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We consider the problem of calculating the dynamic structure function S(k, co) via a properly posed initial-

value problem for a linear kinetic equation. A variational principle is introduced and shown to give a direct
II

bounded estimate of S(k, m). The variational trial functions for the problem are the space-time transforms of
the phase-space correlation function. The choice of such trial functions are discussed and general expressions

for S(k, co) are developed which are applicable to simple gases. Numerical results are presented for the specific

case of hard spheres, these results being compared to previous first-principle calculations based upon kinetic

equations with and without the inclusion of memory effects. Excellent agreement with previous results, at all

ratios of fluctuation wavelength to mean free path, is obtained with considerably less computational com-

plexity. This computational efficiency of the variational approach suggests that it should be a valuable

techniqu, from the standpoint of feasibility, in attempts at first-principle calculations for more complex many-

body systems. In this regard, further study and improvement of the variational techniques themselves appear
to be warranted.

I. INTRODUCTION

It is widely known that contributions to observed
spectral line shapes that relate to fluctuations in
Inany-particle systems can be described in terms
of time-correlation functions. ' The time-corre-
lation function description of the decay of fluctua-
tions is valid in all regimes of fluctuation wave-
lengths and frequencies. Of current interest are
the transition regimes in which the wavelengths
and lifetimes of the fluctuations are comparable
to the spatial and time intervals over which colli-
sional equilibration occurs. The behavior of the
time-correlation function in these transition re-
gimes depends upon the details of the collision
dynamics of the many-particle system. Such
transition regimes for the density-density corre-
lation functions of gases and liquids are presently
accessible by light and neutron scattering experi-
ments. ' Correspondingly, the problem of calcu-
lating time-correlation functions for many-parti-
cle systems from microscopic theory has become
an irnpor tant theoretical problem. In particular,
a calculation of fundamental importance is that
for a moderately dilute gas. For such a system,
detailed calculations may be performed without
a totally forbidding amount of labor. Several such
calculations of the density-density correlation
function, or more specifically, S(k, u), its Four-
ier transform in space and time, have been per-
formed based upon the Boltzmann equation. ' ' The
Boltzmann equation, however, is intrinsically de-
fective at high frequencies and short wavelengths
because its asymptotic treatment of atomic colli-
sions ignores those incomplete coQisions which
occur on spatial and time scales comparable to
interatomic dimensions and the duration of colli-

sions, respectively.
More recently, detailed calculations of the dy-

namic structure function S (k, ru) have been per-
formed for moderately dilute gases based upon
kinetic equations which incorporate memory ef-
fects into the collision operator. ' These calcu-
lations quantitatively exhibit the deviation of the
dynamic structure function from the predictions
of the theories based upon the Boltzmann equation.
Even in the case of moderately dilute gases, the
calculation of S(k, ~) is quite complex. These cal-
culations have primarily consisted of the kinetic
modeling of either the Boltzmann collision opera-
tor or the memory function involving matrix repre-
sentations of dimension 23 or greater.

In the present paper, we consider an alternative
approach to the calculation of S(k, &o). A principal
objective of the method is to simplify the compu-
tation without a loss of accuracy. In this regard,
the approach is proposed as a feasible one for
eventually performing detailed calculations on
more complex many-particle systems. Here we
shall consider specifically the case of moderately
dilute gases for which existing detailed calcula-
tions may be used as a test of the accuracy of the
calculation in the various ranges of fluctuation
wavelengths and frequencies. The approach is
based upon the use of a "direct" variational meth-
od for calculating the dynamic structure func-
tion." In this variational method, the trial func-
tions are the Fourier transforms of the phase-
space correlations. The variational functional
itself is physically equivalent to S(k, w), with the
variational approximation giving a bounded esti-
mate of S(k, &u), accurate to second order in the
errors in our trial phase-space correlation func-
tions
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In Sec. II, a discussion of the variational formu-
lation of the dynamic-structure-function calcula-
tion is given. The development given there ia
general in the sense of its applicability to arbi-
trary linear collision operators, including those
with memory effects incorporated. The choice of
trial functions is discussed in Sec. III. This choice
is important for the obvious reason that the esti-
mated S(k, v) depends upon terms of second order
in the errors made in the trial function. It is im-
portant in the sense that this choice actually dis-
tinguishes the variational method from other
methods within the general class called moment
methods. '" The detajled calculation of S(k, &())

is given in Sec. IV. Results are first given in a
form which may be readily applied to a given col-
lision model. Numerical results are given in
Sec. V for the case of hard spheres. Section VI
gives a summary of the present calculation and a
discussion of its implications.

defined initial-value problem for kinetic equa-
tions such as (2.1)."" The initial-value problem
appropriate to the calculation of S(k, &u) is "

5E(v, r, t=0) =4(v}f(v, r, t=0) =I (n)5'(r}. (2. '7)

This represents an excess thermalized particle
located at the origin at t = 0 and handles the pro-
blem of ensemble averaging. The density-density
correlation function is then

C(k(),= d% P(()v, k (')= f diO( )f(i, k, t)

(2.8)

C(K, a) =
J (f'c4(c)f (c,k, a),

where we' ve introduced the dimensionless velocity
c = P'/'v. The transformed distribution function is
defined according to

II. DEFINITIONS AND VARIATIONAL FORMULATION

Our starting point is the linearized Boltzmann

equation
(2.10)

and satisfies the transformed kinetic equation
sf(v, r, t) - Bf(v, r, t)

8$ Br
(2.1) I'f (c,k, c) =1, (2.11)

where g is a linearized collision operator. The
perturbed distribution function f (v, r, f) is defined
according to

F(v, r, f) =- 4 (()) + 5Z(v, r, f) = 4(v) [1+f (v,-r, f)]

C(v) =(P/v)'~'e ", (2.3)

where P =m/2ksT We are in.terested in the den-
sity-density correlation function

C(k, t) =(5n'(k, 0)5n(k, f)&„

or more directly its transform

(2.4)

(2.2)

in terms of the total distribution function E(v, r, f)
and the Maxwellian distribution

(2.12)

with e —= ik/P'~'. The initial condition (2.7) has been
incorporated into (2.11).

In the present analysis, we shall bypass at-
tempts to explicitly solve the transformed kinetic
e(luation (2.11). Rather, we proceed directly to
the physical (luantity of interest, C(k, o) or S(k, &u)

by a direct variational method. To do this we in-
troduce the functional

(2.13)

where f denotes a trial solution of (2.11) and our
scalar product is defined

(2.14)

to which S(k, &u) is related via

S(k, (()) = 2 ReC(k, o = i(()) .

(2.5)

(2.6)

Our motivation for the use of (2.13) may be made
clear by several observations. First we note that
forf = f (= f,„,~), we have by-virtue of (2.11)

(2.15}

ol
The average denoted in (2.4) is over an equilib-
rium ensemble.

As is well known, the density-density correla-
tion function may be calculated from a suitably

S(k, v) = 2 Ref[f (c, k, o = Au) ] . (2.16)

Thus the real part of our functional is physically
equivalent to the dynamic structure function that
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we seek. Secondly, the functional I[f] constitutes
a variational principle, with the vanishing of first-
order variations with respect to f implying the
kinetic equation (2.11) as the associated Euler-
Lagrange equation. To see this, we put f = f+6f,
where 6f is the error in our selected trial func-
tion, into (2.13). Using (2.11) we obtain the inter-
mediate result

i[f ) =(l, f&+(1,6f) —(f, Z6f& —(6f, 26f& ~

(2.17)

five axially-symmetric Burnett polynomials
(~c}.14

(2)l/2

(2)1/2(2 2)

@4(c)=- 4'„(c}= (-,')'/'(3c„' —c'),
'k, (c)-=q'„(c) = (~)'/'(-2' —c')c„

for which

(3.3b)

(3.3d)

(3.3e)

Using the fact that P is self-adjoint and that for
o=io1, o+ec, is pure imaginary, we have gtf*= 1,
so that the second and third terms of (2.17) cancel,
leaving

1[f]= C(k, o) —(6f& g6f) . (2.18)

ReI[f ] = Re C(k, o) + &1, (Re6f)8 (Re6f}&

+&1, (Im6f)g(lm6f)& . (2.20)

Recalling the negative semidefinite character of
the linearized Boltzmann collision operator, "we
see that Relff] yields a lower bound to S(k, or).

III. CHOICE OF VARIATIONAL TRIAL FUNCTIONS

As trial functions for our variational calcula-
tion we choose the general form,

f (c, k, o) = g A,.(k, o)%'/(c) .
j=0

(3 1)

The complex quantities /I, .(k, o) are wavelength-
and frequency- dependent variational parameters
which will be determined by the Rayleigh-Ritz
parameter variation scheme. For the present
calculation we specifically choose

Thus our functional is a variational principle
whose Euler-I agrange equation is the kinetic
equation (2.11}and which approximates C(k, o)
to within terms of second order in 6f.

Though the functional 1[f] is not generally bound-
ed, its real part, and thus S(k, &o), will in fact be
bounded. To see this we rewrite (2.18) as

I[f]=&i,f&-&1,(o+~ „)I6f'~&+&1,(6f)*3(6f)&.

(2.19)

Again with 0 + g c, pure imaginary, we see that

(3.4)

These five polynomials lead to a hydrodynamic
description of S(k, 4o) in the Burnett approxima-
tion. " This contains as a limiting case the Nav-
ier-Stokes hydrodynamic description. Our re-
sults will first be formulated for a general inter-
atomic force law. In any event however, the first
three Burnett functions are eigenfunctions of 5
with zero eigenvalue, while the last two are eigen-
functions of g only for the case of the Maxwell
molecule inverse-fifth-force law.

The judiciousness of our choice of trial function
will of course ultimately be determined by the
accuracy of the calculations. Nonetheless, the
choice may be intuitively motivated. Basically
(3.1), along with (3.2) and (3.3), represents a mix-
ture of free-particle and hydrodynamic behavior.
Intuitively then, the variational procedure, through
the wavelength-frequency-dependent variational
parameters, admixes hydrodynamic and free-par-
ticle behavior in some optimal fashion at each
point in the (k, 1o) domain of S(k, o1).2 As we shall
see, the free-particle contribution to the trial
function mill give increasingly weighted modifica-
tions of the S(k, 14&) results in those specific re-
gions in which the Boltzmann equation itself is
intrinsically defective, i.e., the regions of high
frequency and short wavelength. It may be noted
that our choice of trial functions is akin in spirit
to the choice of an admixture of the asymptotic
up-stream and down-stream solutions made by
Mott-Smith in a variational calculation of shock-
wave structure. "

IV. CALCULATION OF S(k,w)

With the choice (3.1) of trial functions, our func-
tional becomes

4', (c) = I/(a+ac, ) &

which is the exact solution of (2.11}in the free-
particle limit. We note that this form represents
the limiting behavior of the fluctuations in the re-
gimes of extremely high frequencies and/or ex-
tremely short wavelengths. For the remaining
terms in the expansion (3.1) we employ the first

I= QA,.&l, 0,.&+ QA,*. &@,, 1&
j=O j= 0

5 5
—Q Q &41*&41&4&„g&I&,& .

j=O 4 =0

Writing the complex parameters as

Aj =B,-+D,. y

(4.1)
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where D,*. =-D, , we obtain

I= 2 g (B,r, + D,r, )

—Q Q (B;B,—D~D, +D~B, —B,D,)I'„, (4.3.)

Evaluation of the y,.'s and the y,. 's gives

y, = (-i/~)w'~' exp(- o'/e'), y, = 1,

y, = n~+ (f/c) v' ~' exp(-cr'/e '),
(4.13)

y,. =0, jc1,0; (4.14)

(4.4)

(4.5)

where n~(k, o) is the free-particle density re-
sponse, related to the tabulated plasma disper-
sion function" Z according to

,
—= &i' ~PQ. }. (4.6)

n„(k, o) =(1, (o +ac, ) '} = (1/e)Z(-o/e) . (4.15)

Thus only three terms contribute to the summation
in (3.12), giving

For complex parameters A, , our parameter varia-
tion scheme becomes flf ~=roBo+»+roDo ~ (4.16)

~j~ =0, j=0, 1, ..., 5
J

(4.7)

The set of 12 equations, (4.9) and (4.10), deter-
mining JB, , D~J has a relatively simple structure
owing to the vanishing of many of the coefficients.
Specifically, we find that"

(4.17)

sIfE1
BD.

=0, j=0, 1, ..., 5. (4 6) I'„=-&e„g@,) +&4'„(o+ec,)4',), (4.18)

This yields the set of algebraic equations I"„=-&4„gC,}+&4'„(o+ac„)4,}. (4.19)

g(B,A„.+D,~„)=y, , j =0, 1, ..., 5 (4.9)
The remaining nonvanishing elements b,,&

are
640 and ~ 650 For the matrix ele-

ments I',.
&

we find

Q (B,A, , + D,A„)= -r, , j = 0, 1, ..., 5, (4.10)
f =0

where

~03 ~30 ~13 I 3] I 14 I 4l

15 ~51 ~25 ~52 ~34 ~ 43

Thus Eqs. (4.13) and (4.14) have the form

(4.20)

&i &i
(4.11)

for determining the parameters JB, , D,)f. We note.
that the inclusion of 4,(c) as defined by (3.2) in our
trial function means that the expansion (3.1) is not
completely in terms of orthonormal functions. As
a result, the algebraic equations given by (4.9) and

(4.10) are not identical to the algebraic equations
that would be obtained by a moment-method solu-
tion based upon a finite set of orthogonal poly-
nomials' as employed, for example, in Ref. 6.
It's clear that C,(c) contains the complete set of
such orthogonal polynomials. %4th the conditions
(4.9) and (4.10) we find

I' X=X

where

A„..., A.5= B0, ..., g,

c46y ~ %% )A.11 D0y g ~ ~ y D5

Also

(4.22)

(4.23)

(4.12)
X,=y0, X,=1, X,=-y0, X.=0, for j W016,

(4.24)
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where %'e ve used

(4.26)

The nonzex o matrix elements with respect to the
Burnett functions„ i.e., I', , for i,j & 0, are ob-
tained from the standard kinetic-theory literature. "
They Rre 8 = g P ~%,. & Z, ,(4;.~, ij, &0 (4.34)

F~, and I',o. The evaluation of these integrals
requires the chozce of a specifIC model and sub-
sequent representation of the collision operator g.
For pxesent purposes a convenient representation
of /is

&,.= (@„8'&,& (4.28)

&„=(+„84',& (4.29)

and formally xelated to the viscosity q and the
thermal conductivity I( according to"

(4.2V)

whex'e eJ~4 Rnd 455 Rx'e stRndRx'd klnetxc-theory
collision integrals defined as"

in terms of the Bux'nett function used in the rep-
resentation of our trial function. The matrix ele-
ments are tabulated for various collision models.
The first nonvanishing matrix element is J«.
Higher-order matrix elements may be related
to J«. This relationship between higher-oxdex
matrix elements and I« is the same for all mo-
lecular models through seventh order. Thus to
obtain xesults which are model dependent, we
require R representation of g of dimension 8 ol
gxeater. As we' ll see the nine-dimensional rep-
resentRtioD 18 sufficient to give Rccux'Rte results
for S(k, &o). Our remaining integrals then be-

comee

Z„=—mn/2pg (4.30)

(4.31)

These are also tabulated for various intermolec-
ular forces. " The remaining matnx elements
for which expressions are requix'ed are

r„=—n~ (i/e) 2w'~' exp( —o'/e') —J~-, (4.32) + Z„((%'„4,&(4„4,&+(4„4,}(%„4,&),

(4.37)

Z~=(C „g4,&, (4.33) where we "ve used the fact that the only nonvanish-
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Pa

ing off-diagonal matrix element of g through ninth

order is J„=J„. Noting that
minants, i.e. ,

I[f] = [r.(r, MOO ™»-r,M6o)

c~ 1 a
0+E'cg f 6 0'+Keg

(4.38) + (r,M» —M» —r, MBI)

+r,(r,M„-M„-r,M„)]/~r ~, (5 1)
the scalar products (4'„q,) may be evaluated by
partial fraction expansion, each scalar product
being expressed in terms of the plasma disper-
sion function.

V. RESULTS AND DISCUSSION

The system of equations (4.21) are such that
they may be partially reduced with moderate ef-
fort. Since, however, our interest here is in
numerical results we solve the system of 12 com-
plex equations directly. The expression (4.16)
for I[f] may be expressed as a ratio of deter-

where the M„.'s are minors of ~I'~. These deter-
minants may be evaluated by computer. Because
of the availability of other first-principles calcu-
lations which can be used to test the accuracy of
the present one, we consider the case of hard
spheres. For the purpose of performing calcu-
lation and for making comparisons with previous
ones, we introduce the dimensionless variables

x= —o/e, y = —iZ,ge. (5.2)

The variable x is the dimensionless frequency,
andy is a collision parameter which is a mea-
sure of the ratio of fluctuation wavelength to col-
lision mean free path. Further, we introduce the
dimensionless dynamic structure function R(x,y)
defined

1.4

1.2
R(x,y) = —,

' = —. —Re[I(x, y)].c S(x,y) e 2

2 r z 7T

(5.3)
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FIG. I. Dimensionless dynamic structure function
R(x,y) for hard-sphere molecules as a function of the
dixnensionless frequency x for y = 3.0. (a) The variation-
al results (—) are coxnpared to those of SYS (-~ —) and
MWY (-—). (b) The variational results are compared to
the Navier-Stokes (—-) and free-molecule results (- —).
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FIG. 2. Saxne as Fig. 1 except that y = 1.17.
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Its dependence upon x for various values of the
collision parameter y is given in Figs. 1-4. In
part (a) of each, our results are compared to the
corresponding results of Sugawara, Yip, and
Sirovich (SYS)' and to those of Mazenko, Wei, and
Yip (MWY). ' In part (b) of each figure our re-
sults are compared to the Navier-Stokes hydro-
dynamic (H) and free-molecule (F) results. The
MWY calculations are based upon the kinetic equa-
tions of Mazenko' which include memory effects.
In that calculation a representation of the memory
function is employed analogous to the representa-
tion of g in the present calculation. There the di-
mensionality of the matrix representation was 35
with Hermite polynomials used as basis functions.
In the SYS calculation, based upon the linearized
Boltzmann equation, Sonine polynomials were
employed to construct a matrix representation
of the linearized Boltzmann collision operator of
dimension 23.

Our results are seen generally to be in good
agreement with those of the MWY and SYS calcu-
lations. In particular, we note that our results
agree at short wavelengths, e.g. , y =0.067. This

feature is particularly significant since our cal-
culation is based upon the Boltzmann collision
operator itself rather than a kinetic model. The
problem of convergence, at short wavelengths,
of orthogonal polynomial expansion solutions of
the Boltzmann equation is widely known. " For
the present problem, orthogonal polynomial ex-
pansions up to 60 terms have been shown to be
seriously defective at wavelength to mean-free-
path ratios as low as 0.067.' It has been shown
that the convergence of orthogonal polynomial
solutions tends to be slowest at x=0. In the pre-
sent variational calculation, based upon 40 and
the first five Burnett polynomials, the x= 0 and

y =0.067 result differs from the analogous SYS
result by only a few percent.

We also note that the variational results lie
closer to the MWY results at higher frequency.
The shift of the variational results from those of
SYS is in fact towards the exact free-molecule re-
sults in this limit. It is interesting that except
for the low-frequency limit, the variational re-
sults tend generally to lie closer to the MWY re-
sults than do those of SYS to the MWY results.

1.4 1.4

1.2— Y=O5 1.2

I.O
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x
~ o.e

FND
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~ 08

~ o.e

0.4 0.4

0.2 0.2

0 I I I I I I I
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I I I I I I I I I
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FIG. 3. Same as Fig. 1 except that y =0.5. FIG. 4. Same as Fig. 1 except that y =0.067.
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This is due principally to the inclusion of Cp in
our variational trial function. The form of the
chosen trial function in effect constrains the re-
sults to approa, ch n~(k, v) in the high-frequency or
short-wavelength region. A result of this is a
distortion of the contribution of the chosen colli-
sion operator g in the intermediate regimes of
frequency and wavelength. This distortion is gen-
erally towards the results of the non-Markovian
theory of MWY. As will be shown elsewhere, our
results in the moderately-long-wavelength region
may be recast into the Navier-Stokes form with
frequency- and wavelength-dependent transport
coefficients as in the non-Markovian generalized
hydrodynamic theory of Oppenheim and Selwyn. "

VI. SUMMARY AND CONCLUSIONS

In this paper, we have introduced a direct varia-
tional method for calculating the dynamic structure
function of a linear system described by a kinetic
equation. The real part of the functional introduced
approximates S(k, ra). Using as a trial distribution
function a linear combination of the exact free-mo-
lecule solution and the first five axially symmetric
Burnett functions, we' ve developed a general sys-
tem of equations (4.21) for evaluating S(k, m). Al-
ternately, S(k, u) may be expressed in a general-
ized determinantal form (5.1). Numerical results
are obtained for the case of a gas of hard spheres
and shown to be in excellent agreement with the
results of previous first-principles calculations. "

The dimensionality of the system of equations
(4.21), or of the determinants in (5.1), used in
the present calculation is considerably less than
those used in the calculations to which the pre-
sent one is compared. Herein lies the principle
virtue of the variational approach. This achieve-
ment of accuracy with reduced computational com-
plexity suggests that the method may be a useful
practical tool for performing calculations for more
complex systems. The good agreement between

the present claculation and that of MWY suggests
that although the use of a non-Markovian kinetic
description is formally correct, the present type
of variational calculation is desirable from a corn-
putational point of view. It should, however, be
emphasized that the variational approach itself is
also applicable to calculations based on kinetic
equations with memory effects incorporated.

The application of the variational method to first-
principles calculations for more complex many-
body systems will be discussed in subsequent
works. There we shall discuss the problems of
utilizing the variational method for treating dense
gases and liquids, multicomponent systems, sys-
tems that are bounded and systems that are non-
linear. Further, there is the more fundamental
problem of understanding in more detail whether
the closeness of our variational results, with no
memory effects having been explicitly included
in our starting kinetic description, and those of
MWY is an instance of accidental degeneracy or
whether there is some more formal connection
between the mechanics of the variational method
and the mechanics of the techniques employed by
Mezenko and others" "in the microscopic cal-
culation of memory functions. This matter will
also be discussed in subsequent work.

Finally, it is perhaps useful to reemphasize the
differences between the variational method em-
ployed here and Zwanzig's use of variational meth-
ods.""The essential distinction is that we have
used a "direct" method in which the functional is
equivalent to a measurable macroscopic property
of the system. In the work of Zwanzig, the varia-
tional method is used to calculate eigenfuctions
and eigenvalues of the Liouville operator. These
may then be used to calculate macroscopic quan-
tities via standard nonvariational formulas. " Re-
sults obtained from this two-step approach, how-
ever, are first order, rather than second or high-
er order, in the errors of the variationally de-
termined eigenfunctions of the Liouville operator.
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