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Magnetohydrodynamics of axisymmetric reactors from the drift-kinetic equation

Lung Cheung
Charrnain Heights, Block Al, 7th Floor, Eastbourne Road, Kowloon, Hong Kong

(Received 27 May 1975)

The magnetohydrodynamic drift-kinetic equation has been derived by means of the small-gyroradius
expansion. The small-gyroradius expansion derived here employs the magnetohydrodynamic ordering. Using
this small-gyroradius expansion, all the relevant transport coefficients are systematically evaluated. These
results include both diagonal and cross coefficients for the particle fluxes, heat flux, and electric current. By
combining the transport coefficients with appropriate moments of the drift equation, a closed set of equations
which accurately summarizes the significance of these equations, in particular with regard to recent
axisymmetric reactor experiments, provides an extension of the Chew-Goldberger-Low equations, now valid
when the thermal velocity is comparable to the electric drift. The generalized equations may be used to
investigate the macroscopic stability theory of doublet plasmas.

I. INTRODUCTION

Drift-kinetic equations have formed the basis for
numereous recent studies of equilibrium, trans-
port, and instabilities in fusion plasmas. ' ' How-
ever, previous treatments of the problem have
considered only the limiting cases where the elec-
trostatic phenomena play an important role. There
is considerable theoretical interest in the mag-
netohydrodynamic description of the plasma con-
fined in axisymmetric systems, e.g. , tokamaks,
doublets, and divertors, where the Chew-Gold-
berger-Low fluid-type equation may not be appro-
priate to apply. This is especially true because
the drift mechanism becomes dominant in such
systems, and thus the primary objective of the
present analysis is to obtain a more general ex-
pression in complete agreement with the most ex-
act magnetohydrodynamic equations, including
magnetic viscosity.

In a previous paper' the drift-kinetic equation
was derived by the small-gyroradius expansion
theory from the Vlasov equation, with the severe
requirement that the drift velocity V= cE/B be
much smaller than the thermal velocity of the
species in an axisymmetric plasma. The present
paper is a continuation of this work, in which we
now assume E~ - (vr/c)B . As in the previous pa-
per, we assume E~~ «(v„/c)B, since otherwise the
acceleration of electrons along the magnetic field
line dominates the behavior of the plasma, and its
cohesive properties are lost; we neglect collisions
throughout the present work. We also assume that
the motion is nonrelativistic, i.e., v /c«r1, which
would obviously hold when E~«B. However, if
E~&B, the analysis given here even for drift ve-
locity V&c holds if the initial particle velocity is
nonrelativistic and the time intervals are small.
The approximation technique which we use to ob-

tain the magnetohydrodynamic drift-kinetic equa-
tion is more analogous to the Chapman-Enskog
method, which has been developed in its complete
form by Cheung and Horton, ' Hastie et al. ,' and
several other authors, ""than to the Bogoliubov
method, "employing the recursion on the Vlasov
equation. Like the former authors, we consider
electromagnetic fields in the plasma that vary on
the large space-time scale (L, T), henceforth re-
ferred to as the macroscopic scale. The macro-
scopic scales by assumption contain many gyro-
radii (pr«L) and gyroperiods (0 '«T) of the av-
erage particle. In particular, our work ha8 pro-
ceeded to higher orders of the small expansion pa-
rameter e = pr/L- I/QT.

Frieman, Davidson, and Langdon (FDL)" have
given a similar analysis and have obtained a first-
order drift equation. However, from a dimension-
al analysis it can be seen that the dimensions of
their equation are inconsistent from term to term.
Without getting over this obstacle FDL have con-
cluded that the kinetic theory is not in agreement with
particle orbiting theory. A study of the one-dimen-
sional flow in a straight magnetic field is also ex-
hibited in this paper. The differences between the
present article and FDL's work are given through-
out the paper. An additional discussion on the dif-
ferent points of these two papers is presented at
the end of the article.

II. DERIVATION OF THE MAGNETOHYDRODYNAMIC
DRIFT-KINETIC EQUATION

Here we exhibit in detail the derivation of the
magnetohydrodynamic drift-kinetic equation through
use of the Vlasov equation with a consistent order
in small parameter e equivalent to mc/e. In the
usual magnetohydrodynamic ordering, one assumes
both terms E~ ~ V,f and (1/c) vx B V-„f of the
Vlasov equation to be of the same order. Hence
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we must perform a transformation of coordinates
to a frame of reference moving with the E& B drift
velocity before expanding in powers of the small
gyroradius in order to be able to treat the electric
field term in the order e with the additional as-
sumption that E,l

is sufficiently small. Thus a new

velocity of the averaged particle is defined as
c= v —V, in which V= Exn/cB. Furthermore, we
transform the Vlasov equation to the appropriate
variable s, i.e., from (x, c, t} to (x,c~,c)),t, t ), by
introducing the locally defined parallel and per-
pendicular random velocities (c~~, c~) and the gyro-
phase g as c~~=h ~ c, c~= c —A(n ~ c) and c~=c~(e, co+
+ e, sing), where n(x) = 8/B is the unit tangent vec-
tor field, and 0, and 02 are two orthogonal vectors
in the plane perpendicular to the magnetic field.

There are now two variables which play the role
of cyclic variables, the gyrophase P and the par-
allel coordinate s. The distribution function must,
of course, be single valued in each of these co-
ordinates. Thus in each order the procedure will
involve deriving consistency conditions analogous
to the Chapman-Enskog derivation of hydrodynamic s

I

from the requirements that these variables be sin-
gle valued. It is also worth noting that this re-
quirement for s is somewhat different for trapped
and circulating particles. The circulating particles
go all the way around; thus the interpretation is
straightforward. On the other hand, for trapped
particles, the condition arises because the number
of left-bounded particles passing through an arbi-
trary point of the orbit must be equal to the num-
ber of right-bounded particles.

Following the above mathematical prescription,
the Vlasov equation is reduced to a set of equa-
tions for which, to the lowest order,

na-f = 0,
Bf

which implies that f( is independent of the gyro-
phase variable, and for the general nth-order
equation

~ g(n)f Df (n -1)
Bg

where the operator D is defined by

1 8D= ——
0 Bt x,ci,cll, g

1 8 1 9
+ (V+ c ) ~ —V' + —E ——

ll ~
C J Qcllff st ~ ~ll X,ci,f, t

en . 1 9 c 9 BV1-89
+ c ~ —+ (V+ c) Vn ———~ — —+ (V+ c) ~ VV ~ —n —+ c~

Bt &
ASCII C BCi „~ q Bt 0 ac) ac'/2

X,gag

Ps

c~ Bs 88 2 BV c &kg 1 8+ ~ —+(V+c) Vtn ~ c&n+ '+(V+c) ~ Ve, e+ —+(V+c) VVc at Bt c QB) -, (2)

It is observed that the solution of Eq. (1) must be periodic in f, and thus additional constraints on the so-
lutions are obtained by integrating equations with respect to & over the period of 2m.

From the n= 1 term of the sequence of equations given by Eq. (1) we have the constraint

ay(o) . , e Bf('), , By') c af ')
r(x, c,c, t ) + (V+ c n) ~ Vtf '"+ E+—,'c 'V—~ nII rn ll

BC
2 i ac C BC

ll i i
- af') BV - . - .By('),c,'(V ~ V nn. -V-v), ——+ (V-+c))n) ~ VV n = 0 (3)ac,'/2 at

that f() must satisfy. Equation (3) is substantially simplified by transforming the coordinates (c~, c))) in-
to (t(, c), where t(=c~/2B and

e = —2c,)+ —,c~+ —,V'+ (e/m)P(x, t).
The quantities p and e are the magnetic moment per unit mass and the total energy per unit mass, re-
spectively. With these definitions we perform the change of variables in Eq. (3) and obtain

af(" — . , B(e/m)p e -„aV - - e
Bt

(x, p, e, t }+ (V+ c n) ~ Vf("+
ll ~t II II eg

+c n —E(" —c n ~ —+(V+c n) ~ VV + V ~ V—
ll tn

oV——,'c'(V ~ V —nn: VV)+ V —+ (V+c n) ~ VV2 at II

aB 1 gf(o)
+ V' P&&+ ,'c'(V ~ V -nn: VV) — =0, —(4)Bt B ep.
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where

c„=a {2[e—&JB ——2V' —(e /m) P]]'t'

and E= —Vp(x, t)+ 5 . At static equilibrium, as far as the spatial dependence is concerned, the depen-
dence of fto& on parallel spatial variable s is included in c~~ or e, and ft &=ft &(x~, c~, c~~) or fto&= f&0&(x~, tL, &),
where the x~ must be defined as the perpendicular spatial variables.

Having the distribution function f & & satisfy this constraint permits one to evaluate the first-order dis-
tribution function fn& given by

ex', n an - . a f&o& c a f&'& cxn - „sf&'&
fn&=h (x, c,c, t)+ ~ Vfto&+ —&& —+ (V+c n) Vn ~ c —~ — ~ VV nn n Bt BC C BC 0 BC II

aV - - aft'& 1——x —+ (V+ c ") VV c, , + — (c,c,: Vn ——,
' ',V ~ ")dgn 2 BCg 0 o BC]I

[e~c~' VV ——,'c~(v ~ V nn: VV)]—dg,
0 2 BCg

where h, is an arbitrary gyrophase-independent function. Transforming to the coordinates (p e) and de-
fining the drift velocity Vn, Eq. (5) can be written in the form

Jh,

f =hg(» t"~ &~ t)+ 'Vf + jcg' x V /+ VV' V —VV'c)(n — —+ (V+ c((n) VV

[c,c: vv--,'c'(v V-nn: VV)]@

where

C~ 1 2 1 ~ ~
g 2 ~ ~ 1 Bf(o)

c~ V +& (e~c~: Vn ——,c~v n) dK+ — [c c: VV ——,'c'(V V nn: VV) dg-—
0 0 8 BP (6)

Pl
pvB + —+ (V+ cg n) V (V+ cg n)

Complications in the evaluation of higher-order components of Eq. (1) is due to the nonorthogonality of
the local coordinate system in the first-order neighborhood of the origin. This nonorthogonality arises
from the torsion or twisting of the magnetic field which is caused by the parallel plasma current. Thus the
calculation of the constraint equation for h„requires the use of the commutator relation given in Eq. ('7)

below, i.e.,

(e, V}(e, V) —(e, ~ V)(e, ~ V)=[(e, ~ V)e,] V —[(e, V)eg ~ V.

For the sake of simplifying the procedure, we reduce the operator D and the function fa& to the forms

D = D,+ cog D, + sin&; D, + cosg D„+sin2$ D„+(A, + co+A, + sin)A, + cos@A„+sing A„)—i2g
XaC aC a~

II

fo&= f&,(x, c,c, t) —coal' D,f '+ sin&; D,f&'& —,
' cos2$ D„ft-&+ —,

' s' 21 D„f& &.

1 8
Do= + (V+cgn) 'V+ Eg + zcgv'n0 Bt~, m I'BC„' ' BC„C,BC,

—+(V+c~~n) 'VV 'n ——~c~(v ~ V-nn: VV},
CII

A

Cg Jh ~ M B BPl ~ ~ m M B
Dl, ,&

=—(el, ~, &

~ V) —(et»& ~ V)V ~ n —+ —+(V+c,~n) ~ Vn ~ el, » ——-&&-

11 ll Cg Cg

—+(V+c n) vV ~ e
Bt II )1,3] 1.

B
2

2 J.—
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[22 as] [8[1 2] (81 )n+ 8[2 1] ' (82 ' )n] +[ [2,1] ( 2 ) 8[12] ( 1 ) ] lg 22Q cg ac~ 2 acj

A = —8, ~ —2+(V+8 n) ~ V8 ——'n Vx(8 n+ V)

1
A[, ,] = —8~(8[, ,].V)8, .8, ——8[, ,] ~ —+(V+82n) ~ V (82n+V),

C]]&+& ~

By applying the same notation, the constraint on the function f['] for a single-valued function f['] is

(Df ['])Z = D2h, + ,'(D, D, —D,D,—)f [2]+2(A, D, +A, D, )f[2]+,'(D„D—„—D„D„)f[ ] + 2(A„D„+A„D„)f ['] = 0.

With the aid of the identity (7) and the additional relations

12,[(8, V)V] 22-8,[(8, ~ V)0] 22=[V V)R] nx a —(V a)(n ~ Vxn)

2 2

)~{82 V[V '(8, V)22] —(8, .V)[V (8, V)22]}+) {[8,~ (8, ~ V)82]V ~ (8, ~ V)n [8,-~ (8, ~ V)8,]V ~ (8, ~ VQ}

+~@{[8, (8, ~ V)n —8, (8, ~ V)n] [8, ~ (82 ~ V)V+8, ~ (8„~V)V]

- [8. (81' V)]2+81.(8. . V)22] [8 (8 VIV -8 ~ (8 ~ V)V]}
2

=—{[V V+3V (22 ~ V)22](n ~ Vx22) —(22 ~ Vx V)(V 22)},

we obtain the constraint equation for ]2, . Combining this result with the kinetic equation (3), one obtains
the final constraint for the gyrophase-averaged distribution function f(x, c~, 8„, t ) correct to the first order
111 6,

af PFl C

at
+ V+ 8 + p, n ~ Vxn n ~ Vf +V ~ Vf]I

X 24 g 2C]( C~2C]]2k

2e cg ~ ~ O'Pl Ic l&L ~ ~ ~ ~ ~ /pe c
+ —E2+—V n+V. —+ —+(V V)n nxP(A ~ V)n, — ]](n Vxn)V. (22 ~ V)n+ —+(V ~ V)n V]2dt e dt e dt

d Q tPEC d'fI, ~ tPl c——(n ~ Vxn)V ~ ]],VB+—— p, n ~ Vx —+- p, (n ~ Vxn)[V ~ V+3V ~ (22 ~ V)n]0 dt dt 2 e

j.mc -" &f
p, (n VxV)v 22—

2 e —I x, c

Plc d8 a dU Plc - a dU——(V ~ u —nn: Vu) + ]], —+ (V ~ V)n ~ 22x ——— ]2(n ~ Vxn)V
2 dt ac„dt e

'ffI,c ~ d Q Pic „„dll af
P, Bn ~ Vx ——+ P(n ~ Vx22)n ~ —,, =0, (l, [])e Bdt e x c t

where u= V+8„n and d/dt=a/Sf+ (V+8]]n) ~ V. Its equivalent form expressed for the (p, 8) dependence is
SlmPlg g1VGIl bP

sf RC
+ V+ 82+ ]].n Vx22 22 Vf +V, ~ Vf

at xp6 " e Pe& .P 8&8&

8(8/227)&tl 8 8 ~ ~ ~ du 8 ~ ~ tNc d22
+

at
+(V V)—p+82n —E ]+V —-~(V ~ V —2222: VV)+ —+(V V)Q ~ ]2 —+(22 V)V x22e

~c ~ ~ ~ d'fI ~ ~ ~c ~ dV tl d & mC e
+ 2P(22 ~ V x22)V —+ (22 ~ V)V + ]],22 ~ V x—+ —x—~ gvB+ ]2(n ~ V x22)n ' V'—1t1

e dt e dt 0 dt e m
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Ps

dn du+V ~ (V rt)—+VV ~ V)+ —+(V V)n c ~ V -a(n V&n)V )IVB+-
m dt ll D g dt

A 1 pfc af
+ — (uc (n ~ Vxn)[V ~ V+ 3V (n ~ V)n]- ——y, c (n VXV)V'n

ll ll
-I ~& x,p. t;

gg c' . mc dn 8 du—P, —+ tI(V V)B+~(V V-nn. VV)+ —+(V V)n ~ )In& ——
2 e dt

9 du pic ~ du Rc ~ ~ A du 1ef
)I(n ~ Vxn)V ——— iIn ~ V &—+ tI(n 'V &&n)n ' PVB+— = 0, (11)

e 8cll dt e dt dt BOP

which, defined as the magnetohydrodynamic drift-
kinetic equation, namely Madeleine equation I,
forms a convenient basis for the study of waves,
equilibria, and stability in geneml systems.

In comparison with Eq. (III. 6) given in Ref. I't,
obtained via the method of averaging of the equa-
tions of motion for a charged particle, the charac-
teristics of the drift-kinetic equation are simply
the particle's guiding-center orbits. The function
f(x, c1,C(), t) gives the distribution function of the
guiding centers and satisfies d f/dt= 0. The flux of
the guiding centers is not the same as the particle
flux, and we derive the relationship between the
two fluxes in Sec. ID.

III. PARTICLE FLUX AND OTHER MOMENTS

NU~= v~ x, v, t d'v. (12)

Using the expression of f and Eq. (5) one obtains

rr(), rrir+(vier)r(), J v, f="N, v„r„,r)v'r,

where

M = —(CP~~)/eB)n,

(13)

p")= ' &'»m c,dc, dc, l,

VP= J (v„—r:„')'r'2vv r(v dvr,

t)tCO —
CN f 2W C g dc g dc(( ~

(O)

The solution of the Vlasov equation by the small-
gyroradius expansion yields at each order the gyro-
phase-independent component of the distribution
function in terms of the phase-averaged component
of the distribution function. Consequently, we can
compute the perpendicular moments in terms of
I11OIllelltS Of f (X, Cgr C((r t).

The perpendicular particle flux is defined by

In Eq. (13) we obtain the expected result that the
flux of particles and the flux of guiding centers
through a surface differ by the boundary effect.

With the space-charge effect taken into account
the first-order current given by Eq. (13) is

cP(o)
Ãe&V — gx n

&=~sf

CP(o) 0)+,' n& VB+ ' nx(n V)n

y —nx )nQ d)—+—Odn dV
8 ~ ' dt dt

f=e, f

which is the current required to maintain force
balance across the magnetic field. The force from
j ~ is given by

Q g P(o)

$=8yf
A

+ g rrrr rrr ((:r7—", —),
where we introduce the tensor Pt')= pt10)I+ (p[(o)

-P&;))nn.
From another point of view, Eq. (14) can be

transformed to a generalized Ohm's law for the
first-order plasma when E~+ (I/c) V&& 8= 0 remains
valid in the zero-order ease; thus

1 1 —, 1,dn d~
E + —U, xs- —(v ~ P("), ——C'„"—+-

~e ' Ze .
" dt dt ,

or in an approximate form,

] xB
E + —U XB+—(v ~ P '))

c ¹
c Ãe

This implies that the plasma no longer appears
Ohmic in this order.

The first-order contributions to the components
of the pressure tensor and to the components of
the heat-flux tensor may be calculated from the in-
homogeneous part of f~') which we have already
determined. Hence it gives
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( 0) (0) (0) (0) By By)K =V' e " " [e, ~ (e, v)A e, ~ (e, ~ v)e]e "~ '
V, e, (e, v)e, ~ V„", (, v),),20 Bx By

p(&) p(&)

)ee-)e~-e +&»,[,, (,",.v)"-e, (e, ))e) V' *- "—vi, (e, v), vi, (i, v)e,),
L ( 0) (0) BC(p) +(0} +(0) d 2 L (0) ll(0) ~(0)C(0)

[use))s) L'sx, sv) g e[y ~'[ g [)I y ~ Q ~ ~ ) dt A3') &g [$e X

(0) (0}
(n p)& [ V„n ~ (e[2, ) V)l, + Vvn (e[v „)' V)e2]

and the tensor components of transverse heat flow across the magnetic field line,

Bg(p} 3 L (0)+ 3P(p)C(0)
@t ~ ~~~ — -r»&»i —

~@ Br i & r2»
Lyp&J

(Z") 8"'+2-q'"'C"')e (n V)n + "' e
2Q t2» g t2»

3 L(0)

e[,) ( n ' V') V,

the tensor components of transverse heat flow along the magnetic field line,

1 B ) —Z(0) —2 L(0)C' )

ve, (V, v)V, ve, (e, v)e),x 2

~ ~(0) Z(0) 2 L«}C(0}
q") = — ' ~" " [0 (0 V')n —e ~ (0 V) "]

2 A Bx By

the tensor components of longitudinal heat flow across the magnetic field line,

BZ(0) 2 L (0) II(0) ~(0)C(p) y+ ] 3Z(0} g(0)+ (~(0) 2~(0) gC2 (0)~(l) 'V II g II 5' lI Il

2n 8[y «] II[ "" dt 21

8„„~(n V) n

and the tensor component of longitudinal heat flow along the magnetic field line,

Q(,",,=q,',"' = m c„—C„' 'h, 2' dc dc„,

where the subscripts of quantities P;,- and Q;,~ can
be interchanged freely. Here we have defined

Z(')= mc,' c„-C( ) ' ( ) 2KCLdcLdc,

L (0) mc ' f"'2mc, dc, dc„,
2

pL — Ag 2+QL deL deII

L(0) (c„—C,', ')f" 2mc dc dc„;

8")= m -'c' ' "}2mc de de

m e, - C,',"' ")2', dc, dc„, NC(I') = c„A,, 2geL dcLdc„.
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Our result corrects the error of the formula cal-
culated some time ago by Thompson" and by
Roberts aIld Taylor.

Now it remains to compute the requirement for
the maintenance of the parallel force balance.
This can be done by forming the moments of the

magnetohydrodynamlc dI'1ft-klIletlc equation (10)
with m and me„. A stxalghtforward, lf somewhat
lengthy, calculation, using the expression of first-
order pressure P', ~&) reduces the equations to a
form analogous to the Chew-Goldberger-I. ow
equations. Thus we have obtained

"+ II ~ s+ ——x VP"'+(Pi' P~')(II V)n+mX"' —+(V P"') Xe-E +(V I" ) =0dc(i ~ dQ ~ ]. dv
dt dt 0 df ti II

(l8)

where the fluid velocity U is defined by

({)} ~ (o) (o} ~ ~ (o) 48 dP+~+ {l
X ~I I ~P + ~I-1(P -P )(II ~)II+{-„' ++ d0 mR mR dt

9—= —+(C n+V) V .
dt et

+C ) R R &o)+R(I)

lt is obvious that Eq. (18) is in a, higher-oI deI form
than Eq. (14). This implies that the aforesaid ap-
proach of obtaining the txansport equation is in-
complete. In fact, a closed set of equations can
be obtained by using the moments of the higher-
order distribution function f"'; this is presented
in Sec. IV. It is also clear that these transport
equations provide a genexalization of those works
done by Stringer" and Rosenbluth and co-work-
ers."'" In their works an incomplete analysis
was given which led to improper results. Fox
the sake of comparison it is noted that the dia-
magnetic velocity explicitly shown in their works
is implicitly represented hexe in texms of C,',".

IV. CONCLUSIONS

about the axis of symmetry. The gradient opera-
tor in the (g, y, 8) coordinates is

8 1 8 ]. 8
xgg 8 eg ge

where J is determined by the requirement that P
and X be orthogonal. Transforming the spatial co-
ordinates in Eq. (ll) to (g, y, , 8) we obtain a. sym-
metrical equilibrium. However, a treatment of
this kind presents serious difficulties and the
problem seems to be nonanalytic. In practice,
static equilibrium gives significant information
without changing the picture of basic investiga-
tion of the plasma problem usually of interest.
Furthermore, we refer to Refs. 7 and 20, where
the authors have stated that with a static radial
electric field there could arise a large diffusion
in an equilibrium plasma not able to reach the
steady state. Henceforth we restrict our study
to the case of static equilibrium. Because of the
symmetry we obtain

IIl this papex' the magnetohydrodynamlc dl ift-
kinetie equation has been derived by expansion in
powexs of the gyroradlus and thus produces a mag-
netohydrodynamic set of equations. It is clear
that these transport equations contain less informa-
tion than the moments of the perturbed distribution
function; it has proved more fruitful to develop a
theory of equilibxium, and to frame dynamic
studies as a perturbation theory about equilibx'ium.
For the aDalysls of the doublet system we intro-
duce a right-handed set of magnetic coordinates
(P, g, 8), where P is the poloidal flux function, g
is the orthogonal poloidal coordinate which reduces
to magnetic potential at zero P, and 8 is the angle

Z~, 8m& ) ~c„ex&)-c„„', — „" (n Vxn)

(19)

The form of Eq.(19), which is our desired result,
18 not surpx'181Dg 1D its eonlplete Bgreement with
the previous one obtained in the study of electro-
static stability theory of tokamaks. ' That part of
the distribution that is constant along the field
line, E(p , &, g) =E'oI+ ~,"', can carry an arbi-
txaxy divergence-free parallel current of un-
trapped particles. For the trapped particles the
function I" is independent of the sign of {."„and
carries no current. The divergent parallel pax'-
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ticle and heat flows required to maintain a, steady
state in an inhomogeneous plasma are given by
terms proportional to c„ in E[l. (19) with both
trapped and untrapped particles contributing.

The study of application to magnetohydrodynamic
stability of doublets is presented in a future pa-

per." In consideration of this problem with arbi-
trary k~ p, values, a higher-order gyroradius ex-
pansion is, indeed, needed, together with a cal-
culation off". With the complicate evaluation
as done in Sec. 0, we have shown that the higher-
order distribution function is given by

f"3=b2(3[,e1, c„,t) —cosf(Dk, +B2D f'2'+L, f'2')+sing (D, k, +B2D f'23+LE'2')

——,
' «»M (D„b,+A, D„f"'+I„f"') + —,

' sin2f (D„b,+A+„f"'+L2J:"')
—2 cos3$L2, f [23+

2 sin3CL2, f [23 —4 cos4$L4, f [ '+ 4 sin4)I4, f [23,

where we use the notation defined by

B2= —2 (n/Q) ~ V x u,
1 1dB g ~ „„~, e~„d

dt
+ 2 (V u —2[23: Vu) D[2,43 T[2 c[2,13

~ g, [c[...3(n'V)+ 2 (c((b2+ b4)&[1,.3
' V +'(c b1+ b2)&[2,13'V]

cg, d kl——VV'n +CL 13nn: VV+ 8[2,,3'
dt

V'21+[2[&[2,13'(&'V)&]
' I

~ [((2 ~ V) (2 + (t(l ~ V)23]p —e b[ 30 [(8 ' V)0 + (n' V)1z]+ —c[ 3(c„b + b )

e~~B 1 e~2$ 1 & du, du+ 2C[2, 13(ett b1+ b2) +
8 ~[1„23 V B b2 3 ~[2e13 V B b1 2 2~[1e23 dt 2 1 [2s13

Cg u cg du lou
2 ~[2,13 d

-
2 c[2~ 13

' "+ [2,ll' dt
(V ' u- n+: Vu)+ s

S ~[2,13

g2 1 e~~a 1 1 2 I
8[1,23 V B (C(( b2+ b4) 8 8[2q13 B (Ct( 1+ b2) 4 C1b[2~13( 2 C1 C2)

8
v —,'c', b[, ,l(—,'c, -c,)+ —,'e', (e„b,+b4)8, '((2[2, 3 V)82 ——,'c', (e„b,+b2)8, ~ ((2[, 23 V)82s s

8', b2(e[, „V) + —', (2+ —' b, ((2[2 „V) + ', (e„b,+b4)(8„23 V),
fl (l 2 J.

Cg 8 8
~ '. (, b, b.)(&[...3. ) ~ . —,„'(b[.„l8Q re&~ 0 (l

du du
+ 8@2 (C(( bl+ b2)e[2~13 (C(t b2+ b4)e[le23 2 [le23 dt 1 [2 ~1l

Cg du du
8@2 (c(( b1+ b2)c[2q1l d[ ( tt 2 4) [1~ 23 dt Qc2 /2 sc2 /2

~2 ~2 1 eg
L[2„„3=-4~2 b[2, 13&'V+ 2[l2 B s +&1'(&1'V)&2 &[1,23'V~ 2g2 -((, (1, ((((,)1„.„(

& 2 ~ +&~~ 3~
&'

1+2a„ „(,, [(1, ((((,~ ( (t-(-22((„„, v —c, ~ m„ „ ( —i, )
'

cg d 1 A AB ——(e„b„„+b[,„)+b[,13((2+ —, V n)+2(c„b[2 „3+b[4 „)(V u-nn: Vu)

1 „ du 1 „ du
2(C1C[4,23 + C2C[2,43) 2B(e[1,23 V) B C2 dt

+ 2B(C[2,13
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+ 2[e1 '(81 'V)B ]2gf 1 2g

' + 2[e1 '(e2 'V)B 2]Bf 21)
'

dt ~cg/ 2

, [(e, v)(g f2, 1
~ 7) s (82 v)(gf, 2f

~ v)] ——,cf, 2)(e2 v) v —
2 cf2, )(&, ~ v)

Cg dQ dQ ~ Cg 2 8 8
TI2 f1,23 df (e2 +) ~f2, 13 gg

(~1 +)
S 2/2 2fl2 [2c1 2( 1 c2] SCI Ir

dQ dQ ~ ~ cz dQ dQ dQ
+02 Ct12182 d, ~C~2, 1381 dt 8C 18C2~202 2 al dt u2 dt ' 8'1

dt

dQ
dt —'~e' —'ec

B 1 @~i8 1 8
+

8 0t'1 2g V g 52 +
8 8(2 1) V ~ 51

II

+ —, —,'c', (c„b,+ b,)e, '(Bf2..1'&)&2

—4c4 (c(( b1+ b2)e( ' (Pff 2) ''ft)82+ 4c1bf1 2) (2c2+ c4) 7 4c1 bf 1(2c + c )

8
f2 13 (cll b1 b2) fl 2l ( ll 2 4) 22 1 g II 1 3 la2 ~c~/2

30~ Ses~ 8
+ qg' bf2, 1i(&1 '» s

+ q„2 bf1,21(&2'&),8e„BQ 8&II

Scg 3cg
gfl2 (c(I 2 4)(nfl ~ 23 ) (cll b1+ b2)(gf2q13 +) S 2 / + 2 (bf2 1+1+ bf1 2]c2)

&c~/ 2 80 II II

3c~ dQ dQ ~ 8
+b)cf~ ~'(c b 'b)cf" ~+bf ec„ec,/ 2

3cg dQ dQ
gg2 ( ll 2 4) fl&23 gf (cll 1+ b2)~ f2&l 3 df ec2 /2 S 2 /2

8 8
f4444)- I6@ [ bfb21 1 —b2] q s

—
s 2/2

—gg2[(c((bf+b2)bf2. .)+(c((b2+b4)bf. .2)] s~II ~ll ~tl

+ I6~, [2(c„b,+ b, )(c„b,+ b,), (c„b,+ b,)' —(c„b,+ b,)']

in vrhicb

e 1 2 „„d7'a= —& + —e2 V' n-n'
II 2

b„„=a, (a, V)[s, V]-a, (g, ~ ~)[s,Y], b„„,=-'. ~ (e, ~ ~)[,Y]-e, (e. ~)[,&],

klc GPg
Cf2 41 —(2 f1,21

' —+ C(( (t1 ' V )tl

Vfe perform an evaluation of the transport efluation similar to the execution of Efl. (I4) in using the defini-
tion of pressure tensor given in Efl. (I5), grouping mathematical terms into two classes. Therefore we
obta. in
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dn dV d-
ygX C —+ -B&mN —nx U -V

Ii dg dg dg

+(Cp'n vxA+s VxV)n xmas(U, -V)+mN(U, V-)(C,',"v 6+v V nn-: VV)

+miV(U, -V) ~ (C„Vn +VV} ~eE, +(V P"'), +(V ~ P"'), —IxE=O. (22)

Thus Eqs. (18) and (22) combine as an equation of
motion, namely Madeleine Eq. III (the continuity
equation (17) is named as Madefeine Eq. II), cor-
responding to the Navier-Stokes equation for an
anisotropic inhomogeneous media with general
magnetic field configuration from magnetofluid
mechanics; they give the full aspects of magneto-
hydrodynamics of an axisymmetric plasma. The
theory has now been developed and a rigorous
kinetic foundation of the phenomenological Navier-
Stokes equation is stated.

In conclusion, one should notice that in the pres-
ent article the obtained drift-kinetic equation is
not equivalent to that of FDL's work. " The prob-
lem arises starting from different expressions of
our operator D and FDL's Eq. (24) or (50). In the
lowest-order case and for the calculation of f"',
the terms that cax'ry the gyrophase derivative
8/&t' do not play a role and thus the same result
is reached. But in the higher orders, these terms
play a dominant xole and cause the difference from
the first-order result.

It appears likely that our handling of the problem
of magnetohydrodynamics differs from that given

by Ref. 16. Frleman 8I Ql. deal %Pith the slxnple
case of a bvo-dimensional plasma in a straight
magnetic field but we study a generalized case of
a three-dixnensional plasma in an axisymmetric

magnetic configuration. The continuity equation
(17) of our present work simply reduces to FDL's
result (76) when the simplified conditions E„=O,
n'V'=0, and V'n=0 are applied. Also, the second
term in parathenses of FDL's Eq. (76) is in error
because Ne lmpol tant effect of the magnetic mo-
mentum on the particle flux is not taken into ac-
count. Our equations of motion (18) and (22) re-
duces simply to their Eq. (72} with the application
of the above simplified conditions. As we pointed
out earlier in Sec. GI, the pressure tensor, Eq.
(15), and the beat flux tensor, Eq. (16), are gen-
eralizations of FDL's special case, Eq. (75). In
particular, these transport coefficients play the
dominant role in the study of transport theory and
magnetohydrodynamic s. Furthermore, in our
paper the first-order transport equation (22) is
obtained from the never-calculated expression
off '2', which could lead the problem to a further
step in the studies of instabilities of k~ p; &1. As
we see in FDL's paper [p. 1477, Eqs. (40), (56),
and (72)], their first-order transport equation
(72) is, in fact, a result obtained as usual from
the Vlasov equation (1) but not from the basis of
the drift equations (62) and (63). It appears to be
a speculation and does not give proof of the drift-
kinetic equation.
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