not occur if the matrix
elements in Eq. (11b) were inequivalent for posi-
tive and negative values of the set p, ,m, . Such an
inequivalence occurs only in ehiral or optically
active molecules, as discussed previously. Hence
the angular distribution behaves as A +Bcos8
+C cos'8 in this special case.

We present the results of a model calculation in
Fig. 1. This is a one-electron calculation for the
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FIG. 1. Angular distribution of photoelectrons. Open
circles, A + C cos20; solid circles, A +Bcos &+ C cos 6,
appropriate for left circular polarization; plus signs,
A —Bcos0+ Ccos20, appropriate for right circular po-
larization.

According to the first 3-j symbol, however, l,.

+A, +L, must be even. If L is odd, the l,. and A,

must be of opposite parity for this 3-j symbol to
exist. This condition restricts the existence of
terms linear in cos8, for a single set of values of
the azimuthal quantum numbers, to molecules
whose states have indefinite parity (i.e., all values
of the set A.;, l& are allowed) as a result of the ab-
sence of a center or plane of symmetry with re-
spect to inversion or reflection of the coordinates,
respectively.

These terms linear in cos8 cancel, however,
when the summation is performed over all possible
values of the azimuthal quantum numbers, unless
the molecule is chiral, a constraint in addition to
the existence of states of indefinite parity. This
statement can be proved by inspection of the
fourth 3-j symbol. When L is odd, the symbol
will vanish for m, = p. , = 0 and will change sign by
the rule

photoionization of a molecule of ionization poten-
tial —, a.u, where the potential field is assumed to
have the form given by Eq. (3) and the continuum
wave function has the form given by Eq. (3) (for
slmplLclty the bound molecular orbital has the
form appropriate for a potential having no depen-
dence on the azimuthal quantum number). We
adopt single-center expansions for both bound and
continuum [see Eq. (9)] wave functions, truncating
the bound orbital expansion after l, =1, assuming
equal strength of the l, =0 and l, =1 radial com-
ponents, and ignoring the effect of nonorthogon-
ality between the bound and continuum functions
(see Ref. 11 for the inclusion of this effect in the
angular distribution). In addition, we truncate the
continuum wave expansion after l, =1 and assume
that l,. = l; and m,. =m;, i.e., we ignore single-cen-
ter partial-wave coupling. Also, we use Cou-
lombic waves calculated in a potential of unit
strength and Slater-type orbitals (STO's with Sla-
ter exponential parameters equal to unity) for the
single-center radial components of the continuum
and bound wave functions, respectively, allowing
us to calculate the radial matrix elements in ana-
lytic form. " Thus, this cross section corresponds
physically to one-half that for photoionization of a
closed-shell two-electron molecule, calculated in
a Flannery-Opik-type model. "" The use of the
form for the wave function given by Eq. (3) mim-
ics an m; dependence in the radial matrix elements
(Coulombic results are independent of m;), where
we have taken y, =y, . For a photoelectron velocity
of 0 =0.1 a.u. we calculate the following values (in
units of 10 "cm') for A, B, and C: A=9.771' B
= -0.646, and C = -4.8S5. We note from the selec-
tion rule l,. +A, +L odd for L=1, requiring that l,.
and A, have opposite parity, that it is the l, =0,
A., =1 cross term arising from the bound orbital
expansion, corresponding to interference between
the processes l, =0 l; =1 and A.,=1-A.; =0, from
which the entire L=1 contribution arises in this
model. This gives us valuable insight into struc-
tural information available in this term, not avail-
able in the angular distributions for ordinary non-
chiral molecules; namely, for nonchiral molecules
contributions from the cross terms corresponding
to radial components of opposite parity belonging
to the bound orbital can occur only if l,. and A, have
the same parity (since otherwise the L = 1 term
will disappear by cancellation), meaning that only
radial continuum waves nondiagonal in l,. and l;
(and A, and A,;) can contribute since, if l, and A,
have opposite parity, so too must l; and A. ; by the
selection rules for the existence of the electric-
dipole matrix elements. Contributions from non-
diagonal waves have been found to be smaller than
those from diagonal waves. "
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%e have checked this result by setting y, =0, re-
covering the ordinary form, A+C cos'8. %e note
that C = -A for the LQ 0 contribution in this model,
giving the familiar sin'9 dependence for ejection
from an s orbital.

An important consequence of the existence of
terms linear in cosL9 is the possibility of perform-
ing an experiment in which the angular distribution
difference for absorption of left and right circu-
larly polarized photons is measured. This differ-
ence behaves as 2Bcos6. Finally, the sum of the
angular distributions for absorption of left and
right circularly polarized photons behaves as

2(A+0 cos'8). This form is recovered also for
the absorption of photons of either polarization by
a pair of molecules of opposite handedness, the
simplest "racemic'" mixture or unpolarized sys-
tem, in agreement with Yang's theorem' for un-
polarized photon and target.
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