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Finite perturbation calculations for the static dipole polarimbilities of the first-row atoms
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Static dipole polarizabilities are calculated from self-consistent-field and highly correlated wave functions for
the ground states of the atoms Li through Ne. The correlation contributions to the polarizabilities are found
to vary between —16% for Be and + 14% for F. The polarizabilities as obtained from the coupled-electron-
pair approximation are expected to be accurate to about 2%.

TABLE I. Mean static dipole polarizabilities calculat-
ed from SCF and correlated wave functions (taken from
Ref. 1) a

Method b HF H~0 NH~ CH4 CO

HF 4.98 8.68 13.61 16.69 12.40
PNO-CI 5.50 9.52 14.55 17.08 12.87
PNO-CEPA 5.67 9.86 14.96 17.22 13.13

5.60 9.82 14.82 17.28 13.08

' In atomic units (1 a.u. = 14.8176 A 3).
"Since we use a finite perturbation, the method is

fully defined by the type of wave function employed.

We have recently calculated static dipole polar-
izabilities for several small molecules by apply-
ing the finite perturbation method to highly corre-
lated wave functions as obtained from the pseudo—
natural-orbital configuration interaction (PNO-CI)
and the coupled-electron-pair approximation'
(CEPA). The results, which are summarized in
Table I, show for the latter approach agreement
with experiment to better than 2'%%. In the case of
the first-row atoms, with the exception of neon,
experimental values are either missing or rather
uncertain and theoretical calculations have pro-
duced results which vary considerably. Therefore
we felt it worthwhile to apply our approach to the
ground states of these systems.

For experimental and theoretical work on the
static dipole polarizabilities of neutral atoms up to
1970, we refer to the excellent compilation by
Teachout and Pack. ' Numerous calculations have
been performed by the uncoupled and coupled
Hartree-Fock methods" (UCHF and CHF, re-
spectively). The more recent CHF results' " show

good agreement with each other and are certainly
close to the limit of this method, which may there-
fore serve for valuable checks on the basis sets
and as a reference for the further improvements
in the calculations. In terms of double perturbation
theory, the UCHF method corresponds to neglect-
ing electron correlation completely whereas the
CHF method includes all first-order correlation

effects and some of second order. "
The correlation contributions up to second order

have been investigated by calculations following
many-body perturbation theory" ' (MBPT). The
convergence of the perturbation series seems to
depend considerably on the particular system. For
example, first- and second-order effects are re-
ported by Matsubara et al."to be remarkably
small for Ne (-2 and 0.002%%uq, respectively, of the
total polarirability), whereas Miller and Kelly '
find contributions of -60 and +13%, respectively,
for a(~l =0) of C. Consequently, the latter authors
attribute to their final result an uncertainty of 1(P/p

A similar situation was found for Be where indeed
a 20%%uq discrepancy remains between the MBPT re-
sult of Kelly" and the values obtained by Kolker
and Michels" and Robb" using the variatjon-per-
turbation approach" together with quite extended
configuration expansions for the unperturbed and
perturbed wave functions. This approach is cer-
tainly most powerful for systems with only a few
valence electrons, but with an increasing number
of electrons it becomes difficult to guarantee a
balanced treatment of the unperturbed and the per-
turbed wave functions for the simple reason that
the latter has a multiconfigurational structure al-
ready at the lowest approximation. Variation-per-
turbation calculations with CI have indeed produced
rather low values for the polarizabilities of C,"
N,"and Ne,"indicating a certain preference for
the unperturbed state' s.

A relatively simple alternative to the perturba-
tive approaches is offered by the method of finite
perturbation as introduced by- Cohen and Roothaan'
for Hartree-Fock wave functions. It involves only
the state under consideration, and electron corre-
lation may be accounted for by standard configura-
tion-expansion techniques without further difficul-
ties. The wave functions are calculated in the pre-
sence of an external field with finite but small field
strength F. The polarizabilities may then be eval-
uated from the dipole-moment expectation values
as p(F)/E This method has. recently been applied
to multiconfiguration —self-consistent-field (MC-
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SCF) wave functions by Stevens, Billingsley, and
Kraus. " They ascribe to their results an uncer-
tainty of +5%%up. The only accurate experimental val-
ue available, that for neon, "deviates by +10%%uo from

- their predictions, however.
As for the molecules mentioned above, we use

the finite perturbation method together with CI-
type wave functions which account for a large
fraction of the electron correlation. A description
of the PNO-CI and PNO-CEPA methods used is
given in Ref. 2. Their applicability to calculating
dipole polarizabilities has been investigated in de-
tail in Ref. 1. We only note here that the CEPA
wave function, which is not variational but accounts
approximately for the unlinked cluster effects, has
been manifested to yield systematically better re-
sults than the variational CI for such properties
like ionization energies, ' spectroscopic con-
stants, '" dipole moments, "as well as polariza-
bilities (see Table I). Based on the experience re-
garding dipole moments, version 1 of CEPA [Eq.
(14') of Ref. 2] is used throughout.

Two sets of Gaussian-type basis functions have
been employed for each atom: an 11s, 6P, 3d ba-
sis as derived in Ref. 1, and an even larger basis
of size 12s, 8P, 4d. The latter one was derived
from the Huz inaga' 11s, VP basis by adding one
further function for each type with exponents ob-
tained from the smallest ones by dividing by 2.5.
The d exponents were obtained from the exponent
of the added P function by multiplying with 1, 3, 9,

and 32, respectively. The P exponents for Li and
Be were derived from those of B by simply scaling
with 0.275 and 0.55, respectively. Owing to the
size of the basis sets, the polarizability results
are quite insensitive to the actual values of the ex-
ponents as long as the relevantregions are covered.
The SCF as well as the CEPA results from the two
basis sets differ by less than 0.5% in all cases.
They are expected to be very close to the respec-
tive limits since including functions with larger l
values does not change the calculated polarizabil-
ities markedly.

The PNO-CI/CEPA wave functions contain all
configurations which are doubly substituted with
respect to the restricted Hartree-Fock (RHF) de-
terminant and which contribute to the correlation
energy more than 10 ' hartree (0.5&&10 ~ for Li
and Be). Actually, the calculated polarizabilities
appear to be stable for threshold values below 10 '
hartree. ' Of course, a full set of singly substituted
configurations, which are known to be essential for
the accurate determination of properties, is always
taken into account. These wave functions cover
about (75-80)% of the total correlation energies of
the atoms. The relatively large defect in the cor-
relation energy is due to dismissing basis func-
tions with / &2.

The field strengths F have been chosen so as
to minimize numerical errors and those due to the
neglect of hyperpolarizability terms. For the
atoms 8 through Ne field strengths of 0.01a.u. were

TABLE II. Mean static dipole polarizabilities e =&n(M& =+1)+3m(MI =0) for the ground states of the first-row
atoms. ~

Method Li Be B 0 Ne

RHF
P NO-CI
P NO-CEPA

Expt. b

CHF c

MCSCF (base)
MCSCF (corr.) d

MBPT

Pert. var. (CI) ~

Approx. UCHF g

170.3
166.8
164.5

148 +13 ~

182

168—170.3
170.5

167.6

161.8

108

45.63
39.44
37.84

42.2-45.6
45.55
36.51
46.77

37.05
38.14
52.44

22.16
20.73
20.47

21.2
22.1
19.2

23.15

12.07
11.83
11.84

11.46
11.8
11.2
10.40

8.81

11.81

7.365
7.398
7.430

7.63 ~0.4

7.356
6.88
6.82

5.844

7.019

4.772
5.244
5.412

5.2 +0.4

4.630
4.70
4.65
5.282

4.94

3.291
3.641
3.759

3.266
3.28
3o17

2.368
2.618
2.6 76

2.669

2.35—2.38
2.369
2.389
2.672
2.603
2.479

2.665

~ For units see footnote of Table I.
"References 32 and 33 for Li, 31 for N and 0, 28 for Ne.

References 6-9 for Li, 3 and 9-12 for Be, 13 for B through F, 3 for Ne.
d Reference 27.
~References 17 for Li, 15 for Be, 19 for C, 16 for 0, 18 and 20 for Ne.
f References 36 for Li, 21 and 22 for Be, 22 for C, 24 for N, 25 for Ne.
g J. Thorhallson, C. Fisu, and S. Fraga, Theor. Chim. Acta 10, 388 (1968); for further UCHF values see Ref. 3.
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TABLE III. Polarizability anisotropies (in atomic
units) e(Mz -—+1) —n(ML =0) for the ground states of the
first-row atoms.

10- b
Method C 0

RHF
PNO-CI
P NO-CEPA

—7.55 2.95 -0.556 0.299
—6.95 2.55 —0.834 0.405
-7.04 2.54 -0.948 0.439

4

~ ~4r

MCSCF (base)
MCSCF (corr. )
MBP T

-7.69 2.63
-5.94 . 2.43

1.06

-0.54
-0.54
+0.202
+0.50 5

0.27
0.27

-10-

-20-

~ Reference 27.
b References 19 for C, 16 for O.

I

Be 8 C N 0 F Ne

found to be satisfactory. For Li and Be, which are
more easily polarized, field strengths of 0.002 and
0.005 a.u. , respectively, suffice. For these field
strengths the above errors are found to be less
than 1%.

Table II presents our results for the mean dipole
polarizabilities, which are weighted averages over
the different Ml projections arising from the a-
tomic ground states. The corresponding anisotro-
pies are given in Table III. The CEPA polariza-
bility for Ne is in excellent agreement with accu-
rate experimental values. ' Qur results for Q and
N lie also within the experimental error bounds
given by Alpher e t af." For Li we consider the
value of Chamberlain and Zorn" obtained from
atomic beam deflection measurements as probably
somewhat too small whereas the value of Fues"
derived from Stark splitting on bulk lithium is cer-
tainly too large. No experimental values seem to
be available for the atoms Be, B, and C. Based
on the systematic investigations performed in Ref.
1, and considering the agreement with experiment
for Ne and the molecules listed in Table I, we
ascribe to our CEPA results an uncertainty of
about 2%.

Figure 1 displays the relative correlation contri-
butions to the mean polarizabilities obtained by
various methods. All values are referred to our
RHF results which are in good agreement with pre-
vious CHF values. This definition for correlation
contributions seems appropriate for the finite per-
turbation method but differs from that customary
in perturbation calculations. " We find two com-
peting correlation effects.

(a) Correlated electrons have a somewhat larger
mean kinetic energy which results in a slightly
more diffuse charge distribution and a larger po-
larizability. This effect dominates for all mole-
cules and the atoms 0 through Ne. The results of
an independent electron-pair calculation as intro-
duced by Sinanoglu" and Nesbet" show for Ne that

FIG. 1. Relative correlation contributions to the
mean dipole polarizabilities of the first row atoms.
All values are referred to the RHF results from this
work. Solid line with open circles, CEPA; dash-dot
line with solid circles, PNO-CI; dashed line with tri-
angles, MCSCF; squares, MBPT; asterisks, perturba-
tion variation calculations with CI; error bars with
open circles, experimental values and error bounds.
For references see Table II.

TABLE 1V. Polarizability contributions from inde-
pendently correlated electron pairs for neon (in atomic
units).

Q'(. )
—Q s(.(:

2$' 2s
2p 7t

2p0
2p m'„2p 7(

2p cr 2po.
2p 7r 2pr
2p 7I' 2p 0'

sum
CEPA

0.0065
0.0241
0.0507
0.0168
0.078 7
0.0402
0.1039
0.4657
0.3113

~ The same set of configurations is used in the inde-
pendent pair calculations and the CEPA calculation.

Bll pairs add to this effect, with a particularly
large effect from the 2Pa-2/a pair (Table IV).
(This pair is responsible for the noticeable corre-
lation effect on the anisotropies of 0 and F.)

(b) Spin orbitals that are unoccupied in the SCF
wave function of the unperturbed system, and
therefore fully available for polarizing the charge
distribution, become fractionally occupied in the
correlated wave function, thereby reducing the
polarizability. This effect is seen to be dominant
for the atoms Be through C due to the low-lying
unoccupied P orbitals. This is illustrated by the
observation that just removing the singly sub-
stituted configuration 2s - 2Pa from the wave func-
tion increases the calculated polarizabilities of the
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states ]3( Z'), C( II), and N('Z') by about 14, 8,
and 4%, respectively.

For comparison, results of previous calcula-
tions are included in the Tables II and III and —as
far as they go beyond SCF—also in Fig. 1. In the
MC-SCF treatment of Stevens and Billingsley" ef-
fect (b) is apparently accounted for, but effect (a,)
which is distributed over many configurations,
seems to be missing so that the differences to our
CEPA results increase monotonically towards the
left end of the row. Similarly, we find good agree-
ment with the variation-perturbation results for"
Li and" Be but Robb's values for" C and" N are
obviously too small. The MBPT results agree
well with our CEPA values for Ne but for Be
and C there appear deviations of +20 and -14%,

respectively, and the anisotropies for 0 differ even
in their sign. Note that, according to Table IV,
the polarizability from independently correlated
electron pairs overshoots the CEPA polarizability
by 5% in the case of Ne. This underlines the dif-
ficulties encountered in perturbational treatments
since the coupling elements between the substituted
configurations of different pairs —their neglect
causes the increase of the correlation effect on the
polarizability —correspond to three-body and four-
body interactions which appear only beyond second
order of perturbation theory.

The authors are indebted to the Max Planck-
Institut fur Astrophysik, Munich, for providing
its computing facilities.
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