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Landau theory of a moderately dense Boltzmann gas
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The moderately dense quantum Boltzmann gas at equilibrium is shown to be equivalent to a gas of "dressed

particles, " or "quasiparticles, " like those of Landau's theory of a Fermi liquid. The Landau quasiparticle

interaction energy F(p) is related to the second virial coefficient by means of an inverse Laplace transform.

Expressions are obtained for F(p), and consequently the "renormalized" single-quasiparticle energy a, in

terms of both scattering phase shifts and the Mg01er operator. The theory is compared with the Hartree

approximation, the results of Allen, Nicolis et al. , the work of Baerwinkel and Grossmann, and with

expressions from Fermi-fluid theory.

I. INTRODUCTION

A successful approach to the study of an inter-
acting many-body system is the Landau theory of
a Fermi liquid. ' The theory has primarily been
applied to degenerate Fermi systems. This article
discusses the application of Landau theory to a
moderately dense Boltzmann gas.

In Landau's theory, a fluid of N particles with
kinetic energy p'l'2m and two-body interaction
V(r) is viewed as a. system of interacting quasi
Pay'ti, cleq with a momentum-dependent single-
quasiparticle energy e~ and a momentum-depen-
dent energy of interaction F~ &

. The effects of the
1 2

position-dependent potential V are absorbed into
the functions ~~ and Fp p1 2

The applications of Landau's theory have been
directed primarily to the study of liquid helium-3
at temperatures between 2 and 50 mK. Although it
was originally thought that Landau's quasiparticle
picture is valid only in the extreme low-tempera-
ture limit of a Fermi fluid, ' in fact, a quasipar. icle
picture may be constructed at arbitrarily high tem-
peratures. ' In general, e~ and Fp p

are tempera-
1 2

ture dependent, thus reflecting the many-body na-
ture of the transformation of particles to quasi-
particles .

We expect that the Landau quasiparticle energy,
whose temperature-dependent form is understood
for degenerate Fermi fluids, can be analytically
continued above the Fermi degeneracy temperature
T~ and into the region T»T+ where the effects of
statistics are negligible, that is, into the region of
an interacting Boltzmann gas. Investigations along
these lines have been made by Baerwinkel and
Grossmann' '; however, their formalism is valid
only to first order in the interaction potential V or
in the scattering amplitude t. For most realistic
intermolecular potentials a power series in V is
inappropriate because of hard-core effects, and an
ordering in powers of t is ambiguous. Further-

more, Baerwinkel and Grossmann find it necessary
to make ad hoc corrections to Landau's equation

for the pressure tensor, ' whereas, as shall be
shown, Landau's pressure-tensor equation at equi-
librium is correct as it stands, provided the quasi-
particle picture is properly formulated.

A theory of the moderately dense Boltzmann gas
has also been developed' ' in terms of dressed or
"physical" particles. An expression for the low-
momentum limit of the dressed-particle energy
has been derived classically by Allen and Nicolis'
and verified for the leading quantum corrections by
Colinet. ' Moreover, Clavin and Wallenborn' have
demonstrated the equivalence of the "physical par-
ticle" formalism to Landau's theory. As is shown

in Sec. IV, the low-momentum limit of the "quasi-
particle" energy derived in this paper agrees with

that of Refs. 7-9 to within a constant.
In addition, certain previous articles concern-

ing low-temperature Fermi fluids' '" contain ex-
pressions for the Landau interaction energy in

terms of scattering phase shifts which, as is
shown in Sec. V, are applicable to the moderately
dense Boltzmann gas. The present paper there-
fore unifies several previous treatments.

The object of this paper is to derive a Landau-
like theory of a moderately dense Boltzmann gas
for arbitrarily strong, isotropic, short-range
potentials, with the exception that the potential is
not allowed to support bound states. The density
regime is such that the contribution of the second
virial coefficient to the equation of state is impor-
tant, but contributions of third and higher virial
coefficients are negligible. It is shown, in fact,
that the Landau interaction energy Fpp is most
closely associated with the second virial coef-
ficient B. Reasonably, at such low densities Fpp
reduces to a function F(2 ~p

—p'~) of the velaliue
momentum of a pair of quasiparticles. F is also
temperature independent and so describes purely
dynamical aspects of the interacting gas.
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Explicit forms for F(P) are deduced. The de-
rived forms for e~ and F(p) are shown to agree
with both those of Grossmann' and the well-known
Hartree approximation" in the weak-potential
limit.

II. STATISTICAL THERMODYNAMICS

S = —ks Q F(np),

F(n~) = n~ inn~ —n~ (Boltzmann)

= n~lnn~+ (1 —n~) ln(1 —n~) (Fermi)

= n~ inn~ —(1 +n~) ln(1 + n~) (Bose) . (2)

The Landau quasiparticle picture was originally
conceived within the framework of time-dependent
perturbation theory. In the infinite past the fluid
is assumed to be a gas of free particles in a vol-
ume , so that the particles occupy discrete states
with momentum index p and energy p'/2m. The
interparticle potential V(x) is turned on adiabat-
ically, i.e., so slowly that no particles change
states. What results is a fluid of "quasiparticles, '*

or "dressed" particles, which occupy states with
the original momentum labels p but with a "renor-
malized" energy e~w p'/2m. The total system en-
ergy F. is then a functional of the quasiparticle
state occupation numbers n~.

A difficulty encountered with this picture for
Fermi fluids at low but nonzero temperatures is
that the quasiparticle lifetimes are no longer in-
finite. The quasiparticle states decay in a time
shorter than that needed to turn on the interaction
adiabatically. Hence, the entire picture breaks
down. ' However, Balian and De Dominicis' have
devised an alternative Landau-like formalism
which is valid at an arbitrary temperature. The
"statistical" quasiparticle energies of Balian and
De Dominicis are always real, in contrast to the
earlier "dynamical" quasiparticle energies which
have a positive imaginary part. The two forms of
quasiparticle energies coincide only at zero tem-
perature and on the Fermi surface. "

It is shown in Sec. V that the Landau picture of
adiabatically shifted energy levels may be justified
explicitly for a moderately dense Boltzmann gas.
However, for purposes of initial discussion the
precise transformation from particles to quasi-
particles is left unspecified except for certain gen-
eral requirements: (1) the single-quasiparticle
states must obey the same boundary conditions as
the free-particle states and must obey the same
statistics (Boltzmann, Fermi, or Bose) as the
particles; (2) the number of quasiparticles must
equal the number of particles; and (3) the total
system energy must be a functional of only the
quasiparticle occupation numbers n~.

With these assumptions, the arguments of Lan-
dau' suffice to specify the statistical thermody-
namics of the system. The entropy is found by the
same combinatorial considerations as that of an
ideal gas, namely

The sum is over quasiparticle states and in-
cludes a sum over spin where appropriate. The
Boltzmann entropy has been defined so that it is
additive. According to Landau, the single-quasi-
particle energy e~ is defined to be the partial de-
rivative of the energy with respect to the distribu-
tion function,

In general, ~~ depends on density and temperature,
as well as the interaction potential.

In the infinite-volume limit, the states are no
longer discrete, and as usual, the sum over P is
replaced by an integral,

g - 'Uh 'e )dp,

where (d is a spin degeneracy factor. In this limit,
the partial derivative of Eq. (3) becomes a func-
tional derivative; i.e., e~:—6E/5n~. Note that Eq.
(3) does not imply E =P~c~n~ [see Eq. (15)]. Al-
though the spin degeneracy factor u may easily be
incorporated into the formalism, it adds nothing
conceptually, but complicates various equations
with an extra factor. For this reason, R is here
replaced by 1 whenever dealing with Boltzmann
gases.

The entropy is maximized subject to the con-
straints of constant total energy and particle num-
ber,

k~ '0S —aber- P5E

The equilibrium quasiparticle distribution function
is thus found to be

n~ = exp[-P(e~ —g)] (Boltzmann)

=(exp[&(e~ —g)]+1} ' (Fermi)

=/exp[P(&& —g)] —1} (Bose),

where the Lagrange multipliers have been identi-
fied in terms of the chemical potential g and tern-
perature T according to a = —Pg and P=(ksT) '

Although these expressions are formally identical
to their ideal-gas counterparts, interactions are
included implicitly by means of the quasiparticle
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energy e~. Equation (1) for the Fermi case be-
comes a useful starting point for deriving the ther-
modynamic properties of a low-temperature Fermi
fluid. "

Landau has also developed a hydrodynamic theo-
ry in quasiparticle form. ' Here the quasiparticles
are assumed to obey a Boltzmann equation in which
the quasiparticle energy plays the role of a single-
particle Hamiltonian. Equations of change for mo-
mentum and energy are then derived, and the pres-
sure (momentum-flux) tensor is found to have the
form

3 B E
dpp. np +~ f, h cu dpn&-& ——

i@ 5 Bp t 'U

(7)

It turns out that, at equilibrium, II,„=P5;„where
P is the pressure. This result is actually some-
what surprising, since in the derivation of Eq. (7),
Landau assumed that the collision integral con-
serves momentum, whereas the generalized col-
lision integral for a moderately dense Boltzmann
gas is nonlocal and so does not conserve momen-
tum. " The non-momentum-conserving terms
must then be included in a consistent derivation of
the pressure tensor. " The proof that Eq. (7) gives
the equilibrium pressure has been presented pre-
viously for a Fermi fluid, "but is repeated here in
order to demonstrate its validity for all statistics.

At equilibrium, II;„=/6,, by isotropy, where

1 Be~ Ep —= h cu 4''dpn —p +e
3 Bp

The last line is a result of the condition Uh '~
x f dpn~=N. Finally, comparison of Eqs. (8) and
(10) yields

P = (TS+Ng-E)/U =P,

which is the desired result.
For a Boltzmann gas, each of the terms in the

first line of Eq. (8) can be evaluated separately.
The first term is (~ = 1)

yh d pnpp = gh 4' npdp
p p Bp

and, from Eq. (6) for Boltzmann gases,

Bn~ B6~

Bp P Bp
so that

(13)

~h ' dpnP = —~keTh ' 4vP'dp
0

=k~Th ' 4''dpnp
0

= (N/'0) ks T = nke T .

It follows immediately that

(14)

h ' dpnpE'p=(E '0 +P —nk~T, (15)

which confirms for an interacting Boltzmann gas,
that E and g~n~e~ are not identical. Equations (14)
and (15) apply only to Boltzmann statistics, where-
as Eq. (11)holds for all statistics.

"4
~ Bnie E= —h (u gwp dp&~

Bp 'U ' (8) III. DENSITY EXPANSIONS

The last line follows from an integration by parts.
The condition of maximum entropy, Eq. (5), im-

plies that

BY Bnp
P(e, g-)-

BP BP

As a consequence, the entropy, Eq. (1), may be
rewritten as

B =Nk, T[3 —nTSB/ST+0(n')],

P = nhe T [ 1 +nB +0 (n')],

g= ks Tln(nk') +2nk8TB+O(n'),

(i8)

(1V)

(18)

The densities of interest are such that the second
virial coefficient is important but higher terms in
the virial series may be neglected. The energy,
pressure, and chemical potential are thus given by

S =-k~'UQh 4' Ydp
0

= —'U(uT 'h ' ~4wp'dP (e~-g)
BP

= —'UcoT 'h '

Bnp
x y7Tp dp 6p +g 47lp dp np

0 0

Bn~ Ng= —'U~T 'h ' g4np'dp~p
0

(1O)

where A. is the thermal wavelength and B is the
second virial coefficient. It is important to note
that Eqs. (16) and (18) may be derived from Eq.
(17) by purely thermodynamic arguments. In con-
sequence, these relations remain valid for any
approximation to B, as long as it is applied self-
consistently.

In the limit of zero density, the gas behaves like
a free-particle system and the quasiparticles are
completely equivalent to the particles. If the
quasiparticle energy e~ is assumed to be an analyt-
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ic function of density, e~ must have the form

ep=p /2m +6 ep

where, to leading order, 5ep is O(n). The free-
particle distribution function is

has been expanded in a power series in density n,
vrith 6g-=g- g'. The condition that the particle and
quasipRrticle numbers are equal, namely

'Uh ' dp An~=0,

npo =exp[/(g'-P'/2m )]= ppZ' exp(- PP'/2m ), (20)

where g'=ksTln(n~'). It follows that the quasi-
particle distribution n~ may be written in terms
of the free-particle distribution function according
to

np = np + 6np = np [ 1 —P(6e p
—6g) +0 (n')] . (2 l)

This follows from Eq. (6), where the exponential

implies that 6g, and B, see Eq. (18), are related
to Bc' according to

'Uh d p n~oe& =Mg +0 n2

= 2NnkeTB ~O(n ) . (23)

The density expansion of n& and e& also leads to the
relation

Uh ' dp apnea=
'Uh dp P /2m+ Gap nI, + 5np = gN&~T+ 2Nnk~TB+ 'Uh dp 5npP 2m+ 0 n

= ~X@,T+ Xnf, T(a Tea/-sT)+O(n'),

where the last line is a combination of Eqs. (15)-
(17). As a consequence, the relation

h ' dp5n&t)'//2m= —Nnk~T B+ TBB BT +0 n'

(25)
ls Rlso vRlld,

Recall that && is defined as the functional de-
rivative of E with respect to the guasipaxticle dis-
tribution function. This provides motivation for
writing E as a functional of n in the form

E = 'Qh dp P 2m)np

Equation (28) is a necessary condition on Fp for
P2

a Landau- like quasiparticle representation. It is
now shown that a set of conditions on F s+f-

Pl P2
ficient to generate a Landau-like quasiparticle
representation is: (1) that I"-~ obey Eq. (28);

py

{2)be symmetric in p, and p„and (3) be indepen-
dent of temperature.

To prove that these conditions on F
ficient, the quantity E is constructed as follows:

E-='Uh dp P' 2m np

+ p'Uh dp~dp2Ep pnp np +
1 2

+ pM dpi' dp2+»»np np
Pg P2

(29)

where E~
p

is initially an unknown function of p,
and p, . To the order in density of present interest,
Eq. (26) may be rewritten as

with the understanding that n& is given in terms of
ep by Eq. (6) for a Boltzmann gas and where ep is
chosen to be

E = Uh dp P 2m np+ One

+ y'Uh dp dp E» n n + ~ ~ ~PP P P2 (27)

QE P2
=—~+A '

P~ dp, I'
p np

It then follows from Eqs. {16)and (25) that

dp, dp, S;&n,
' n,' =2Nna, TB+O(n'.

(28)

IIl ox'dex' to SIlow that this ls consistent with LRn-
dau's quasiparticle picture, it is necessary only
to prove that E= E+ O(n').

With the energy-momentum relation, Eq. (30),
Eq. (29) may be written as

E='Uh ' dp p' 2m np 1+p5g- ph
'

dp'+pp»p npi +y'Uh ' dpdp'Fp p pnp +g n'

2 I2
= ~kg, T+4+na, TB- ~p~h-' dp dp' + n', n,'. +;;.+0 n',



where the assumed symmetry of E has been used, and bg is given by Eq. (23). Keeping in mind that
F Is also assuIned 'to be llldepelldeIlt, of T, Eqs (20) and (28) iIIlply that

—2¹k = 2¹kT B+ T—='Uk dpdp' + non' E —6¹(kT) B+O(n ) ~

~P ' dT' 2m

(32)

Finally, on comparing Eqs. (28), (31), and (32),
the desired 1 esult,

K= van, r ¹k,-r'dB/dr+ O(n')

=E+ O(n')

18 obtained. Mol cover ~ the quRslpax'tlcle distribu-
tion function necessarily satisfies the number con-
servation law, Eq. (22), because 5g is related to
B as given in Eq. (23), or Eq. (18).

The function E»
pe 18, to leading oldel ln den8lty,

the Boltzmann analog of the familiar Landau f
function, the functlGQRl derivative of the quasl-
particle enexgy with respect to the quasiparticle
occupation Dumber,

Since I' ls by hypothesis 1Qdependent of p, lt 18 seen
that g'~'E($), as a function of h, is the inverse
Laplace transform of II'~'p '~'B(p) with respect to
the conjugate variable P. Therefore, if null func-
tions are disallowed, I' is unique.

As long as E(g) is required to be a regular func-
tion of g, a solution does not exist unless

Thus for classical gases, a solution cannot exist,
if V(I ) has an attractive part, as is now shown.
The clRsslcRl expl essloD for B 18

5&~ 5 E
en, ,

(34)

The conditions on + are no%' examined to deter-
mine whether a solution for F exists and, if so,
whether the solution is unique. Since only the
first-order density dependence of & is considered
here, E should depend only on binary interactions.
It should therefore be a function of the magnitude
of the relative momentum p,

p-=v(p, - p,).
Note that this condition does not hold
ate Fermi systems. ""

TIle VRrlRbles of integration iQ Eq.
changed to p and the total momentum
The integral over P can be evaluated
with the x'esult

(35)

(28) may be
P =px+pg-
explicitly,

E p exp —pp 2p, dp=2 2gp, 3I~p
"5hjp. 36

Hex'e p, = —,
'

pg is the reduced mass. Altexnatively,
Eq. (36) may be expressed in terms of the relative
kinetic energy 8 =- p'/2II:

This is obviously symmetric in p and p'. The pre-
sent expression is, in fact, merely the zero-den-
sity limit of Landau's f function. It is likely that
explicitly temperature-dependent terms are pre-
sent in highex'-density corrections for E as de-
fined by Eq. (34).

Suppos«hat V(r) & —V„where V, is a positive
number, in the interval g ~y ~ b. The contx'ibution

B,~ to the virial coefficient from this interval Sat-
isfies the inequality

lB.,l&,' (v'ke')(e-" 1)— (40)

»us P "IB.&l, and hence & "IBl, mcreases wIth-
out bound as P-o.

The quant expression for the second vlrial co-
efflcleQt of R Boltzmann gas 18

B= vk'(2IIIIke T) '~'»(e 'r ea"), -
where the trace is over the xelative coordinates of
the two-particle system. E and H are respectively
the kiDetlc-encl gy Oper'Rtox' Rnd total Hamiltonlan
in relative coordinates. If the potential II has
bound states with binding energy l h, l, then terms
are present in B proportional to e ~~& & 1. It fol-
lows that p '~'B does not approach zero as p-O.
Consequently, F may exist only if t/'(y) does not
support bound states. This condition on V(r) is
less restrictive than in the classical case, since
an attractive part of V(r) may not support bound
states if it is sufficiently shallow. A counterpart
to this condition occurs in Fermi-fluid theory,
where it is known that the Landau quasipax'ticle
picture is not valid for the extraordinary phases
of liquid 'He below 2 mK„believed to be due to a
modified form of Cooper pairing.

Since g'~'E(g) is an inverse Laplace transform,
explicit formulas for I' may be easily calculated



for certain elementary model potentials. For ex-
ample, for the classical finite barrier potential,
l, e ~ )

V(r)=V, &0, ~&a

F(p)= isa'f'V ', f &(2uVo)"

'I'w 11—(1 —2~v. /&')'~'], p

(44)

the second virial coefficient is

B=~va'(1- 8-'" )

and the corresponding I' function is given by

(42)

(43)

The result for the rigid-sphere potential is ob-
tained from this by setting V, = ~.

The fact that I' is only a function of the magnitude

p enables the expression, Eq. (30), for the quasi-
particle ener gy to be simplified. Straightforward
transformations of the integral lead to the equation

= »' +4»-'(2 ~ T)-'* »W)»a»»~'»»'~ »~'»'»'~')
2m () — 2~ 2' (45)

for e~,. This may be compared with the results of
Allen and ¹icolis' for small P,. After expanding
the integrand in a Taylor series in. P, and compar-
ing with Eq. (36), it is found that

c,=nj3 'B(2P)

=-E»+ —,'m»v', + 0(v', ). (46)

Here the velocity ~, is p, /m, while the "self-con-
sistent energy" is E» =—np B(2p) and the effective
mass" m* is

m» —=m 1+—B(2P) —P
sB(2P)

3 8P
(47)

The above expressions agree with those of Allen
and Nicolis' for the classical gas and those of
Colinet' for the quantum gas, except that their E*
contains an additional term [-nP 'B(P)] = —~6g.
However, this term may be absorbed into the nor-
malization constant for the momentum distribution
function.

For the classical hard-sphere gas, Eqs. (44) and
(45) give

e~ = -',dna'ks T+ (p'/2 m) [1+-,'dna'],

which is exact for all p.

(48)

V. F(p) IN TERMS OF PHASE SH~TS

The continuum contribution to the second virial
coefficient of a quantum gas is expressible in
terms of scattering phase shifts according to the
well-known Beth-Uhlenbeck formula"

B= —w 'h'(2v p ks T) 'i'

'(u i)f»» +'ew(- ~»*) . (49)

Here q, (P) is the phase shift of the 1th partial wave
for two-body scattering with relative momentum P.
The sum Pt is restricted to odd f for Fermi sys-

pdpq, p exp —
20 2p,

Comparison with Eq. (36) immediately yields an
expression for &(P),

F(P) = h'(4v'-p. ) ' P (2f+1)q, (p)/P. (51)

Equation (51) is formally identical to the expres-
sion for the Landau interaction energy of a degen-
erate Fermi fluid according to Pethick and Carne-
iro." The meaning of the phase shift in the degen-
erate Fermi case is not identical to that for iso-
lated two-body scattering, since in the Fermi fluid
the Landau interaction energy is not an isotropic
function of the relative momentum. Pethick and
Carneiro therefore do not use Eq. (51) directly,
but rather utilize the fact that the same relation-
ships exist between the Landau interaction energy,
the scattering T matrix, and the Heitler K matrix
for Fermi fluids as for isolated. two-body scat-
tering. An expression formally equivalent to Eq.
(51) has also been derived by Balian and De Dom-
inicis" in their study of impurity systems in Fer-
mi fluids,

The form for E(P) given by Eq. (51) can be iden-
tified explicitly as an effective, momentum-depen-
dent interaction between pairs of particles after
the potential has been. turned on adiabatically.
This is seen by the following arguments: A single
pair of particles is considered with their relative
coordinates constrained to lie inside a spherical
enclosure of radius R and volume 'U. If the parti-
cles are noninteracting, the relative coordinate

tems and even / for Bose systems. For a Boltz-
mann gas, tl. e sum may be taken over all / with a
compensating factor of z. When no bound states
are allowed, an integration of Eq. (49) by parts
with the help of Levinson's theorem" [q, (0) = 0 for
no bound states] gives

B= —h'(2m p)'i'6, 'i'
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eigenstates have the form

y{.-)-f, (~)~,a6, y)

with boundary condition

q, (kit) = O. (53)

In addition, the energy of state (k„ Ij is 0'k'/2}1.
Since the number of states between A and k+ dk

(summed over all I) is, to a good approximation, "
('V/2v')k'&fk, the normalized occupation probability
of a state fk, tj is

P(k, t) = J (k)

=k''O '(2vtlk &) '~'exp(- lt'k'/2tlk T}.
(54)

After starting with the noninteracting particle
pal. rq the intel Rctlon 18 turned GD Rdlabatlcally 8o

that P(k) remains unchanged. The energy of each
state (k, Ij shifts by an amount"

6(g(k, I) = —k'k)I, (k)/Ptt. (55)

The expectRtlon vRlue of the energy shift foI' the
palx' of pR1 tlcles 18

(5@= 5$(k, I }P(k,I ), (56)

the sum being oveI' Rll states. Since Rppreclable
phase shifts occur only if E&& AR, the number of
states" per unit 0 for a given value of / is effec-
tively tt/s. Each (k, t j state has a degeneracy
(2t+1), so that

(il l )= (Ii)r(ri i) f dr+()(l(r, )))'(r, ))

= —k'(p, v} 'k''I'r'(2V}lksT) 't'

f&) on Ph'k'
&&+ (2t+1), k dk1), (k) exp—

~Jo 2p.

Upon noting that hA =P is the relative momentum,

Eq (.56) may be reexpressed as an integral over
the cooldlnates of pRx'tlcles 1 Rnd 2 sepRI'etely,

~Z...=~ U'h-' dp, dp, n,',~,' &-'+ P .
&(p) is again given by Eq. (51).

Equation (59) demonstrates, hl R pR1'tlclllRX'ly

transparent manner, the physical meaning of E(P).
Specifically, U 'E(P) is an effective momentum-

dependent interaction energy which, when summed

over all pairs of particles, gives (to leading order
in density} the total energy shift of the gas when

the potential is switched on adiabatically.
It is important to note that 5E«, is not equal to

the first density correction to the energy at con-
stRIlt te111pel'Rture Rs glvell by Eq. (16); 'thRt ls,
6E„(does sot equal —inks T' dB/&IT Ins. tead, 6E(„
equR18 KskgTBy as cRD 6Rslly be seen by R simple
thermodynamic ar gument. Essentially, the adia-

batic shift, as calculated above, is at constant

entlopy. Consequently, to leRdlng ordeI' in the

density,
" s(E —Z,,) s(E —E,,)

88 g 8 N)

=~(P- P. ).
The subscript "id" refers to the ideal-gas value.
In order to find the energy shift at constant tem-
perature, the probability P(k, t) must be modified
for the interacting system. In particular, the fac-
tor 5$(k, t)P(k, I) in Eq. (56) must be changed to

[oS{k,t)+a'k'/2} j P'(k, t) (a'k'/2t )P—{k,t),
where P'(k, t) is proportional to expj-P[6h(k, t)
+ II'k'/2il jj and is suitably normalized. The result
for the energy change at constant tempex atuIe then

agrees with Eq. (16).

For a gas of N particles, where only binary inter-
actions Rx'6 coDsldel ed, the total energy 81Hft 5Ef«
is simply (6$) multiplied by the number of distinct
pairs of particles, N(N 1)/2=%'/2, -namely

6E...=- t(tsk'(2stl) 'k'(2v{lksT) '~'

Z(n i)f ),dr„(),)..~ —"*' .
0 2p,

(56)

VI. F'(p) IN TERMS OF MUFLLER OPERATORS

An alternate expression for F(P) which does not

require a partial-wave decomposition of the two-

body scattex'ing functions is Dow presented. The
starting point is Eq. (41), the quantum-mechanical
expression for the second virial coefficient.

The trace in Eq. (41) can be written in position
I'epresentation and then transformed by means of

an integration by parts according to

rr(r ' -r '")=f rr&r(r "—r "IF&=——f r r. —& Ir '"-r '
I )

8

3

drdPdg 1"—~ I'P P 8 —8 P P I'

drd d'rr «ea —ea~ ' 'r
~- 8H

=gift 'Trr.
p

~ [p.p, e '"j =x Trr., ~

g r~p
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Now BH/Br„= BV/Br„, but BV/Br. , does not com-
mute with H. The gradient of e thus involves
the Kubo transform" of BV/Br, , i.e. ,

Be- 8H 1 BV-(i-a)se V -naae8 rop Brpp
(62)

For the sake of simplicity, consider first an ap-
proximation for Eq. (62), namely the case in which
BV/Br„commutes with H. In this approximation,
the second virial coefficient becomes

HQ=QK (64)

and is unitary, i.e., QQ~=1, provided that V does
not support bound states. If no bound states are
present, the trace may be written

Tr r ~ e = Tr r ~ e 8~QQ~BV BV
8 " 8r» rap

= Tr r.„~ Qe "QBV

Brop

dp&plntr. , n lp)

x exp(- pp'/2u), (65)

where the cyclic property of the trace has been
used. On comparison with Eq. (36), Eqs. (63) and

(65) imply that

F(P)=-vh'(pin'r. , - nl p) . (66)

Equation (66) is an approximation which may be
used for any short-range potential which does not
support any bound states. This approximation does
reduce in the classical limit (h- 0} to the correct
classical F(p) function. The full quantum expres-
sion for F is somewhat more complicated; a form
for this is derived in the Appendix.

VII. COMMENTS ON THE WEAK POTENTIAL LIMIT

The results derived thus far for the Landau inter-
action energy [Eqs. (51) and (66)] will now be com-
pared with some previous treatments in which
"dressed particles" are employed. First there is
the well-known Hartree approximation, " in which

B= —'Ph'(2v-gkeT) ' 'Tr r e B". (63)
BV

6 B op
Op

This form was also obtained by Thomas and
Snider" in their calculation at equilibrium of the
interaction-dependent part of the pressure tensor.

In order to construct F(P), it is convenient to
rewrite the trace of Eq. (63} in terms of e 8 in-
stead of e . This may be accomplished with the
help of the Mgller wave operator n, which satisfies
the intertwining relation

the potential is assumed to be weak and therefore
two-particle correlations are ignored. [Specifical-
ly, the Hartree approximation corresponds to the
case PV(r) «1 for all r, and where thermodynamic
functions are expanded in a power series in PV(r)
with only the leading term retained. ] A gas be-
haves in the Hartree approximation like a gas of
Landau- like quasiparticles with an interaction
ener gy

(67)

and a single-quasiparticle energy function

(' &2 ="'f ('(")&'. (68)

The shift in energy 6c~ is thus independent of mo-
mentum. To show that Eq. (66) is consistent with
the Hartree approximation, Q and Q are both set
equal to 1, which is the leading term in Q as a
power series in V, or, equivalently, corresponds
to neglect of two-particle correlations. In this ap-
proximation,

&pin'r, ,- nip&-&plr, ,- lp&Br,p
'P Br,p

= f«i I ) & I, ;, (i&)

= f a r,„ i&i( )I*

= —3h ' drVx, (69)

=,'h'(p
I
vn+ n'vip) . (70)

Grossmann's expression also reduces to the Har-
tree result in the limit Q = 1, or equivalently, in
the Born approximation, t = V. However, in gen-
eral, his F is clearly not equivalent to Eq. (66)
nor Eq. (A5) and in fact, as pointed out by Baer-
winkel and Grossmann, ' it has been derived micro-
scopically only to first order in a power series in
t. Furthermore, Baerwinkel' finds it necessary,
when considering higher orders in t, to introduce
"correction" terms to Landau's equation of state,

where the last line follows after integration by
parts. The Hartree approximation, Eq. (67), then
follows directly from Eq. (66). It can also be
shown that the complete quantum expression for
F(p), Eq. (A5), reduces to the Hartree result
when Q=1.

The interacting Boltzmann gas has also been an-
alyzed from the Landau-theory point of view by
Grossmann. ' His expression for the interaction
energy is

F(p)=h'Re&pit lp&
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Eq .(8). We have shown, however, that for a pro-
perly formulated quasiparticle picture, Landau's
equation of state is correct as it stands. There-
fore Grossmann's effective single-particle energy
does not truly correspond to a Landau-like quasi-
particle ener gy.

Finally, the result for F(P) in term of scattering
phase shifts, Eq. (51), may be examined in the
weak-potential limit. A weak interaction implies
that the phase shifts are small, so that i},(p) may
be approximated by sini}, (P) cosi},(}))), in which
ease

F(P) =- }i'(4ii}(P) 'Re Q (2E+1)sini}i(P)e'&+'

=}'iR (ep(t ip),
which agrees with Grossmann's result.

VIII. CONCLUSIONS

Landau's representation of an interacting fluid
as a gas of "quasipartieles" with a renormalized
energy-momentum relation is usually applied only
to degenerate Fermi systems. However, it is
equally applicable to a moderately dense inter-
acting Boltzmann gas. The thermodynamic pro-

perties of the Boltzmann gas may be derived self-
eonsistently by picturing the system as composed
of quasiparticles having energy c&, Eq. (30), where
the Landauf function F- - =F(p) is essentially
the inverse Laplace transform of "the second vir-
ial coefficient multiplied by P '~'." The theory is
valid only if the "bare particle" interaction poten-
tial V(r) is purely repulsive in the classical case
and does not support bound states in the quantum
case.

Explicit representations for F(}))), and hence
the quasiparticle energy spectrum, have been de-
rived in terms of phase shifts and the Manlier scat-
tering operator. These expressions are consistent
with the well-known Hartree approximation in the
weak-potential limit, yet retain their validity for
arbitrarily strong potentials.

%'e have seen from a survey of previous articles
that the choice of an effective momentum-dependent
dressed-particle energy is by no means unique.
Uniqueness is, however, obtained if the theory is
to be "Landau-like"; in particular, that the total
number of quasiparticles is identical to the total
number of particles and the single-quasiparticle
energy is to be the functional derivative of the total
energy with respect to the self-consistent quasi-
particle distribution function.

APPENDIX

A fully quantum-mechanical Landau quasiparticle interaction energy is derived. The starting point is
Eqs. (41) and (61) for the quantum second virial coefficient.

By means of the intertwining relation, Eq. (64), the quantum virial coefficient 8 may be written as
1 gy

-6ksTh '(2ii})ksT)'~'8= do. Trr, p Qe (' ")~ At Qe 0
0 8 rgp

1 BV
de TrQ~r„Qe ~' ~ 8~Q~ Qe

0 81 ~p

8&dp'dp" p' Q~r Q p'" p" Q~ Q p'
Brop

PP'" 'd P O'"-P"

av
d 'd " ' Q~r Q " " Q~ Q

Or.,
PP" PP"' pr.

Now define new variables of integration x—:p''/2p, , y —=p"'/2}(. With du' and dD' as the differential solid
angles of p' and p" respectively, the above equation becomes

3}}'2 ()o ()0

B= —pPh
2pk~ 7 de) ' de)" dx dy x'~'y'~'(y —x) '

x(i)'I()'.,()Ii&")'(i"I()' ()Iir) J use '. (x2)
Op x



This integrand is symmetric on interchange of x andy, so the upper limit on the x integration may be
changed from ~ to y with the introduction of a compensating factor of 2. A rearrangement of the order of
the x, y, and z integrations gives the result

QO g OCI

B= —~Pk'
2gkg T

des' d(u" dz e " dx dy x'~'y'~'(y -x) '

x& p') nor. ,n ) p") ~
& p"

j
nt A ( p'& .

9rop (A3)

At this point p' and p" are reintroduced as the integration variables. A new momentum variable
p= (2lIx)'~' is defined with the resuit

x dpexp -Pp 2p, p P dP d+ P dP

FroIn Eqs. (36) Rnd (A4), the quasiparticle interaction energy F{p) may thus be identified as

p(p)= —'l'(e) 'f ) *do'f'w 0"*'&0"f& (0" "0')-
x& p'i ntr, pn ) p") ~ &p"

i
Qt 0 g') .

8 Xgp
(A5)

The Landau quasiparticle energy e~ is then obtained by inserting Eq. (A5) into Eq. (45). The intera. ction
elleI'gy obtained lleI'e Is exRC't, wllel'eRS tile si111pleI' expl'esslon, Eq. (66), has Ig1101'ed certR111 co11111111tR-

tlon properties.
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