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The quantum nonperturbative analysis of Kroll and Watson for a two-level system of near-adiabatic atom-
atom scattering in an intense laser-field mode is extended to treat a general multilevel system interacting with
intense single- or many-field modes. A procedure for rigorously solving the adiabatic eigenvalue problem for
the whole charge-field system is given. A new transition-probability formula is derived. Cross sections are
calculated for the processes Li+ H(X 'X+) + pin —iLi+ H(A 'X+ or B 'll) where v & 1. Analysis of transition
in an atom due to intensity variation of a laser pulse shows that desired transition probability per pulse (e.g.,
1/2) may be achieved by varying the pulse parameters. For this, numerical results of Na(3s) +2Am —iNa(5s)
and of Li(2s) + 8hw —iLi(3s) are given.

I. INTRODUCTION

In this paper, we analyze two physical situations:
(i) near-adiabatic atom-atom collisions in an in-
tense laser beam; and (ii) an atom being irradi-
ated by a strong laser pulse. W'e are concerned
with the calculation of the probability of single-
photon or multiphoton bound-bound transitions in
the atomic system. There have been many experi-
ments on multiphoton transitions in atoms and
molecules in intense laser field. ' ' Resonant
bound-bound transitions are often decisive in mul-
tiphoton ionization results. '4 Most theoretical ana-
lyses on this subject deal with isolated atoms or
molecules. ' ' There are comparatively fewer
theoretical studies of atom-atom collision in an
intense laser field. "" In experiments with an
atomic gas, radiative transitions during atom-atom
collisions are significant compared to those of the
isolated atoms. '

Kroll and Watson' (hereafter referred to as KW)
have analyzed the interaction of a two-level
"quasimolecule" (the atom-atom in near-adiabatic
collision) with an intense radiation mode. With
a similar approach, the present paper analyzes
more general cases of a quasimolecule of finite
number (n ~ 2) of discrete levels interacting with
a finite number of intense field modes, thus pro-
viding treatment for a greater variety of physical
phenomena. Approximating the real quasimolecule
with more than two levels is useful since the roles
of near-resonant intermediate states in determin-
ing the multiphoton transition probability and of
nonresonant levels in determining the energy shift
are important. The analysis does not make any
perturbation expansion, nor does it make use of
the rotating-wave approximation. ' Further, it is
not limited to the electric dipole approximation.

In Sec. II, we write down the time-dependent
equation for near-adiabatic atom-atom collision
in intense laser modes. Level shifts and coupling

between states are found from solutions of the
adiabatic molecular eigenvalue problem in Sec.
III. In Sec. IV, a new formula for the transition
probability between two shifted levels is derived.
Section V contains two numerical studies. Finally
in Sec. VI, we study transitions in an isolated atom
that are due to intensity variation of the irradiating
laser pulse.

II. TIME-DEPENDENT EQUATION

We consider near-adiabatic scattering of atoms
in m field modes in a large cavity. The eigenval-
ues and eigenfunctions of the adiabatic molecular
Hamiltonian h are written as w„and Q„, respec-
tively, with parametric dependence on the fixed
internuclear configuration R. Let the free-field
Hamiltonian and the charge-field interaction Ham-
iltonian be h and h. ', respectively. " %'e shall ap-
proximate the relative motion of the nuclei by clas-
sical orbits R(t). Then in the c.m. frame of the
quasimolecule, the Hamiltonian describing the
whole charge-field system is H, (t) =h+h +h',
where h and h' are functions of the orbit R(t)."

Since in scattering experiments the initial state
of the quasimolecule is prepared before the
charge-field interaction takes place, and the final
state is observed after the interaction has oc-
curred, we may expand the total wave function:

n

g = g c8(t)p 8 .
8=i

Substitution into the time-dependent Schrodinger
equation for H, (t) gives

th =w„c +hzc„+ g (P„,h'Pq)cs,
dt 8&n

where the term (P„,h'P ) for radiative transition
between nuclear molecular states of the same elec-
tronic state and the term ih +8c8(p, dps/dt) for
collisional transition have been neglected. '
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Vfe now expand the c in terms of the photon
number states Q(N), —v),), where N~ is the initial
mean number of photons in the A. th mode and vz&0
(&0) is the number of photons absorbed (emitted)
by the quasimolecule. That is,

( )
~~@»

xexp —— ~, + S~,N, dt, '

~ ~ r

x Q(N& —v~), (2.2)

G d~(n, n) —= 0,
where I),=—cN),bed~/V is the intensity of the Xth

mode (cavity volume V). If the linear polarizations
and a set of real (t) are chosen, then G), (Gz) are
real and symmetric (antisymmetric).

III. ADIABATIC EIGENVALUE PROBLEM
where zv~ is a particular se chosen for convenience
of calculation, and (v„}denotes a set of m inte-
gers, corresponding to m modes. Thus b(, )(n)
is the probability amplitude that the charge-field
system is in the electronic state n with (vt, }pho-
tons "absorbed. " With the excellent approximation
for intense field modes

Nz —v&+1=%& —v&=+&,

we obtain from Eqs. (2.1) and (2.2)

To calculate the transition probability, we use
the level shifts and the coupling between states,
obtained below by solution of the adiabatic eigen-
value problem. We write

b( «)(fe) —= e„xe (-1f 'Z(y')d)') e(„)(e), (3,1)

where (E(y), a) is the "adiabatic eigensolution" to
be found. In the adiabatic limit,

—a(, )(n) =0.

m

+ Q Q G,'(n P) [&(. i)(P) ~ f)(...i)(P) 1

y=x 8

(2.3)

where y —= vt/a, is a dimensionless time variable
defined in terms of any convenient constant speed
v and Bohr radius ao,

ao
W())~)(n) =——(K d(

—Kp) —Q vyF),

Use of these expressions in Eq. (2.3) gives

Ea(„)(n)= W(, )(n)a(, )(n)

+ Q G,'(n, P) [a(, ,)(n) + a(, „)(P)].
y1

(3.2)

With (E(„)„,a '~)") labeled such that as the inter-
action Gz n, P) —0

are the "unperturbed eigenlevels" of the nonin-
teracting Hamiltonian h+h» and

,F= a, (u ~/ v-
is the "photon energy. " In the subscript set {v„+1}
of the last term in Eq. (2.3), all the component in-
dices are the same as those in the set (v~} of the
first and second terms except the yth, for which
one has v +1 instead. The + sign in Eq. (2.3) cor-
responds to the use of the electric dipole' interac-
tion Hamiltonians, "

Id,'—= —Q (I,.r,. ~ E(0) and h' —= —Q '
p, ~ A(0),

m&c

respectively. %e have used both forms in our
numerical calculations, though it is believed that
the h,' is a better approximation in treatment where
higher levels are neglected. " For plane-wave
modes,

it can be shown from Eq, (3.2) that if a particular
(E(p ) „,a(p) )") is found, then (E(,„),a(pa+ p) )")
for the same n but any fp~} can be o(tained by

g (p~+ p ~fn=&(p) }n- P y+y

a{py+ &p) 0((p) a(pk) ~

We proceed to solve Eq. (3,2).

D,a„=G'(a, ,+a„,), (S.S)

A. Single- field mode

Converting Eq. (3.2) into matrix notation and
dropping the mode index, we let G' be the nxn
matrix [G'(n, p)], D be the n xn diagonal matrix
[(E —W, (n))5 8] and a„be the n-component column
vector. Then Eq. (3.2) becomes
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for all v.
At some point y, where an adiabatic level of

interest (p, a) is not in near resonance with any
other levels, we let

(3.4)

for all (v, n). Thus d~(a) = l. Upon substitution of
Eq. (3.4), and factoring out ap(cr), Eq. (3.3) be-
comes

limits we can generate all other T, [-M & v(Wp)&M]

by the recurrence relations. Thus d~» can be ex-
pressed in terms of d ~. With d~(v) = 1 known, all
other (n —1) dz's (neo) are obtained by solving the
n —1 inhomogeneous linear equations obtained from
the (v= p)th set of Eq. (3.5) with o. 4:cr.

Finally, use of the (v = p, n =o) equation of (3.5)
gives

D, d, =G'(d, , f d„„). (3.5)

T,= (D, vG'T„~) 'G'. (3.6a)

Since D,(o. , P) '- (vF) '5„q 0as-v-~, T„h as
the limit

Defining T, for v & p by

dv Tu dv-1 &

we obtain directly from Eq. (3.4) the recurrence
rel"tion for T, ,

where d~(o) =1 has been used. This equation is
used to find the adiabatic eigenvalue Ez, by suc-
cessive iteration, starting with trial value W~(o').
The second term on the right-hand side is the
shift of the unperturbed level Wz(o). For low in-
tensity, it agrees with the value given by perturba-
tion theory.

Near y, where two levels (p, v) and (p, ,v) are near-
ly degenerate (see, for example, Fig. 1), we 1st

T„(vE-) 'G'-0.
Similarly for v& p, we define T,'by

(3.6b)
a, (n) =d, (a)ap(o) + s,(~)a„(T),

for all v, n. It follows that

(3.10)

Cf u
—-Tv d v+ 1

and obtain, from Eq. (3.5),

T,'= +(D, —G'7,',) 'G' .
As before,

Tu~ 0 RS V~ -.

(3.7a)

(3.'tb)

Alternatively, if (G') ' exists, then defining

Uv~ Hv and Hu by

and

164
u v 7

Tv= UuHvy v+ p

we obtain either directly from Eq. (3.5) or from
Eqs. (3.6) and (3.7) the relations

dp(o) =1 = s„(~), d„(~) =0 = s~(a) . (3.11)

To find d, (ct)'s which are independent of a& (7), we
substitute d,(n)az(v) in place of a„(o.) in Eq. (3.3)
and obtain equations the same as (3.5). Thus, all
the d, can be found by the same procedure as be-
fore except for T„( assumi ngT&a and p & p). For
v= p. , since we cannot use the "singular" equation
(v= p, , n = T) to find the d's, T& is obtained (i) by
filling its (n= v)th row by zeros to satisfy d&(v) =0;
and (ii) by directly inverting the rest of the n —1
equations with v= p, to obtain the other n —1 rows.
The s,(a)'s are found similarly by substituting
s&(o)a„(v) in place of a,(e) in Eq. (3.3). Defining

ruby sv=Vusu 1 for v& p, Rnd p by su=+ su+1 for v

& p, , we note that V, =T, for p. & v ~M and V,'=T„'
for -M~ V& p.

wit/

Hv~ I RS V~ ~
y

Rnd

H,'= +[I-U,',H,',U,'] ',

(3.8)

(3.9)

with Hu-+I as v

Thus with a cut-off value M, we let T~„=O and
T'„,=0. Or if we take the approach using H ma-
trices, we let H„+, ——I, H'~, =+I." For a given
physical system, the smallest value of M is de-
termined according to the accuracy desired by
running a few numerical tests. Starting from these

0

FIG. 1. Shifted level structure for which a transition
probability formula is derived.
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W,'(o) = W,-( o)+ g G'(o, P) [d, ,(P)+ d, (P)1,

W'(~) -=W„(T) + p G'(7, p) [s„,(p) + s„„(p)]

are the "shifted levels, " and

G =- Q G'(o, P) [si, ,(P)+ si, „(P)]

=- g G'(~, p)[d„(p)+d„„(p)]

is the coupling constant. The last equality is based
on hermiticity. %'e may use any one of the expres-
sions of E„and E, for iteration to find (Z„, a") and/
or (E„a'). The minimum of the level separation
E„—E, is the "point of closest approach" around
which we calculate the transition probability.

B. Many-fie1d modes

For the sake of clarity, we will indicate the
generalization of the above method to many-field
modes using the case of two modes. We shall use
this in the numerical example in Sec. VB. Equa-
tion (3.2) for two-field modes may be written in
the form

D, a„,= G'(a.. .+a, „), (3.13)

where

D, (v,n, v,'n') =(E+ v, F,)&...t') „.—W, (n)&...i~„~

Finally, the characteristic equation resulting
from the (g, r) and (p, o) equations of (3.3) with
substitution of Eq. (3.10) for a~„(n) and a», (n)
has roots

Z„= —,'(W,'(z) + W,'(o) +([W„'(~) —W',(o)]'+4G']"),
E, = 2(W~(w)+ Wp(o) —{[W'(7') —W'(o)] +4G p

(3.12)

where

for all n, -Mz v} Mx& and -M2- v2-M2, and
use component equations (p, p,o} and (p, p, ,~) to ob-
tain the corresponding characteristic roots as in

Eq. (3.12). The level shifts and the coupling con-
stant contain additive contribution from each mode.

IV. TRANSITION PROBABILITY FORMULA

Suppose we have (near) resonance occurring be-
tween two levels "1"and "2" near y=0. Then only
the probability amplitudes b, and 52 will vary sig-
nificantly, while all other b, (n)'s in Eq. (2.3) may
be approximated by their adiabatic counterparts,
given by Eq. (3.1). We may use either a" or a',
the resulting difference of such choice being small
near the point of closest approach. " Substitution
of Eqs. (3.1), (3.10), or (3.14) into the component
equations for "1"and "2"of Eq. (2.3) gives

.db2 (4.1)

where 8", and G are, respectively, the shifted lev-
els and coupling constant defined before. The
boundary conditions are that in the remote past
b, =0 and ~b, ~

=1. Now we derive a new formula
that is useful when the shifted levels have two
well-defined relative slopes b and 5',

a- Aye y ~~0
2 1

a+ 5'y, y &0,

where a is the minimum level separation (see Fig.
1). The only drawback in the above approximation
is the introduction of discontinuity of slope of
S",—8", at y =0. However, the advantage is that,
without further approximation, a transition prob-
ability formula can be derived rigorously and is
applicable even when a =0.

We introduce, with k, = f,' W,'(y'}dy',

( ) U( )&
iA hei(a 2)/y -i(eb 4)/P for y &0,

are not diagonal. For near resonance between
levels (p,p,o) and (p, p, ,r}, for example, we write

a„(v,n) -=d, (v,n)ap(p, o)+s, (v, n)a„(p,~),

(3.14)

G'(v, n, v,'n') =5...G2(n, n'),
1 y

and

a, (v,'n') =- a, ,„(n') .

For a transition where the photon number of only
one mode changes, that mode should be assigned
the role of mode 2 here. Equation (3.13) has the
same form as Eq. (3.3) for one mode. Thus, the
solution is similar as before, even though the D,V2

= U(y)e '"le ~/ ) e i /~)~ for )0y

into Eq. (4.1) and obtain, neglecting the small de-
pendence of 6 on y,

"
d'U ' 'b b' a

+ & ——+—y —— U=O, y &0,
dy 2 4

d2p ' Sy' g" a
dy' 2 4 b'+ G +—+—y+ — U'=0, y)0.

We need to find only the solution U(y; (a(, (b(, (b'(),
since the solution U(y; —[a [, —(b [, —

]
b' ()
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= U*(y, iai, ibi, i

b' i) as can be shown easily from
the above equations.

Now, with the definitions

from which the transition probability is

2zs &/2
/4&/'+M ( ~

e /'/-4
I'(1 —it ') (4.2)

z (y a/b)bl/2& l 1f/ 4 —
y bl/2e tw-/4

= (y+ a/br)bz1/2e-Itr/4 —
y

brI/2 iw/-4
+ + 7

the above equations are reduced to the Weber
equations'

d'U(z ) + (n+ —,—gz' )U(z ) = 0, y &0,
dz

d'U(z, ) + (n'+ —,——,z', )U(z, ) =0, y &0,
+

where

n iP,=—n' =if' —1, P =G'/b—, P'= G'/—b'.
For y &0, the solution satisfying the boundary

condition b, =0 and
i b, i

=1 in the "remote past"
(i.e. , ib'/'y —a/b' 'i»1) is

U(z ) =(iGI/b"'). -'"'D . ,(-iz ).
A general solution for y&0 is

U(z~ ) = LD ~ ~(-iz ) +MD„(—z, ),
where 1. and M are coefficients to be determined
by demanding continuity of b, and of its slope at
y=0. We obtain

L=N[n'e"' ~D,D, —(b/b')' '(n+1)e" 4D,D, ]/D,

M=N[(a/b" ')e" 'D,D, —(n'+1)e'" D,D4

+(b/b')' '(n+1)e' Dj7 ]/D,

where

N-=iGib-~/'8-'»4

D = (a/b' /2)e'~/ D D + n'e ~ ~/~D D3 5 3 6

(n'+ 1)e"/'D, D, ,

D, —= D „,[(a/'b'/') '"/'],

D, =D [(a/b'/')e" / ]

D, =D„,[(a/b—" ')e ""/'],

For the special case of a/b'/'» 1 and a/b" /'»1,
we obtain

I
b21'= [(2"

I GI/a)(1 —e '"')l',
which has desirable behavior with respect to a,
G and b', but is independent of b.

V. NUMERICAL EXAMPLES

The orbit of the relative motion of the colliding
atoms enters into our calculations through (i)
G(n, P) which depends on the orientation of the in-
ternuclear axis relative to the polarization vector
0, and (ii) the velocity dR/dt in the relative slopes

ao d, , dR
~ . = —' —(w'- w'. )—,

vdR ' ' df, '

that occur in the transition probability formulas.
To take (i) into consideration, we integrate the dif-
ferential orbit equation, using the unperturbed po-
tential curves as a good approximation (though
strictly speaking, the self-consistent shifted poten-
tial curves should be used). The evaluation of
dR/dt, final transition probability, and cross sec-
tion have been discussed in KW.

A. Li and H scattering

As examples, we consider scattering of Li with
H in an intense field mode with A=0.826 p, m in the
geometry of Fig. 2 for relative speed v„=5x10'
cm/sec. Values of zo„(R) and (Q„,Q; r, ps) for
the lowest-lying singlet states X'Z', A'Z', and
B'Il are taken from Docken and Hinze. " These
three levels represent a fairly good approxima-
tion because, according to the less accurate cal-
culation of Bender and Davidson, ' the higher levels
all lie at least about one-photon (h&u = 1.5 eV) in

energy above the B'Il level. %'e assume that the

D D [(a/bi /2)e- l&/ ]

D.-=D, .[(a/bll/2).

Sic�

/4]

D =D ~ [(a/b" ')e"'-/']
A

into plane of paper

For iz, i

= b" 'y+a/b" '»1, we obtain the asymp-
totic formula for b, (y)

2m
~ ( )

- I -"~'~ ~ +M "" -"")
1 (1 - iP')

.P', a ' ia'
x exp -i 8"dy' —i —ln b' y+—2 2 g 4g

FIG. 2. Particular geometry for near-adiabatic scat-
tering of two atoms in intense field. Internuclear axis

~ ~ ~ & ~ ~
A

is alongk and the linear polarization e is in the i-k plane.
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atoms are initially in the electronic singlet ground
state X'Z'. There are one- and two-photon reso-
nant transitions to A'Z' near internuclear separa-
tions 9.4ao and 5.9ao, and 3.7ao, respectively,
while two- and three-photon resonant transitions
to B'lI occur at 5.lao and 3.lao, respectively. Us-
ing a Landau-Zener-like formula, ' we calculated
the transition probabilities to these two excited
states, and the cross sections are presented in
Fig. 3. We observe that only for low enough in-
tensity are the cross sections proportional to I
and I' for transitions to A'Z' and B'lI, respec-
tively, as expected from perturbation theory.

B. Stimulated emission by field-dependent lowering

of potential barrier

We shall consider here" colliding atoms with
model adiabatic potential curves and dipole ma-
trix elements illustrated in Fig. 4. Initially, the
quasimolecule is in state 2, which has a potential
barrier (e.g. , arising from avoided crossing) at
R, . For R &R» the dipole transition to the state
1 is forbidden, while for R&R, it is allowed. For
diatomics, the initial state 2 is achieved by some
pumping. For polyatomics, however, no pumping
is necessary because the potential surface 2 may
represent ground state of one configuration of the
quasimolecular complex, while potential surfa. ce
1 corresponds to a rearranged configuration. At
thermal relative velocities, the potential barrier

is too high for classical penetration (or too little
quantum-mechanical tunneling) into region R & R~.
One way to'overcome the barrier is to lower it by
a suff ic iently intense laser field with a photon en-
ergy smaller than the energy gap between levels
2 and 3 in the neighborhood of R,. Once the quasi-
molecule penetrates into the R&R, region, it will
most likely radiate near the classical turning point
R, at a second frequency. For the case depicted in
Fig. 4, part of the electronic energy upon photo-
emission is converted into relative kinetic energy
of the colliding particles.

For numerical study, we consider the following
unperturbed potential energy curves u&(R) (in eV)
and dipole matrix elements (in a.u) M, »= (j ~g, r,~k)
for a model diatomic colliding system (of reduced
mass =20 times the proton mass and relative speed
= 10' cm/sec):

ur, (R) =1.5 e """,
gJ (R) = 2 8+ Q 1(1 e-'«"- ")'+ Q 158/-" s-'8 '

w, (R) =4.285+1.2e '~s 'I,
(R) 8 088&-1 5&5(B-s.2).

12

(R) 4~ 0.738(R 4.85)
23

M„(R) =2.0,
for R ~3.2a, . %'e assume electronic states 2 and

I I

Dipole matrix elements

IO'
I I I I I

IO

IO

Al +
O

IO
C0

„ IO

O

IO-P

I I

Potential curves

Np3—
Rc

Rb

IO-'

IO

IItl

IO-5
2 4 6 2 4 6

Intensity (watt/cm2)

0 I 2

I l I

4 5 6
Internuclear separation (Bohr)

FIG. 3. Inelastic cross sections for the process
I,i+8(g Z+)+i@'m Li+H(A Z+ or~ 0) over a range
of field intensity (&= 0.826 p).

FIG. 4. Potential curves and dipole matrix elements
of model quasimolecule for study of field-dependent
lowering of potential barrier.
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3 to have the same A quantum number while that
of state 1 differs from theirs by 1. The scattering
geometry is shown in Fig. 2, where i is the linear
polarization e, of the intense mode. The original
barrier is 0.02 eV too high for classical penetra-
tion. Kith the high-intensity laser field wave-
length chosen to be 1.0648 p, m, the bump is low-
ered by about 0.04 eV at I, =10"W/cm'. The col-
liding atoms for a certain range of impact param-
eter (b = 0 to b = 1.97a,) can now penetrate into
the R &R, region. The system has certain prob-
ability P,,(b) to radiate near R, by stimulated
emission into the second mode A.,=0.486 gm (e,
is chosen pa.rallel to e,). The cross sections for
stimulated emission into the second mode,

& max

vi, = 2v db bP, (b),
D

are given in Table I, P, (5) being approximated by
formula (4.2). We assume that transition between
the shifted levels 2 and 3 near R~ is negligible, be-
cause of the large off-resonance 0.06 eV. Raising
the third level by 0.4 eV changes the amount of po-
tential barrier down-shift by less than 10%. Thus,
the selection of the third level (or high-intensity
laser wavelength) is not severely restrictive.

An interesting effect occurs which is due to the
fact that the coupling between the second and third
levels depends on the angle between the internu-
clear axis of the colliding atoms and the space-
fixed linear polarization e,. Thus, collisional sys-
tems with impact parameters b =1.46-1.97 aD can
get into the region R &R, but become bound owing to
the change of this angle on the outgoing trip. Val-
ues for cross section for such "trapping, "

1.97

b, = 2m db b[1 —P~ (b) j,
1+&6

the motion of the bound molecule in the intense
beam shows that after five vibrations, the atoms
are separated again. But while bound, they radiate
predominantly near R„ thus enhancing err by an
amount Err indicated in the last column of Table I.

VI. TRANSITION DUE TO INTFNSITY VARIM'ION

An intense laser field in experiments is often
pulsed. The above theory can be adapted to treat
transition in an isolated atom being irradiated by
an intense laser pulse. " Now the amount of level
shift of the atom is a function of intensity of the
pulse, which is in turn a function of time. For a
particular atomic system with proper choice of
the laser X, one may get two pseudocrossings (PC)
per pulse, as shown in Fig. 5. The final transition
probability per pulse (assumed symmetric) is given
by

where T =1-exp(-2mG'/I o,
t ) is the transition

probability' at one PC. The relative slope be-
tween the two shifted levels 8", and 8",',

a, d(W,' —W,') dI
v dI dt '

is evaluated at the "critical intensity" I' at which
the point of closest approach of the adiabatic ei-
genlevels occurs.

W
4P

~ Wa

C
UJ

are given in Table I. The trapped colliding system
will become a "vibrating" molecule that keeps on
rotating relative to c,. Following approximately Time

TABLE I. Cross sections of stimulated emission OI,
of trapping (7&, and of enhancement&&, as a function of
the intensity of stimulated emission I2.

OI (ap ) cr& (ap ) Acr (ap2)

1x 107
4x 1pv

1x 1p8
4x 108
1x 10&

4x 10~
7 x ].0&

1x 1p"

1.14x 1p 3

4.54 x 10
1.14 x 1p-'
4.54 x 10-2
1.13 x 10
4.51x1p '
7.86 x 10
1.12

5.5
5.5
5.5
5.5
5.5
5.5
5.5
5.5

4.1x 10 3

1.6x 10 2

4.1x10 '
1.6x 10 i

4.1x10 i

1.6
2.9
4.1

Time

FIG. 5. Unperturbed atomic energy levels 5'& and 8'2
are shifted into multiphoton resonances at critical. in-
tensity I' of the intense l.aser pul. se.
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The analysis below shows that desirable transi-
tion probability per pulse can be achieved by
choice of pulse shape and pulse parameters. This
may have important application in efficient optical
pumping and in isotope separation. For example,
to attain the maximum value f =-,', the temporal
slope of the pulse at I' is given by

dI 2m'
dt ln2 '

where

0.5—

IO

IO
D

a 5
CL

a~ d(W,' —W,')
v dl

For a Gaussian pulse, I(t) =I,e '

(6.1)
C"
0

c IO
0

This implies that for given 5 and I', there is a
pair of optimum values (I,', v') such that f equals

They are related by

IO

q' = 7.516x 10 3' ln2 IO
0.602396 0.602392 0.602388 0-602384

where 5 is in a.u. , I' in W/cm and v' in sec. The
validity condition for applying the transition prob-
ability formula for T above requires that, for a
Gaussian pulse,

2.4x 10'5I'7.(lnlo/I')'~' » I

is to be satisfied.
As examples, we have calculated the quantities

5, I' characterizing the two-photon transition from
the ground state Ss to 5s of the sodium atom and
the eight-photon transition from the ground 2s
state to the 3s state of the lithium atom (Table II).
From these values, the transition probability for
any pulse may be calculated. States of 3-8s,
3-5p, 3-5d, and 4-6f are included in the calculation

Wavelength (P.m)

FIG . 6. Transition probability per pulse, f, in Na(3s)
+2Sar Na(5s) at several wavelengths for a few Gaussian
pulses of the same peak intensity, 6x 10 W/cm

for sodium, while states of 2-7s, 2-4P, 3-5d, and

4-6f of lithium are used. The energy levels are
taken from Moore. " The magnitudes of the dipole
matrix elements are calculated from the work of
Anderson and Zilitiz" and their signs from Bates
and Damgaard. " The range of wavelengths in the
sodium case is chosen such that the 3s and 5s
levels are shifted into two-photon resonance be-
cause the Sp levels repel the Ss level more strong-
ly than they pull the 5s level. In the lithium case,

TABLE II. Values of critical intensity (I') and pulse-independent factor (&) in Eq. (6.1) for
wavelengths (&) considered in (a) two-photon transition in sodium (3s 5s) and (b) eight-
photon transition in lithium (2s 3s). The notation A (n) means A ~ 10".

(a) Na
I' (W/cm2) & (a.u. )

(b) Li
I' ( W/cm2) 6 (a.u. )

6.02396 (- 1)
6.02395 (-1)
6.02394 (- 1)
6.02392 (-1)
6.02390 (-1)
6.02385 (-1)
6.02380 (- 1)
6.02370 (- 1)
6.02360 (- 1)
6.02350 (- 1)
6.02330 (- 1)

1.00 (+7)
1.74 (+7)
2.55 (+7)
4.00 (+7)
5.50 (+7)
9.50 (+7)
1.35 (+8)
2.10 (+8)
2.90 (+8)
3.75 (+8)
5.25 (+8)

1.851 (-17)
5.605 (-17)
1.204 (-16)
2.962 (-16)
5.601 {-16)
1.671 (-15)
3.375 {-15)
8.171 (-15)
1.558 (-14)
2.606 (-14)
5.111 (-14)

2.94060 (+0)
2.94075 (+0)
2.94100 (+0)
2.94150 (+0)
2.94200 (+0}
2.94250 (+0}
2.943 00 (+0)
2.943 50 (+0)
2.94400 (+0)
2.94450 (+0)
2.94500 (+0)

1.90 (+7)
5.30 (+7)
1.10 (+8)
2.30 (+8)
3.50 (+8)
4.70 (+8)
6.00 (+8)
7,30 {+8)
8.65 (+8}
1.00 (+9)
1,14 (+9)

3.414 (-49)
1.264 (-45)
4.421 (-43)
1.658 (-40)
4.920 (-39)
5.487 (-38)
3.656 {-37)
1.951 (—36)
7.714 (-36)
2.560 (-35)
7.443 (-35)
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the 3p states strongly shift the Ss level down into
eight-photon resonance with the 2s ground state.

It is found that for a sodium atom irradiated by
a Gaussian pulse of A. =0.602396 p,m, I,=6@10'
W/cm' and r= 1 nsec, a final transition probability
f= —,

' is closely attained. Figure 6 shows the sensi-
tivity of f to ~ over a range of wavelength. As can
be shown from the analytic expressions above, the
result is not so sensitive to peak intensities.
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