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The cross sections for the electron-impact-induced resonance transition (2s i2p) in lithium are calculated in

the Glauber approximation using Franco's method of explicitly involving all the electrons of the many-

electron target. Our results are always a bit smaller than the frozen Glauber results, but approach them as the

energy increases. However, these differences are not very significant, indicating that the inner electrons (those
in ls state) are rather inert. Both of the Glauber results are found to be in good agreement above 15 eV with the

recent experimental results of Leep and Gallagher.

I. INTRODUCTION

The Glauber approximation' has been quite wide-
ly used during the past few years to study elec-
tron-impact excitation and elastic scattering by
atomic hydrogen and helium. ' ' In the case of
electron-alkali-atom collisions, Glauber calcu-
lations have been done only in the frozen-core
approximation which reduces the target to an ef-
fectively one-electron system. '" The complica-
tion in calculations with many-electron targets
(atomic number Z) arises because of the occur-
rence of a (3Z+ 2)-dimensional integral which
must first be sufficiently reduced. Franco" has
recently formulated the Glauber approximation for
many-electron atoms in such a way that this
(3Z+2)-dimensional integral is reduced to a. one-
dimensional integral without any further approxi-
mation. This method has been used by Franco'
to study the electron-impact excitation of helium
and by the authors" to study the elastic scattering
of electrons by lithium. An alternative expression
for reducing the Glauber amplitude for charged-
particle many-electron-atom collisions to a one-
dimensional integral representation involving
modified Lommel functions has been proposed
by Thomas and Chan. ' It has been used to cal-
culate the electron-impact excitation of helium. ""
The primary usefulness of these methods is that
the contribution of the inner electrons is explicitly
taken into account and can be analyzed, in contrast
to the frozen-core approximation.

The purpose of this paper is to use Franco's
procedure" to calculate the Glauber cross section
for the resonance transition Li(2s) -Li(2p) and

compare the results with the recent experimental
findings of Leep and Gallagher. " On the proce-
dural side we show that Franco's procedure is
numerically tractable even when non-spherically-
symmetric states (2p state in lithium) are in-
volved.

Section II of this paper sketches an outline of Fran-

co's method applied to our problem. Section III
contains the details of the calculation. The re-
sults are presented and discussed in Sec. IV.

II. METHOD

The amplitude F«(q) for the scattering of a
charged particle with momentum hk,. by a Z-elec-
tron atom which undergoes a transition from an
initial state i with wave function 4, to a final state
f with wave function 4z is given, in the Glauber
approximation, by the expression"

F~, (q)= ' CP(r„. . . , rz)I (b r ~ rz)
2m

xC,.(r„.. rz)e ' 'd'k d'r; ~ d'r,

where kq= h(k,. —k&) is the momentum transfer
which the incident particle imparts to the target
and r„.. . , r~ are the coordinates of target elec-
trons relative to the nucleus. The vector q is
assumed to lie in the plane of the impact param-
eter b. The profile function I' is given by

I (b, r„.. . , rz) = I —exp[ilf„, (b, r„.. . , rz)]

(2)

x Y, (8), Q,.)Y*, ~ (8~, (f&~). (3)

where r] = e'/Sv = I/k; (using Rydberg atomic units),
v is the initial speed of the incident electron in the
lab system, and s,. is the projection of rz onto the
plane of b. The first term in Eq. (2) does not con-
tribute in the case of inelastic scattering since
4& is orthogonal to 4, Following Ref. 11, we as-
sume that the wave functions C& and 4,. are such
that the product 4& 4,. may be expressed as
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The assumption regarding the form [Eq. (3)] of
C»%,. is really no restriction since the wave func-
tions usually employed in describing atoms can
easily be put in that form. Since we are concerned
here with the electron-impact resonance transi-
tion 1s' 2s'- 1s' 2p' in lithium atoms, we have

l, =l, =l, =m, =m, =m, =0,

where

a, =a, = I/4v

a, = Y,*,(8„$,)/g(4v).

Using Eqs. (5) in Eq. (1) gives

(5c)

(5d)

l'= l' = m'= m' = 02

l,' = 1, m3' = 0, + 1.

In the present case Eq. (3) simplifies to
3 Nj

e;e, =II., c„.;.. .-".;,
)k=1

Pj,
j=l

(4)

(5a)

(5b)

3

s, .(g)= "f~~.~'IIrI (""-'*" "a".
j=l

(6)

The terms P, and P, also appear in the case of
elastic scattering and have been evaluated in Ref.
13 [Eqs. (9), (10), and (12]:

rP,. ~ d r, =—g C~ J(—I)""a.~ I(a~ &, b)= T, (b),—j =.1, 2
k=1 ky j

where

t ""[J,(t)+ 2tJ, (t)/(t'+ ~',b')]
(8a)

and

E ( )
21+2t'll

r(I iq)
'

We now calculate the contribution to Eq. (6) from the factor P, :

(8b)

N

83

S3 + 83 e i3~3S dS d$3 dZ3 ~ (9)

For m3'= 0, the associated Legendre polynomial P, ~ is an odd function of z3 and therefore the integral over
over z, vanishes. For m,'=+I, Eq. (9) can be written as

b —s

(10)

The integral over z, gives ICo(u~, s,). Expression (10) can now be evaluated in a straightforward way
[Ref. 11, Eqs. (11)-(21)] to yield

e''& 8iqE(0)b~ C» ~(- I)"&.s H(ai, ~, b) =v e"+T,(b),2(4v) =&
" a&a.s 2(4v)

(11a)
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where

" z(f)f-""
lit3, } If 2 2 b2)2

o S +&)3
(lib)

given by Stone,"

with

(15a)

E&,(j, m3 =a 1) =
( }3

db bJ, (qb) jII T,(b).

(12)

The oscillations of the Bessel functions in the
integrals in Eqs. (Ba), (lib), and (12) can be ac-
counted for accurately by combining Simpson's
rule with the standard Bessel-function integrals. '8

We have evaluated the integrais in Egs. (Ba)
and (lib) numerically rather than expressing them
as a sum of two hypergeometric functions (Eq.
22 of Ref. 11). These hypergeometric functions
are divergent for large b. Our procedure, as
pointed out in Ref. 13, although it leads to a final.
expression involving two-dimensional integrals,
avoids the problems associated with the calcu-
lation of the differences between divergent func-
tions. The integrands in these integrals [Eqs.
(Ba) and (lib)], except for the factor f "", need
be evaluated only once at mesh points and can
be stored.

The scattering amplitude can now be obtained
by putting together the contributions P„P„and
P, [Eqs. (7) and (ll)] in Eg. (6). Integrating it
with respect to Q, gives

R„(r) =Are '",
where

A. = 0.228 205,

$ = 0.5227 .

(15c)

(15d)

1, k~2,
N,. = 6, n~,. =

[2, 2&& &6,
(16b)

for 4'2pe1 and 4'2pe2 . The values of Ck . and Nk

appearing in Eq. (5a) are obtained from the value
of the parameters A,.„and F„.„given by Clementi"
and the values of A and ( given in Eqs. (15c) and

(15d}.

10

Both of the terms in Eq. (13) for C& 4,. with 4's
of the form {14a)and (' 5a} lead to the expression
(5a), with

0, k~3,
¹ =21, nq, . = 1, , 3&k ~11,

2, 11&k «21,

for the products of the type
~

4„~' and 4~~,4„, and

III. CALCULATIONS

The ground-state wave function 4,. of a lithium
atom with electronic configuration 1s' 2s' has been
obtained by taking the antisymmetric combination
of the 1s and 2s orbitals of the form given by
Clementi. Similarly the final-state wave func-
tion 4& is the antisymmetric combination of the
1s, 1s, and 2p orbitals. This leads to

4f4,. = (I/3! )[det(4„i, 0„,, 4») ]*

&& [det(4„&, 4„,, 4„)]
= ~g„(l) ~'[~4„(2)~'4, {3)*4„(3)

—+„(2)*~„(2)~„(3)*~„(3)].

(13)

10
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The 1s and 2s orbitals of Clementi are of the form

4'„,(r) =R„,{r)ZOO(8, P), n = 1,2,
with

2 6

R„,(r)= g A,.„e 'an" + g A,„re '~~'. .
i =3

The 2p orbital has been taken to be of the form

I I

0.2 0.4 0 6 0.8 1.0 1.2 1.4 1.6
0 ( lh Uhl'tS Of OO )

FIG. 1. Differential cross section da'2~ 2&/dO (in units
of ao vs momentum transfer q@ 0') at an electron energy
of 54.38 eV (0=2 a.u. ). Dashed curve: calculation in the
frozen-core Gl.auber approximation; continuous curve:
present calculation.
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I I I I I I I TABLE I. Comparison of the 2s —2P total cross
sections at different energies. &&~ and 0 are the total
cross sections in units of «0 in the frozen-core Glauber
approximation and present calculation, respectively, and

Oz are the experimental results of Leep and Gallagher
(Ref. 17) corrected for cascade. The number in paren-
theses gives the uncertainty in the last place(s) of the
preceding number.

10 Energy (eV)

Q I I I

2 3 5 10 20
ENERGY feV)

FIG. 2. Total cross sections o» 2& for electron
energies up to 250 eV. Dashed curve: calculation in

the frozen-core Glauber approximation; continuous
curve: present calculation; dash-dot curve: experi-
mental results of Leep and Gallagher, Ref. 17.

The differential and the total cross sections a.re
given by

2 ~ 10(1)
3.10(2)
5.00(3)

10.81(12)
15.64(12)
23.78(12)
38.60(12)
63.56(12)
99.15(15)

149.4(2)
249.9(2)

14.8
37.1
46.7
44.3
40.2
34.5
26.93
19.79
14.51
10.67
7.089

1.77
10.57
28.93
43.12
41.43
35.99
28.15
20.55
15.00
10.99
7.31

1.41
9.15

26 ~ 85
41.67
40.41
35.40
27.83
20.40
14.94
10.98
7.30

k. +k~o„„=—, '
IE, (q) I'qdq.

k'~ -
ky

EV. RESULTS

In Fig. 1 we have plotted the differential cross
section versus the momentum transfer q up to
1.6a, ' at an electron laboratory energy of 54.3S
eV (k = 2 a.u. ). The dashed curve corresponds to
the calculation in the frozen-core Glauber approx-
imation. This is similar to the calculation by
Walters. 'o The continuous curve corresponds to
the present calculation. The same wave functions
have been used in both calculations. Both curves
show almost identical variation, indicating that the
inner electrons (those in the ls state) are rather
inert, in agreement with our earlier observation
in the case of e-Li elastic scattering. " In the
forward direction, q ~0.4a, ', the two curves over-
lap as expected. This region is dominated by
large-5 contributions and the incoming particle
does not see much of the inner electrons.

Figure 2 shows the total 2s-2p cross sections
in units of ma', for electron energies up to 250 eV.
The results for both the frozen-core Glauber and
the present calculations again show similar varia-

tion. Our results are always smaller than the
frozen-core Glauber results and approach them as
the energy increases. This is because the inner
electrons are more tightly bound and their involve-
ment decreases the calculated cross section. This
difference in binding energies is naturally reflect-
ed more at lower energies. Both results are in

very good agreement above 15 eV with the re-
cent experimental data (dash-dot curve) of Leep
and Gallagher. " However, at lower energies they
appear to fail badly and give a cross-section peak
at too high a,n energy. A more quantitative pic-
ture is provided by Table I. It appears that for
any further improvement in the Glauber scatter-
ing amplitude one should look for corrections by
including the exchange effect, polarization of the
target, and the next term in the eikonal expansion.

On the procedural side our calculations have
further confirmed that Franco's procedure pre-
sents no numerical problems.
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