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Theory of atomic structures including electron correlation. V. Excited states not lowest

of their symmetry and oscillator strengths in neutral and singly ionized atoms*
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The non-closed-shell many-electron theory (NCMET) of Sinanoglu is applied to excited states which are not

the lowest of their symmetry. Variational collapse towards lower states of the same symmetry is prevented by

use of the Hylleraas-Undheim-MacDonald theorem. The procedure for calculating such states is described.

Using it, variationally correct charge wave functions are obtained and for the first time for several 2s2p"
excited states in neutral and singly ionized atoms of carbon, nitrogen, oxygen, and fluorine. The configuration

labels of these states and lower energy states of the same symmetry are found in agreement with the

experimentally assigned orderings in each case. Optical oscillator strengths are calculated with these wave

functions and are found in good agreement with experiment where previous calculations in the literature had

shown large discrepancies.

I. INTRODUCTION

A new atomic structure theory which includes
all of the correlation effects in both ground and
excited states has recently been developed by
Sinanoglu. ' In this theory, a non-closed-shell
atomic or molecular state is sho~n to contain
rigorously three types of electron correlation be-
yond the Hartree-Fock wave function (RHF wave
function, P„„„):(i) "internal" (y,»); (ii) "semi-
internal*' (including orbital polarizations) (y~);
and (iii) the closed-shell-like "all-external" cor-
relations (g~).

In the closed-shell limit (like the Ne ground
state), the first two specifically non-closed-shell-
type correlation effects vanish. Only the last "all-
external" correlations remain; and these, as
shown first in the earlier closed-shell many-
electron theory of Sinanoglu (MET), ' are made up
mainly of pair correlations (fu;&)}.

Sinanoglu showed in the non-closed-shell gen-
eralization of his MET, which we refer to as
NCMET' (non-closed-shell many-electron theory},
that electronic charge distributions p(r) and the
resulting "chargelike properties, " like electronic
quadrupole moments, hyperfine constants, form
factors, also transition densities p~(r), and the
resulting oscillator strengths, etc., should be
given to high accuracy just from what he called
the "charge distribution wave function $~D,

" or
the "charge wave function g,

" for short. This g,
= QRHF +y, NT+yp contains rigorously only a finite
number of determinants or configurations which
are the ones that constitute the internal and semi-
internal correlations in their entirety.

The present series of papers' ' by Sinanoglu
and co-workers have been applying the new elec-
tronic structure theory to the accurate determin-

ation of various atomic proper~~es both to test
and demonstrate the theory by comparison with
experiments and to provide atomic data, espe-
cially where such data could not be obtained re-
liably from methods like RHF before.

In papers I and II, '4 the energies of charge
wave functions were calculated for well over a
hundred states of configurations 1s'2s"2P for
isoelectronic sequences. All-external pair-corre-
lation energies e;&.» too were deduced and applied
to term splittings, ionization potentials, and
electron affinities. In paper III, Sinanoglu and
Westhaus calculated dozens of in-shell 2s"2P
—2 s" '2P "-type transitions, predicting many
new oscillator strengths f ' which have agreed,
within the experimental error of a few percent,
with experimental results, some obtained before,
some after the theoretical results became avail-
able. The new experiments involve the beam-foil
(BFS), phase-shift, etc. , type of new measurement
techniques. By contrast, previous theoretical
methods had often disagreed by factors of, say,
2-3. In IV, ' we provided forbidden lifetimes
which are otherwise very difficult to measure.
The charge wave function and properties calcula-
tions were carried out by fully automated program
systems (ATOM) developed by Sinanoglu, OksQz,
Westhaus, and Luken.

The g, 's and f "s of I-shell (3s"3p 3d') states,
which are considerably larger in their numbers
of determinants, have also been obtained'; the
f~ "s in atoms like Mg, Si, P, and Cl agreeing
with new BFS data well, while previous methods
like RHF differed by factors as large as 40-30.

In previous applications of NCMET, nearly all
of the states involved have been the lowest of
their symmetry. ' ' The I.-shell states of +2 and
higher + $ ions, for example, are of this type. In
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using the variation method for the P„one then
just minimizes the lowest root of the Hamiltonian
matrix for a given symmetry.

Many neutral and +1 ion I.-shell states, how-
ever, are not the lowest of their symmetry. Then
subtleties of variational theory for higher states
come in. Sinanoglu's NCMET and the automated
program system ATOM should also work for such
"nonlowest" states. However, in doing this, it
is necessary to make sure that the correct roots
of the secular equation corresponding to the de-
sired states are picked out. Some recent calcu-
lations' on such states have yielded oscillator
strengths showing serious discrepancies with

experiment. It has been noted by Hibbert, ' how-
ever, that these calculations involve variational
collapse resulting from selection of incorrect
roots of the secular equation.

In the present paper, we classify the atomic and
molecular states with respect to their "lowest"
and "nonlowest" aspects. %e then show how vari-
ational theory can be correctly applied to ealeu-
late the NCMET charge wave functions P, for
nonlowest states. The paper is on such practical
aspects. NCMET itself is unchanged, being just
the same for lower or upper states of either type.
The calculations were carried out using ATOM.

Variationally correct NCMET charge wave
functions g, 's were then calculated here for the
first time for several 2s2P" states in neutral and
singly ionized carbon, nitrogen, oxygen, and
fluorine atoms. In each case the calculated con-
figuration assignments of these states and their
lower-lying states of the same symmetry are
found in agreement with the experimentally as-
signed orderings. In addition, f ' values that we
calculate with these wave functions are found to be
in good agreement with experiment, resolving the
discrepancies' encountered earlier. ' The new
nonlowest-state NCMET wave functions have also
been used to obtain' the first fully non-closed-
shell cox related generalized oscillator strengths
p (q) and integrated inelastic electron scattering
cross sections oo„(Z) for Be, B, C, N, and 0
showing large differences (factors of 2-10) from
the Hartree-Fock results.

The nonlowest NCMET states problem treated
in this paper occurs often also in moleeules. The
excited-state potential enex gy curves, "moleeular-
electron impact spectra, etc., calculations with
NCMET will then involve the considerations given
here also.

II. FOUR TYPES OF ELECTRONIC STATES IN ATOMS

AND MOLECULES

The classification scheme below is based on two
criteria: The first is simply the number (e.g. ,

zero, finite, or infinite) of lower states of the
same symmetry. The second is based on the re-
lationship of the configuration label of the state
of interest to those of the lower-lying states of
the same symmetry. This relationship depends
upon what we call a "vertical substitution. " A
vertical substitution is defined as the replacement
of one orbital in an N-electron configuration with
another orbital to produce a new configuration
which, based strictly on qualitative arguments
(e.g. , nodal planes, core penetration, etc.) and
without specific detailed calculations, is unam-
biguously higher in energy than the initial config-
uration.

In atoms, a vertical excitation is determined by
the replacement of orbital nt (principal quantum
number n, angular momentum I) with an orbital
yg'I' such that z'o + I'~ l and n'l'pre/. For ex
ample, this includes the replacement of a 2s with
a 3s or a 2P orbital„as in the conversion of the
&s'2s' configuration to the 1s'2s3s or the 1s'2s2P
configuration. Specifically excluded are the re-
verse processes (e.g. , substitution of 2s for 2p)
and ambiguous substitutions such as 3d —4s in
which yg increases as l decreases or vice versa.

In molecules, vertical substitutions include the
replacement of molecular orbital pgy with molecu-
lar orbital n'y, where n' & n and y is an irreducible
representation of the molecular point group, for
example 3a, —4a, in D» ethylene. Other substi-
tutions such as n —n *, etc. , where a bonding or-
bital is replaced by an antibonding orbital or a
nonbonding orbital, may also be included.

Type 1: Longest states of a symmetry. This
category includes all states with the lowest ener-
gy of their symmetry, such as all actual ground
states, all 1s'2s'2P~ states, ete. Most 2s2P~
states also fall into this category. A list of the
more important exceptions is given in Table I.

Type 2: "Vertical upper states. " A state is of
type 2 if there are a finite (nonzero) number of
lower states of the same symmetry, and the con-
figuration label of the state can be formed from
each of those of the lower states by making only
vertical substitutions. This includes, for exam-
ple, the 1s'2s'9P 'P' of the boron atom. This
state lies above the 1s 2s ygP I", pg =2-8, and it
is related to each by an sp- 9p (n & 9) substitution.
Another example is the 1s'2P"S state in the boron
+1, carbon +2, etc. , positive ions. In each case,
this state lies above the 1s'2s''8 state, which is
related by two 2s- 2P substitutions, as illus-
trated in Fig. &(a).

TyPe 3: "Nonvertical uPPer states. " This cat-
egory includes all states which lie above a finite
(nonzero) number of lower states of the same
symmetry, and which are not of type 2. Two
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TABLE I. L -shell states not lowest of their symmetry. This list includes all L-8 coupled terms belonging to 2s2p~
and 2s 2p configurations which do not have the lowest energy for their symmetry in neutral atoms and positive ions.

Configuration
(ps~ + ~ « ~ )

&-S term
(Symmetry)

Atomic
number(s)

Number of
lower states ' Uar iational

type
Configuration(s) of lower

state(s) (ls~2s2+ ~ )

2s2p
2s2p
2s2p
282p
2s2p
2s2p
282p
282p
2s2p
2s2p'
2s2p6

2$
3gy 0

iao i~0

4~
2D 2S 2~

2Q
3~0
iy) 0

2$

3s, 4s, 5s, 6s
2p38
2psd, s = 3—0

2p38
2p 3s
2p sd, 8=3-~
2p 3s
2p 3s, 3d
2p @d, n = 3-~
2p 3s
2p sg, s= 3-'0

(] s2+ ~ ««)

Based on experimental observations (Ref. 17),
See text.

such cases are illustrated in Figs. 1(b) and 1(c).
In Fig. 1(b), both states are related to an inter-
mediate configuration by vertical substitutions.
However, both substitutions lead away from the
intermediate state and it is not possible to con-
vert one state into the other making only vertical
excitations. The three states in Fig. 1(c) are re-
lated only by the nonvertical substitution M —48.
In scandium, 3d4s' is lowest; in titanium (+ 1),
3d'4s is lowest; and in vanadium (+ 2), 3d' is
lowest. Another example of such a state is the
2s2P~ I' in the nitrogen atom. This state lies
above the 2s'2P'3s 'P which is related to it by a,

2s —2P (vertical) substitution and a 3s —2P (non-
vertical) substitution. Several additional examples

of such states are given in Table I.
Type 4: States in the continuum. This eategoxy

contains all states which lie above an infinite
number of states of the same symmetry. In gen-
eral. , these states will lie above an infinite num-
ber of discrete states, usually in the form of a
Rydberg series texminating at an ionization limit.
In addition there will also be a continuous distri-
bution of continuum states with energies below,
adjacent to, and above the state of interest. In
some cases there are several Rydberg series,
ionization limits, and continua involved. Several
examples of type-4 states are given in Table I.

i.n the beryllium atom, for example,
lies above the 1s'2sss 'S (n & 2) series.

Is~ 2p 'S
ik

2s~2p
(js~ 2s 29)« ~

IL

Is~ 2s~ '8

3s~3p 3d ~Do

3p~3d

(3s~ 3p~)

{b)

3s 3p~ ~Do

3d~ 2D 31~4@ ~D 3d4s~ ~D

3d~4s 3d~4s

FIG. 1. Vertical and nonvertical. upper states. (a) A

vertical upper state, the 2pt iS state in boron +1, car-
bon +2, etc. , positive ions, which is related to the lower
lying 2s2iS by two 2s-2p substitutions. (b) and (c) Non-

vertical upper states. The two ~DO states in (b) are re-
lated by two opposing substitutions. The three states in
(c) are related by 3d 4s nonvertical, substitutions.

TyPe-2 states: For type-1 states, the familiar
ground-state variational principle applies. The
louest zoot of the charge wave function Hamilto-
nian matrix is minimized. Examples of such cal-
culations on states belonging to L, -shell configura-
tions have been given previously. '~ Without

changing any of the theoretical considerations in-
volved, we refined the computational details of
this process further. The most important of these
refinements is the use of two semi-internal orbi-
tals of d symmetry, instead of only one, and

separate optimization of each semi-internal orbi-
tal (i.e., f„ f«, f„ f, i, and f~) instead of using the
single variational parameter approximation de-
scribed previously. ' For these (type-1) states,
however, the results of the current refined ealcu-
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lations differ little from the results obtained pre-
viously. ' '

For states not of type 1, the "lowest state"
variational principle does not apply and other
methods are required. The most useful approach
to states not lowest of their symmetry is the
Hylleraas-Undheim-MacDonald (HUM) theo-

shown by Hylleraas and Undhe jm~2

and MacDonald, "each eigenvalue F~z~&~ for i =0 to
M —1 of the matrix H&" and its associated wave
function 4'&", are variationally bounded by the cor-
respondingly ordered eigenvalue E&& and eigen-
function 4'&& of the exact Hamiltonian H T. There-
fore, in order to calculate a variational wave
function for the third state of 'P' symmetry of the
oxygen atom, for example, it is necessary to
minimize the third eigenvalue of a matrix repre-
sentation of the oxygen atom Hamiltonian using a
basis of three or more configurations each of 'P'
symmetry.

The key to application of the HUM method is
selection of the correct eigenvalue of the Hamilto-
nian matrix. The ordering of the chosen eigen-
value must correspond exactly to the ordering of
the exact eigenvalue of the state of interest. In
particular, selection of an eigenvalue does not
depend in any way on the basis set used to con-
struct the matrix. However, the basis set must
be chosen to include the configuration labels not
only of the state of interest but of all lower-lying
states of the same symmetry. That is, the basis
set must include at least the configuration of the
state of interest plus explicit (i.e. , linearly in-
dependent) representations of every lower state
of the same symmetry. This may cause diffi-
culties in molecular calculations because the con-
figurational assignments and orderings are fre-
quently unknown and may change with geometry.
There are few such problems in atoms, however,
the doubly excited helium, ete. , spectra being
interesting exceptions treated recently by other
methods. " As a rule, if there is any doubt about
the position of a particular configuration (relative
to the state of interest), it should also be included
in the basis set because, even if it does not fall
below the state of interest, it is likely to be im-
portant for reasons of near degeneracy.

Type-2 states: Application of the HUM method
to type-2 states is especially easy because the
ordering and separation of the lower states rela-
tive to the state of interest are characteristically
insensitive to the choice of the orbitals used to
construct the configurational basis functions. For
example, in the case of the 1s22P 'S configuration
in the positive ions B', C", etc. , the only lower
configuration of the same (i.e., 'S) symmetry is
the 1s'2s''S. This configuration, however, forms

the internal part of the NCMET charge wave func-
tion of the 1s 2p 'S state, and it is automatically
included (independent of variational considerations)
in the basis set used to calculate the 1s'2P''S
charge wave function. In addition, any physically
reasonable choice of 1s, 2s and 2p radial func-
tions (e.g. , shielded hydrogenic or, better, RHF)
will yield correctly ordered 1s'2s''S and 1s'2P''S
basis functions. The variational calculation of the
charge wave function for this state, therefore, is
performed exactly as described for type-1
states, '' except that the second 'S eigenvalue of
the Hamiltonian matrix is minimized instead of
the lowest one.

NCMET charge wave functions for the 1s'2P''S
configuration of several ions have been calculated
previously by this method. As in the cases of
type-3 states, NCMET f values calculated using
these charge wave functions" are in good agree-
ment with the recent accurate experimental re-
sults, unlike the corresponding RHF f values.
Note, however, that the beryllium atom 1s'2P 'S
is not of type 2. It is specifically excluded from
the current discussion.

Typ8-3 sEQE88: Application of the HUM method
to type-3 states is more difficult than for type 2

because the positions of the lower configurations
relative to the one of interest are very sensitive
to details of the orbitals used to construct them.
Physically reasonable orbitals, including even the
RHF orbitals of the configuration of interest, can
reverse the order of some configurations in these
cases. Examples of this will be given in See. IV.

Characteristic difficulties in type-3 states are
caused by orbitals which represent the configura-
tion of interest better than lower-lying configura-
tions. Such orbitals have the effect of elevating
the lower configurations relative to the one of in-
terest. The RHF orbitals of the configuration of
interest can be a particularly poor choice because
they minimize the energy of the configuration of
interest, but not that of any of the lower configu-
rations. The combined effects of lowering the
upper configuration, while raising the lower con-
figurations, can seriously diminish the separation
between these configurations and even rever se
their ordering.

In the nitrogen atom, for example, the
1s'2s2p4'P and the 1s'2s'2p'3s 4P are the two
lowest configurations of ~P symmetry. The RHF
wave functions of these configurations have ener-
gies of 11.23 and 10.03 eV, respectively, relative
to the energy of the 1s 2s 2P~ S' RHF wave func-
tion. For comparison, the experimental term en-
ergies of the two lowest 4P states in nitrogen a,re
10.93 eV and 10.33 eV, respectively. " The 1s,
2s, and 2p orbitals of the 1s'2s2p~~P wave fune-
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tions, however, differ slightly from those of the
1s'2s'2P~3s ~P RHF wave function. If the 1s, 2s,
and 2p orbitals determined by the 2p'3s RHF
wave function are used to construct both configu-
rations, the 2P'3s energy remains at 10.03 eV,
but the 2s 2P4 energy rises to 13.66 eV, tripling
the separation between the configurations. Alter-
natively, if the 1s, 2s, and 2P orbitals from the
2s2P4 RHF wave function are used for both con-
figurations, the 2P~ energy returns to 11.23 eV
and the 2P'3s energy rises to roughly 11.2 eV or
higher depending on the choice of the 3s orbital.
For either choice of orbitals, the interaction be-
tween these configurations, i.e., H»
=(Is'2s2p"P)H~ls'2s'2p'Ss 'P), is roughly
0.3-0.4 eV. Therefore, if a 2x 2 configuration
interaction (CI) is performed using the 2p'Ss or-
bitals, the results will indicate two widely sepa-
rated, weakly interacting configurations. On the
other hand, if the orbitals from the 2P' are used,
a 2@2 CI will indicate two strongly interacting,
nearly degenerate configurations which mix in

almost a 50/50 ratio. This example, which is
typical of many cases, demonstrates that two

very similar sets of orbitals can lead to com-
pletely opposite descriptions of the same states.

In order to overcome the above problem, we

have found it useful to "minimize lowest states
first. " That is, basis functions {configurations)
which represent lower-lying states should be
chosen to minimize their own energies before the

upper state itself is treated. In particular, any
orbital occupied in the upper configuration and)or
any lower configuration should be taken from the
RHF wave function of the lou~est configuration in

which it is found and not necessarily from the
RHF wave function of the (upper) configuration
of interest. Examples of this procedure are given
in Sec. IV of this paper. By keeping the lowest
configurations as low as possible, this method
prevents upper and lower configurations from be-
coming accidentally degenerate or reversed in
order because of the use of poor representations
(with arbitrarily elevated energies) of the lower

configurations,
NCMET charge wave functions of type-3 states

have not been previously calculated in a varia-
tionally correct manner. The correct method for
calculating such states will be demonstrated in
Sec. IV of this paper on several 2s2P" states in
this categox'y.

Type-4 states: In the form considered here, the
HUM method requires an infinite number of basis
functions and diagonalization of a matrix of in-
finite dimension. Alternative techniques exist for
the treatment of these cases"'"; however, such
methods will not be treated here.

IV. NCMET CHARGE WAVE FUNCTIONS FOR 2s2p

STATES NOT LOWEST OF THEIR SYMMETRY

In neutral atoms and positive ions, nearly all
2s2P" states are the lowest of their symxnetry.
Such states are of type 1 and the method for cal-
culating charge wave functions of such states has
been given previously. "As shown in Table I,
there are exactly fourteen 2s2P" cases which are
not of type 1. Of these exceptions, all of which
occur in neutral and singly ionized atoms, seven
are type-3 states and seven are type 4. In this
section we will apply the HUM method to calculate
variationally correct charge wave functions for
six of the seven type-3 states for the first time.
These cases, in particular, are the carbon atom
2s2P33P', the nitrogen +1 ion 2s2P"P', the ni-
trogen atom 2s 2P4~P, the oxygen +1 ion 2s 2P~ ~P,

the oxygen atom 2s 2P' 'P', and the fluorine + 1

ion 2s 2P"P'.
¹trogen atom 2s2P P: The 2s2P44P state of

the nitrogen atom, for example, is the second
state of 'P symmetry in this atom, lying 0.6 eV
above the 2s'2P'3s 'P state. " As indicated by
NCMET, ' ' the charge wave function for the
2s 2P"P state includes the configurations
2s '2P'g„2s'2P'f„2s 2P'f~, 2s 2P'fz, 2P'f„and
2P'j,', where f„ f~, f~, and f~ are semi-internal
orbitals of s, P, d, and f symmetries, respec-
tively, and each semi-internal orbital is ortho-
gonal to all 1s, 2s, and 2P orbitals. In addition
to these configurations, the variational (HUM)
treatment of this state requires an explicit (i.e.,
linearly independent) representation of the lower-
lying 2s'2P'3s configuration. This is obtained
from the 2s'2P'f, configuration by splitting the

f, semi-internal orbital into two parts given by

f,(r) =Ss(r)+f,'(r), (Ssif,') =0.

In our calculations the f~ semi-internal orbital
was also split into two parts,

f, (r) =3d(r)+f,'{r), (Sd(f,') =0,

in order to represent the 2s 2P'M P configuration.
This configuration is not necessarily required in
this case because it lies above the 2s2P'4P. How-

ever, it was included in the current calculations
to take care of any near degeneracy effects which
might ax'ise from the relatively small separation
(2 eV) between the 2s2P''P and the 2's2'PsSd' P
configux ations.

The resulting set of configurations are listed in
the first column of Table II. Variational trial
wave functions for the 2s2P4 charge wave function
are obtained by calculating the matrix of the ni-
trogen atom Hamiltonian using this set of config-
urations as a basis set. In this case, because the
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TABLE II. The NCMET charge wave function for the 282p44P state of the nitrogen atom,
4P(1) and the lower-lying 4P(0) state as calculated in this work, and the results of previous
calculations. Correlation normalization. is used for all cases except the 4P(0) wave function
of this work (third column), which is normalized to unity.

Configuration
(1s2+ 4P)

Configurational coefficient
This work —NCMET Previous calculations

4P(1) ' 'P(0) 'P(0} ' P(0)

282p

28 2p 38

28~2p2f~

28 2p f~

2s 2p 3d

2~22p2f P

2 g 22p 2f

2s2p'j~ (1) '
2s2p3fp (2, 3, 4)

282p fy

2p 38

2p'f '

2p'f

2p'3d

2p fg

p fig

1.0000

0.7123

0.0290

0.1116

0.2076

0.4193

0.0924

0.0219

-Q.0915

0.0281

-0.0165

-0.0544

0.5056

-0.8261

—0.0555

0.0202

0.0870

0.1743

0.0682

0.0120

0,1204

0.0220

—0.0045

0.0270

-0.0558

0.0389

0.0128

0.2003

-0.1187

0.0759

0.0225

0.0403

Semi-internal STG exponential factor

fs orfs

fp

fg or fg

fy

1.991(3s)

0.900(2p)

1.626(3d)

2.813(4f)

1.991(3s)

0.900(2p)

1.626(3d)

2.813(4f)

l.600(38)

1.600(3p)

1.600(3d)

0.960(4f )

0.849(3s)

1.079(3p)

1.279(3d), 2.558(3d)

2.813(4f)

Tllat fs, 't =@RRF+ g, WlleI'8 (4RRF ieRRF) = 1 Rnd (eRRF ig) = 0.
18, 2s, 2p, and 3s radial functions taken from 1s~2s22p2384P BHF wave function.
18, 2s, and 2p radial functions taken from 1s22s2p 4P BHF wave function. . In this work the

exponential factors were restricted to (3, = (3& = $ = (5/3) $4~ to prevent variational collapse,
and no further variation was attempted. See Bef. 4 (Paper I).

1s, 2s, and 2p radial functions taken from 1s22s2p44P BHF wave function. See Bef. 8(b).
The roots of the matrix minimized by these authors led to partial variational collapse rather
than approximating the state desired.

There are four distinct 2s2p3f& 4P terms. These have been divided into one term containing
only single orbital excitations from the 2s2p determinant and three others containing all other
excitations (e.g. , 2p2p' —2p"f&). For brevity the coefficients of these last three terms have
been combined together into a single coefficient.

These are the exponential factors e„& used in each of the STG's, &" exp(-m„&~)F&~, to
represent the semi-internal orbitals in each calculation. The +I values of each STG ar e given
in parentheses after each 0». The fz orbital in the right-hand column contained two STG' s.

2s 2P4'I' is the second-lowest state of 'I' symme-
try, the variational trial wave function is deter-
mined by minimizing the eigenvalue of the second-
lowest 'P eigenvector of this matrix (and not the
lowest ones as found in type-1 cases).

To calculate a particular trial wave function,

the radial parts of each of the orbitals (18, 28,
&p, 3s, 3d, f,', f~, fR, fz) must be specified. Fol-
lowing the rule "minimize lowest states first, '*

the ~s, 28, 2P, and 3s radial functions were each
taken from the RHF wave function of the
1s 3s 2p 3s P conftgux'ation (and llot, as 111 type-. 1
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cases, ' from the ls'2s2P"P RHF wave function},
because this choice minimizes the energy of the
1s'2s'2P'Ss ~P configuration. A hydrogenie 3d
radial function r' exp(-r/3) was used for the 3d

orbital, because this choice is a very good ap-
proximation to the RHF 3d radial function in the
Is 2s'2p'Sd'P RHF wave function ' Each of the
semi-internal orbitais (1.e., f~, fp, fg, and gy)

was approximated with a single Slater-type orbi-
tal [STO—r" exp(-n„, r)Y, ] Schmidt orthogonalized
to the Is, 2s, 2P, 3s, and Sd orbitals.

Kith this choice of Is, 2s, and 2p radial func-
tions (i.e., from the Is'2s'2P'3s 'P RHF wave
function) the Is22s2P44P is no longer represented
with its own RHF orbitals. In this configuration,
the orbital polarization functions ("single excita-
tions") are expected to be larger than in type-1
cases. 4 They are very important here because
they compensate for the difference between the
Is'2s 2p4'P RHF orbitals and those actually used
to represent the Is'2s2P''P configuration. This
compensation effect is especially large in the 2P
orbital where it is reflected in the 2p- f~ single
excitations. In order to represent this compensa-
tion effect as well as possible, the 3~ semi-internal
orbital was represented with a 2p STO, instead of
the 3P STO used in type-1 calculations. 4 This
compensation effect was found to be much smaller
in 2s —f,' single excitations, and it is totally ab-
sent in f,' and jz orbitals (because there are no d
or f orbitals occupied in the Is'2s2p' configura-
tion). Therefore, the f,', f~, and ff orbitals were
represented with 3s, M, and 4f STO's, respec-
tively, as was done in type-I cases.

The four exponential factors e~, n, ~, n~, and
e«were determined by minimizing the energy of
the trial wave function (i.e., second-lowest eigen-
value} with respect to independent variations of
each of their values. The resulting NCMET charge
wave function, 'P(1), is shown in the second col-
umn of Table II. This wave function is a true vari-
ational bound (energy-wise) to the second exact
wave function of 4P symmetry because there is
another eigenveetor of the same CI matrix with
lower energy. This lower eigenvector 4P(0) is
given in the third column of Table II for compari-
son. Both of those wave functions, 'P(0) and
'P(1), have large contributions from both 2s2P'
and 2s'2p'3s configurations. The configurational
assignments, however, are unambiguously
4P(0) -=2s'2P'3s and 4P(1) =—2s2P', in agreement
with experimental assignments. '7

The results of two previous calculations on the
2s 2P' configuration are given in the fourth and
fifth columns of Table II. Both of these previous
calculations used Is, 2s, and 2p radial functions
taken from the 2s2P'4P RBF wave function, and

both calculations failed to include an adequate re-
presentation of the 2s'2p'3s configuration. As a
result, there is no lower-lying state of 4P symme-
try in eit er case and both must be considered
approximations to the 'P(0) state. In both of the
previous calculations, the coeffeeients of the
2s2p', &p'f~, 2p'ff, and &p'f~ configurations are
very close to the corresponding values in the
'P(1) wave function of this work (where f~ is sub-
stituted for f~), except" for the 2P'fz of Ref. 2.
In the calculation of Ref. 4, ho~ever, the impor-
tant 2s2p'Ss configuration is essentially missing
entirely, and the 2s'2p'f, coefficient approximates
that of the 2s'2P'f,' of the 'P(0) of this work. In
the wave function of Ref. 8(b) (fifth column), an

attempt to improve on the results of Ref. 4, the

f, exponential factor o.» has become much smaller,
making the f, orbital more diffuse and 3s like,
and the magnitude of the 2s'2P'(, coefficient has
increased markedly over that of Ref. 4. The sign
of this coefficient, however, indicates that it is
approaching the 2s'2P'3s coefficient of the ~P(0)
state and not the 'P(1). Both of these previously
calculated wave functions, therefore, may be said
to have a sort of dual character, resembling, in

part, the 'P(0) state and, in part, the 4P(1) state.
The result is poor approximations to both, as in-
dicated in Table III, which shows that the 'P(1)
eigenvalue (i.e., the second-lowest eigenvalue) of
this work is lower than the lowest eigenvalues
'P(0) obtained in either of the previous calcula-
tions.

Another important difference between the re-
sults of this work and the previous calculations is
the large size of the 2s2P'f~(1) coefficient in the
'P(1) wave function of this work Th. is is caused
by the compensation effect of 2P- j~ single exci-
tations, which correct the 2s2p4 configuration for
the difference between the 2P orbital of the
2s2P"P RHF wave function and the 2P orbital
(determined by the 2s'2P'3s 'P RHF wave func-
tion) used in this work. The result is effectively
equivalent to the use of two different (nonortho-
gonal) 2p orbitals in the same wave function with-
out the computational complications which arise
from the use of nonorthogonal orbitals.

The oxygen atom Ps' O': This state is very
similar to the nitrogen atom 2s2p~4P, except that
in this case a "M state, " i.e., the s2'2P'('D') M' P'

state, also lies below the 2s2P''P', as well as the
"3s state, " 2s'2P'('P')3s 'P' Consequently .the
2s2P' configuration corresponds to the third state
of 'P' symmetry, and the f~ =f~+3d division,
which was optional in the nitrogen 2s2p P, is
variationally required in this case. This state
also happens to lie above the 2s'2p'48' state of
the oxygen +1 ion and therefore falls in the corre-
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TABLE III. Comparison of nondynamical correlation energies &E(nondyn) =E(+~) —ERH)-, of
this work and energies of previous calculations for 2s2p" states not lowest of their symmetry.
In this work, the number of lower roots (matrix eigenvalues and eigenvectors) of the same
symmetry is equal to the number indicated by experimental assignments in every case. The
other results are not variational bounds on the energies of the states indicated here.

Electronic state

No. of DE = E(4) —E(RHF)
lower This work

states (Luken and Sinanoglu) Oksuz Nicolaides E(RHF)

Carbon 2s2P "P
Nitrogen+1 2s2P3 P'
Nitrogen 2s2P4 P
Oxygen + 1 2s2P P
Oxygen 2s2P~ 3P'
Fluorine+1 2s2p5 P

—1.562
-1.170
—1.615
—3.204
—2.565

3 0333

-1.344
-0.978
—2.523
-1.947
—2.962

—1.126
-1.747
-1.351
-3.402
-2.695
—3.081

-1015.945
—1444.869
-1469~ 004
-1994.781
-2018.520
-2657.106

~ Reference 17.
Reference 4 (Paper I). In this work the variational parameters were restricted to prevent

var iational collapse.
See Ref. 8(b) (cf. footnote d of Table II).

sponding continuum. Interaction with this contin-
uum (e.g. , autoionization), however, is symmetry
forbidden in LN coupling and (nonrelativistically
at least) this continuum can be rigorously ignored.

The NCMET charge wave function was calculated
in the same manner as in the nitrogen case, ex-
cept that in this case the third-lowest 'P' eigen-
value of the CI matrix was minimized as required
here instead of the second required in that case.
In particular, the 1s, 2s, 2P, and 3s radial func-
tions were taken from the 2s'2P'('P')Ss 'P' RHF
wave function —the lowest one of 'P' symmetry-
and a hydrogenic radial function r' exp(- ~r) was
used for the Sd orbital. Likewise, the f,', f~, f~,
and f& semi-internal orbitals were represented
with Ss, 2P, Sd, and 4f STO's, respectively,
Schmidt-orthogonalized to the 1s, 2s, 2P, 3s,
and 3d orbitals.

The energies of the three lowest 'P' eigen-
values obtained in this case are plotted in Fig. 2,
along with their RHF and experimental energies.
The procedure used to generate exact L', S'
eigenstates in this calculation also produces
eigenvectors for all additional symmetries with
L ~ 1 and S & 1 which can be formed by any con-
figuration in the basis set." The energies of
these additional eigenvectors of other symmetries
which fall below the third 'P' eigenvector are also
plotted in Fig. 2 for comparison. The left side of
Fig. 2 indicates the RHF energies for the
2s2P' 'P' configuration and all 2P'3s and 2P'3d
states with L ~ I and S ~ 1. Note that in this
(RHF/orbital) approximation, the 2P'(' ')P3d and
2s2P"P' configurations are reversed from the
correct order, and, among these configurations,
the 2s2P' is the fourth one of 'P' symmetry.

The RHF energies in Fig. 2 are plotted relative
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FIG. 2. Theoretical and experimental term energies
in the oxygen atom. The energies labeled "this work"
are the lowest nine eigenvalues of the CI matrix used to
calculate the 2s2P5 P' NCMET charge wave function.
These are plotted relative to the energy of the 2s 2P P
charge wave function (Ref. 2). These are compared to
the corresponding restricted Hartree-Fock (RHF) en-
ergies (Refs. 20 and 23) on the l.eft, plotted relative to
the energy of the 2s 2P P RHF wave function, and to
the experimental term energies (Ref. 17) on the right.
The levels labeled No. 1, No. 2, No. 3, and No. 4 are
explained in the text. The levels l.abeled P (0), P' (1),
and 3P (2) are the first, second, and third P eigen-
values, respectively. Groups of levels which are too
close together to plot separately are connected with
vertical lines. The purpose here is merely to show the
level orderings as obtained at this point in the calcula-
tions of these states. The total energies of these states
as indicated by NCMET also include additional all-exter-
nal correlation energies (~Ez) (see Refs. 1 and 4)
which have not been entered into the energies plotted
here.
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to the RHF energy of the 2s'2P"P ground state.
These energies represent separate SCF (self-
consistent field) calculations on each state, ~ "
resulting in different 1s, 2s, 2P, Ss, and 3d or-
bitals in each case. For practical reasons, it is
necessary to use a single set of these orbitals in
a CI calculation on these configurations. Except
for the 2s2P', however, there is very little dif-
ference between the 1s, 2s, 2P, and 3s or 3d or-
bitals in one of these states and those in any other.
In this case, the 1s, 2s, 2p, and 3s orbitals from
the 2P'('P')3s 'P' RHF wave function —the lowest

—and a hydrogenlc 3d were used ln every coll-
figuration. The energy of the 2P'('P')3s 'P' itself,
indicated by level No. 1 in Fig. 2, is unchanged
by this ehoiee of orbitals. The energy of the
2P'('D')Ss 'D', for example, is slightly elevated
over its RHF energy by using these orbitals in-
stead of its own RHF orbitals. As shown by level
No. 2 in Fig. 2, however, this change, amounting
to only about 0.02 eV, is practically impercep-
tible. The energies of the 2P'3d states are also
slightly raised by this choice of orbitals, but, as
with the 2P'('D')Ss 'D', the change is extremely
small.

In contrast to the 2P'3s and 2P'Sd states, the
energy of the 2s2P"P' as indicated by level No. 3
in Fig. 2, rises more than 2 eV over its RHF en-
ergy when using 1s, 2s, and 2P orbitals taken
from the 2P'('P')3s 'P' RHF wave function instead
of its own RHF orbitals. This elevation, however,
is more than overcome by the compensation ef-
fects of single excitations, especially the 2P-g~
excitations (i.e., 2s2P'- 2s2P f~), which effective-
ly drop the 2s2P

"P' configuration from level No.
3 to level No. 4 in Fig. 2. Level No. 4 is actually
below the RHF energy of the 2s2P53P' because the
single configuration + single excitations energy
represents a slightly more flexible wave function
than the strictly single configurational RHF wave
function.

The energies labeled "this work" in Fig. 2 are
the nine lowest eigenvalues of the CI matrix used
to calculate the 2s2P' P' charge wave function
(plotted relative to the energy of the 2s'2P4'P
charge wave function). This matrix includes all
of the configurations on the left side of Fig. 2
plus all additional configurations (including single
excitations, etc.} rec[uired by NCMET" to com-
plete the 2s2P'SP' charge wave function. These
eigenvalues correspond to the semi-internal or-
bital exponential factors (o.'„,au„a~, and az}
which minimize the third 'P' eigenvalue, labeled
'P'(2) in Fig. 2. The lower-two 'P' eigenvalues
'P'(0) and 'P'(l) and the other six eigenvalues in-
dicated in Fig. 2, all came automatically out of
the same matrix. Other than minimizing the 'P'(2)

energy, nothing at all was done to specifically im-
prove any of these lower eigenvalues. The corre-
sponding experimental term energies" are given
on the right side of Fig. 2. In every case, theo-
retical configuration and symmetry assignments,
based on configurational vector coefficients, are
in complete agreement with the correspondingly
ordered experimental assignments, except for the
2p'('D'}3d 'D' which is absent from the experi-
mental (optical) observations" because of rapid
autoionization into the ~8' continuum.

In addition to correct ordering, the separation
of the eigenvalues obtained in this work are in
remarkably good agreement with experiment. 24

The relative separations of the RHF energies, in
contrast, are not even qualitatively correct. For
example, the 2s2P' 'P' —2P'('D'}3d 'P'/
2p'('D'}3d 'P' —2p'('P')Ss 'P' term splitting
ratio has the value 13.9 for RHF energies, 0.29
in this work, and 0.30 in experiment. "'"

¹itxogen +1 ion 2sgP I", oxygen +1 ion
Zs2P P, and fluor~ ne +'f ion 2sZP 'P': Like the
nitrogen atom 2s2P4'P, these three cases each
have a single lower-lying "Ss state, " i.e., the
2s 2PSs 'P', 2s22P23s 2P, and 2s22P'Ss 'P', re-
spectively. The NCMET charge wave functions
for these cases were calculated with the same
method used for the nitrogen 2s2P'4P. In partic-
ular, the 1s, 2s, 2P, and 3s orbitals used in these
cases were taken from the 2s'2PSs 'P' and
2s'2p'3s 'P RHF wave functions, respectively.
For the 3d orbitals, a hydrogenic radial function
of the form r' exp(-2r/3) with an effective nuclear
charge of +2 was used because the Sd electron
will now see net charges of +2 in each of these
cases. The semi-internal exponential factors
n„, e», n~, and e& were determined by mini-
mizing the second-lowest 'P' eigenvalue in the
nitrogen ion, the second-lowest 'P eigenvalue in
the oxygen ion, and the second-lowest 'P' eigen-
value in the fluorine ion. The resulting minimum
energies are indicated in Table III. In a11 three
ions, the configurational assignments indicated
by the configurational coefficients in the two-
lowest 'P', 'P, and 'P' eigenvectors, respectively,
agree with the correspondingly ordered experi-
mental assignments. "

As indicated in Table III, the final energies ob-
tained in this work axe higher than those obtained
in Ref. 8(b). The results of Ref. 8(b), however, re-
present the lowest eigenvalues, instead of the
second-lowest eigenvalues, thus the wrong state
has been minimized in Ref. 8(b). For these cases,
therefore, the results of Ref. 8(b) are not varia-
tionally bounded by the states of interest (i.e.,
2s2P''P' and 2s2P~'P}, and the fact that the ener-
gies of Ref. 8(b) for the nitrogen and oxygen iona
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are lower than those obtained here does not imply
that the results of Ref. 8(b) are more accurate than

the xesults of this work. Qn the contrary, the
lowness of the Ref. 8(b) energies demonstrates that
the Ref. 8(b) wave functions are variationally col-
lapsing to the lower-lying 2s'2p3s'P' and
2s'2P'3s'P states, i.e., to the wrong states.

CQ'YAOPl QI'OPl ZSZp P: This cRS8 1S RgRIn vex'y

much 11ke the n1trogen Rtonl 2s2P P stRte dis-
cussed Rbove. TI18»sy 2s

~ 2Py Rnd 3s x'RdlRl

functions mere taken from the»s'2s22P3s 'P' RHF
wave function and r'exp(-r /8) was used for the
3d radial function. In this case, the lower-lying
2s'2P3s 'P' falls well below the 2s2P"P' config-
uration and causes no special difficulties. The
2s22P3d 3P' configuration, however, lies extx eme-
ly close to the 2s2p''P', resulting in an extxeme
near degeneracy. In addltlon, the 2s'2p4s SP' lies
in between the 2s2P3'P' and 2s~2P3d 'P' states,
although it interacts very weakly with both of
these states because of the extremely diffuse
nature of the 4s orbital. The result is that the
four lowest 'P' eigenvectors obtained in this work
clearly indicate (on the basis of their configura-
tional vector coefficients) that the lowest and
third-lowest 'P' states should be assigned to the
2s22P23s and 2s'2P'4s eonf1gurations, respec-
tively. The s~co~d- Rnd fourth-lowest eigenvee-
tors, homevex, both contain nearly equal amounts
of 2s2P~ and 2s22P3d configurations. In this cal-
culation, the semi-internal exponential factors
mere chosen to minimize the second 'P' eigenval-
ue, in accordance with the experimental assign-
ment of the 2s2P configuration to the second
state of 'P' symmetry in carbon. " This assign-
ment is purely conventional however, and this
state mould be better labeled as simply the
"second 'P' state" of the carbon atom.

Boron Ps' 8: This state is very different
fxom the other 2s2p" upper states. In this ease
there are no lower or nearby 5 configurations
containing a 3d orbital. There are, however,
four lower states of the form 2s'ns '8, with M=3,
4, 5, and 6. These are all included in the 2s'f,
semi-internal configuration. In order to repre-
sent each of these lowex' states, it is necessary
to separate the f, semi-internal orbital into five

th g lp t,
f, (r) =8s(r) +4s(r) +5s(r) +6s(r) +f,'(r),

each of mhieh is also orthogonal to the »s and 2s
ox'bltRls of 'this stRte. The chRrge mRve function
of this state mas not calculated in the current
work because of the unusual computational re-
quirements unique to this state. In principle,
however, this state mould be treated in the same
manner as the states discussed above. In this

ease, the rad1al parts of the»s, 2s, and 3s or-
bitals would be taken from the»s'2s'3s '8 RHF
wave function. The 2p radial function mould be
taken from the»s22s2P' 8 RHF wave function.
The 4s, 5s, and 6s radial functions could be
tRken Blthel' Rs hydl'ogelllc I'RdlR1 fl111ctlolls (pel'-
haps with a quantum defect to be determined var-
iationally) or from 1s12s14s, 5s, and 6s '8 RHF
wave functions. " The f„ f~, and f, semi-internal
orbitals (no f-symmetry orbitals are present in
this ease) would then be determined variationally
by minimizing the fifth-lomest root of 8 symme-
try of the resulting Hamiltonian matrix.

V. OPTICAL OSCILLATOR STRENGTHS INVOLVING

STATES NOT LOWEST OF THEIR SYMMETRY

To test the wave functions described above me

calculated the optical oscillator strengths of sev-
eral transitions involving excited states not lowest
of their symmetry. Oscillator strengths are
known to be very sensitive to non-closed-shell
electron correlation effects, '" all of which are
specified by NCMET and included in the NCMET
charge wave function" ' as found by Sinanoglu.
Among I -shell translt1ons, 1.e., 2s 2p"- 2s2p"',
bet%'een type-» statesy fol examples f vRlues cRl-
culated with NCMET char ge wave functions for
both upper and lower states generally agreed with
accurate experimental f values to within about
10%,'~'~' confirming the Sinanoglu theory very
well, whereas the f values calculated using RHF
and other previous available theories turned out
to be often in error by factors as large as 2-3
(for these same L shell -transitions; larger errors
with some in I shells).

The theory of I.-S coupled multiplet oscillatox'
strengths has been given previously' and mill not
be repeated here. Multiplet absorption f values
we calculated using both the "length" (f„) and
"velocity" (fv) formulas are reported in Table lv
for seven transitions with type-3 upper states.
The RHF, NCMET, and most other f values in
Table IV mere calculated using highly accurate
expel'InlelltRl 81181'gles lll 'the fol'InlllRS for fy Rlld

fv. Completely nonempirical f values can be ob-
tRlned, if desll'Bd, by llslllg tile (geonletl'ic) 1118Rll

f =(f„fv)I~' which is independent of this energy
fRCtOX'

The RHF f values reported in Table lV were
calculated using single conf lgul ational RHF w'Rve

functions for both upper and lower states obtained
from separate SCF calculations on each state. %8
used px eviously published RHF wave functions" "
in most cases, some we calculated ourselves.
The resulting nonorthogonality of upper- and
lower-state orbitals mas fully treated as described
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TABLE IV. Multiplet absorption oscillator strengths for transitions involving upper states which are not the lowest
of their symmetry. Theoretica& f values are given in both "length" (upper entry) and "velocity" (lower entry) forms,
where available, using experimental wavelengths &. The values of X are given below in angstroms. Experimental f
values are reported for beam-foil, phase-shift, and arc intensity measurements. The less accurate arc measurements
are enclosed in parenthesis.

Theoretical f values

Transition and wavelength (A)

Ci 2P 'P-2P"P'(1329) 0.169
0.115

0.092

Westhaus
RHF and Sinanoglu' Nicolaides

0.097
0.105

0.038
0.059

NCMET
Other (this work)

Experiment
f+~ values

(0.039)

Nrr 2P D -2P P'(660)

Nii 2P 5 2P P (746)

NI 2p S 2p P(1134)

Oir 2p3'D' -2P' P(538)

OH 2P3 P 2P P(581)

0.240
0.096

0.847
0.441

0.490
0.557

0.329
0.143

0.304
0.155

0.286
0.272

0.255
0.314

0.181
0.141

0.324

0.195

0.286

0.311
0 ~ ~

0.007

0.157
0.160

0.255
0.340

0.035
0.077

0.158
0.184

0.086
0.120

0.13'&
0.12'"
P25&g
P 22f, h

0.058 '
0.078 ~

0.080
0.083

(P 13) m

0.166'"
0.153"
0.142 'P

P 099
0.091"
0.085 'I'

OI 2P P2P P (792) P 344
0.328

0.190 0.088
0.147

(autoionizes) ~

See Ref. 5. Most neutral and +1 ion calculations involving "nonlowest states" were deliberately not carried out by

Westhaus and Sinanoglu pending a proper variational approach for such special cases. A couple or so cases given used
~ 0

the Oksuz-Sinanoglu nonvaried wave functions. All other Westhaus-Sinanoglu results were with type-. .1 states and there-
fore expected to be accurate at the time, as they have turned out.

C. A. Nicolaides, Chem. Phys. Lett. 21, 242 (1973) (cf. footnote d of Table II and the text).
This work (W. Luken and O. Sinanoglu) ~

A. W. Weiss, Phys. Bev. 162, 71 (1967). This work correctly uses the second root of P symmetry for the upper
state in this transition.

G. Boldt, Z. Naturforsch. A 18, 1107 (1963).
NCMET branching ratio used to convert experimental lifetime into f value.

g E. J. Knystautas, M. Brochu, and R. Drouin, Can. Spectrosc. 18, 153 (1973).
J. P. Buchet, M. C. Poulizac, and M. Carre, J. Opt. Soc. Am. 62, 623 (1972).
R. B. Hutchinson, J. Quant. Spectrosc. Radiat. Transfer 11, 81 (1971).

'W. Hayden Smith, J. Bromander, L. J. Curtis, and R. Buchta, Phys. Scr. 2, 211 (1970).
G. M. Lawrence and B. D. Savage, Phys. Rev. 141, 67 (1966).
H. G. Berry, W. S. Bickel, S. Bashkin, J. Desquelles, and R. Schectman, J. Opt. Soc. Arn. 61, 947 (1971).
F. Labahn, Z. Naturforsch. A 20, 998 (1965).

"I.Martinson, H. G. Berry, W. S. Bickel, and H. Oona, J. Opt. Soc. Am. 61, 519 (1971).
C. C. Lin, D. J. G. Irwin, J. A. Kernahan, A. E. Livingston, and A. E. Pinnington, Can. J. Phys. 52, 1961 (1974).

I' E. H. Pinnington, D. J. G. Irwin, A. E. Livingston, and J. A. Kernahan, Can. J. Phys. 50, 2496 (1972) ~

~ P. M. Dehrner and W. A. Chupka, J. Chem. Phys. 62, 584 (1975).

previously. '
Likewise, the NCMET f values in Table IV we

calculated using NCMET charge wave functions
for both upper and lower states. The upper states
are each of type 3, and each was represented with
the NCMET charge wave function of the state de-
scribed in Sec. IV. The lower state in each of
these transitions is of type 1. We calculated the

NCMET charge wave function for these states as
previously described' ' by Sinanoglu and OksQz
with the minor refinements mentioned earlier in
this paper.

The f values of Refs. 5 and 8(a) which are included
in Table IV were calculated also with the Sinanoglu
NCMET using lower-state wave functions nearly
identical to those used in this work (however, the
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wave functions for the upper states differing as
described above). Previous calculations' have
demonstrated that these NCMET charge wave
functions accurately represent each of the type-1
states involved. The accuracy of the f values in
each of these calculations [Refs. 5 and 8(a), and this
work], therefore, is expected to depend primarily
on the accuracy of the upper-state (type 3) wave
functions used in each case. Where experimental

f values have been available, previous calculations
involving nonlowest-type states have all been pre-
viously noted for their large discrepancies. "'
As can be seen in Table IV, the NCMET results
of this work, which use the variationally appro-
priate upper-state charge wave functions for the
first time, are in much better agreement with ex-
periment in every case."

The NCMET f values obtained in this work, al-
though much better than any previous calculations
on these nonlowest-state-type transitions, are not
as accurate (i.e., 10%%uo) as most NCMET f values
previously calculated for type-1- type-~ transi-
tions. ' One reason for this is the larger magni-
tude of the semi-internal and internal mixing ef-
fects found in the type-3 states considered here.
This would make some additional effects such as
the "unlinked products" of semi-internal orbitals
which Sinanoglu has recently discussed" and

called "quasi-all-external correlations, " more
significant in these neutral and +I ions as com-
pared to the previous higher positive ions. ' Such
additional effects are easily included in NCMET,
but these refinements will not be attempted here,
the present results already constituting a major
improvement over any theoretical values available
before 8~~

In the NII and OII transitions, comparison of
theory with experiment is complicated by the re-
quirement of a branching ratio for converting ex-
perimental (lifetime) data into f values. The "ex-
perimental" f values for these transitions given in
Table 1V were calculated using the NCMET branch-
ing ratios obtained in this work. This may seem
to favor comparison with the theoretical f values
of this work; however, similar experimental f
values were calculated using all possible branch-
ing ratios obtainable from previous calculations,
as well as those of this work, and in no other case
was the agreement between theory and experiment
as good as it is for the NCMET values given in
Table IV. Further details on each of these cases
will be published later. "

In addition to the optical oscillator strengths
reported here, the type-3 wave functions obtained
in this work have also been used by Davis and
Sinanoglu to calculate generalized oscillator
strengths and electron scattering cross sections

in the Born approximation. Details and results
of these calculations are reported elsewhere. "

VI. CONCLUSiONS

We classified the ground and excited electronic
states of atoms and molecules into four categories
based on their configuration labels and those of
lower-lying states: Type-1 states are lowest of
their symmetry; type-2 states have a finite number
of lower states of the same symmetry, whose
ordering is determined by their configuration
labels; type-3 states include all other states with
a finite number of lower states of the same sym-
metry; and type-4 states lie above an infinite
number of lower states of the same symmetry.

In Sec. II, variational methods for calculating
wave functions were outlined for each of the cate-
gories.

Type-2 and type-3 states can be properly treated
using the Hylleraas-Undheim-MacDonald (HUM)
theorem. " " In this approach, energy-mise var-
iationally bounded trial wave functions are calcu-
lated by selecting specific eigenvectors of matrix
representations of the electronic Hamiltonian. In
particular, if the state of interest is the nth state
of symmetry y, then it is necessary to always
select and stick to the nth-lowest y symmetry
eigenvector of' the Hamiltonian matrix during all
variations.

In atoms and molecules it is usually convenient
to use a set of single configurational N-electron
wave functions as a basis for determining the
Hamiltonian matrix. This set must include the
configuration of the state of interest, as well as
explicit (i.e. , linearly independent) representations
of all lower-lying configurations. The configura-
tion labels of these basis functions, however,
cannot be used as a means of selecting variational
eigenvectors. This selection is determined strict-
ly by the number of states of the same symmetry
below the state of interest. If the expected con-
figurational assignment is correct, it mill auto-
matically be reflected in the specified eigenvector
for a properly chosen basis set. Selection of a
lower eigenvector in order to force a configuration
label (that is, choosing a particular root because
it has a large coefficient on the configuration of
interest) will cause a partial variational collapse
to a lower state, resulting in poor approximations
to both the lower state and the state of interest.

Construction of an adequate basis set is espec-
ially easy for type-2 states because the order and
separations of the variationally required configu-
rations are characteristically insensitive to the
choice of the orbitals found in these configurations.
In general, any reasonable choice of orbitals will
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give qualitatively correct results, and, except
for selection of a nonlowest eigenvalue, the varia-
tional treatment of these states is almost identical
to the treatment of type-1 states.

For type-3 states, however, the order and sepa-
rations of the variationally required configurations
are often very sensitive to small changes in the
orbitals. In the nitrogen atom, for example, it
was demonstrated that the differences between
the RHF orbitals of two adjacent configurations
are sufficient to drastically change the relative
energies of these configurations. In such cases,
the practical rule, "minimize lowest states first, "
can prevent accidental degeneracies and reversals
which can be caused by representing the config-
uration of the state of interest better than lower-
lying configurations.

Methods"'" exist for treating type-4 states,
but these do not include the HUM method. Attempts
to apply the HUM method to such states, without
further constraints, can lead to serious errors,
as in the 2P''S Bet case."

In Sec. III of this paper, NCMET charge wave
functions were calculated for six particular type-
3 states with 2s2P" configurations. In each case,
difficulties in constructing adequate basis sets
have led to erroneous results in previous attempts'
to calculate variational wave functions for these
states. In the current work, based on the HUM

theorem, the variational difficulties involved were
overcome by observing the following rules:

First, each lower configuration must be explicit-
ly represented in the variational basis set. In
these cases, this xequired certain semi-internal
orbitals to be split into two or more parts in
order to represent the lower states and remaining
semi-internal effects separately.

Secondly, the lowest states should be (roughly)
minimized first, px'ior to cax'eful minimization of
the state of interest. In the current work, this
meant taking the 1s, 2s, 2P, and 3s orbitals from
the RHF wave function of the lowest configuration
with the symmetry of intexest, and not from the
RHF wave function of the configuration of interest
itself.

Thirdly, configuration labels must be ignored
during the variational px'ocess. In this work this
meant sticking to a specific eigenvalue, e.g. , the
second or third of a paxticular symmetry, and
assigning configuration labels only after this eigen-
value has been minimized, and only according to
the magnitudes of the coefficient in the wave func-
tion (configuration label means one configuration
has noticeably larger coefficients than any of the
others in the eigenveetor).

In these calculations, variationally correct wave
functions were obtained for each of these states

for the first time, which indicate that previous
attempts' have been in error. In each case except
one, the configurational assignments found in this
work are in complete agreement with the corres-
pondingly ordered experimental assignments for
the state of interest and all lower states. The one
exception is the carbon 2s2P"P', where config-
uration mixing with the 2s'2P3d'P' is too heavy to
permit meaningful assignments. In each case, the
theoretical configuration assignments found in
this work came out automatically and natuxally
without any preconceived attention to configuration
labels beyond the three rules outlined above.

Examination of the wave functions obtained has
revealed that, unlike the situation in type-1 states,
single exeitations ("orbital polarizations") from
the configuration of interest, especially 2P- f~
excitations, are very important in these states.
These single excitations effectively compensate
for the difference between the Hartree-Fock radial
functions of the state of interest and those used
here, which were determined by another lower-
lying configuration.

As a final test of these wave functions, they were
used to calculate oscillator strengths for several
transitions involving states not lowest of their sym-
metry. In each case where experimental da, ta has
been available, many of the discrepancies, "'"'"
which existed with previous calculations on these
transitions, have now been resolved with the f
values obtained here.

Axnong L-shell states, the set of all type-8
states collectively constitute a very small and
exceptional subset. Among larger atoms and
molecules, however, this type of state will occur
with rapidly increasing frequency. In M-shell
configurations of atoms like magnesium, silicon,
sulfur, etc. , for example, similar situations in-
volving 3s3P and 3s'3p '3d configurations occur
not only in neutral and singly ionized cases but
also in highly ionized atoms like Fe'", etc. The
situation is even worse in molecules where thex'e

are fewer symmetries and more states. Fewer
states, therefore, can have the privilege of being
the lowest of their symmetry. In addition, we
note that the most difficult cases in atoms occur
with the greatest frequency in neutral and singly
ionized cases. Among stable free molecules, how-
ever, neutral and singly ionized cases are essen-
tially all that exist.

%e thank Stephen L. Davis for many valuable
discussions and assistance in carrying out some
of the calculations described in this work.
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