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Onefold photoelectron counting distributions are evaluated for coherent light scattered by an ensemble of
particles. The ensemble contains, in general, a random number of nonidentical particles. Expressions are
obtained for the probability density function and the moments of the scattering intensity. These results reduce
to those of Pusey, Schaefer, and Koppel when the particles are identical. Photocount probabilities are also
evaluated. The variance, coefficient of skewness, and coefficient of excess are evaluated when the probability
density of the intensity contributed by each scatterer is specified by a narrow Gaussian distribution centered

about the deterministic mean.

I. INTRODUCTION

Photoelectron counting provides a common tool
for studying the light scattered by a wide variety
of systems. When the system under study con-
tains a large number of independent scatterers,
the amplitudes of the scattered field are Gaussian,
and in the limit of short counting times the time-
integrated intensity is described by an exponential
probability density. Probabilities P(m, T) of
counting m photoelectrons in a time T are then
given by the Bose-Einstein distribution. When the
system contains a smaller number of scatterers,
however, the field amplitudes are no longer Gaus-
sian. Consequently the integrated intensity and
the P(m, T) depart from the usual behavior. This
paper presents an analysis of the onefold photo-
electron counting statistics under these conditions.
Two cases are considered: systems with precise-
ly N scatterers and systems in which the number
of scatterers is allowed to fluctuate randomly.

The problem of non-Gaussian light has received
considerable attention. A detailed list of relevant
references is given by Chu.! The papers of
Schaefer and Pusey® and of Pusey, Schaefer, and
Koppel® are especially pertinent since they deal
with the probability density W(2) of the integrated
intensity . The analysis presented here depends
upon a somewhat different analytical approach sug-
gested by the treatment of non-Gaussian statistics
of laser speckle patterns given by Barakat.*

After reviewing the necessary general theory,
we derive expressions for the photoelectron sta-

tistics for fixed and random numbers of scatterers.

We next examine the moments of the time-inte-
grated intensity, and treat as an example the case
in which the probability density of light contributed
by each scatterer is Gaussian. Finally we examine
the coefficients of skewness and excess for W, and
the factorial moments of P(m, T).

II. SUMMARY OF PERTINENT THEORY

Assuming the existence of the P representation
for the density operator of the electromagnetic
field, then the probability of obtaining » photo-
electrons in a time interval T is given by®
Qe

m!

Pim, T)= f W(Q, T) aQ, (1)
0

where W(2, T) is the inverse Laplace transform of

the onefold generating function

Q(x, T)=me(S2, T)e=22ds . (2)

Under these conditions, the variable £ can be
interpreted as the time-integrated intensity of
the c-number representation of the field,

T
Q=sf ()2 dt . (3)
0

Here s is a sensitivity factor which reflects the
quantum efficiency of the detector and the spatial
coherence of the light. Glauber has shown that
W(R, T) is a non-negative function of both £ and
T. Furthermore, its integral with respect to
over (0, ) is finite for all T, so that W(R, T) sat-
isfies the necessary and sufficient condition that
it be a continuous probability density.

The probability density function W(2, T') has been
evaluated for short counting times by Barakat*
under the assumption that the light is scattered by
N independent (but not necessary identical) parti-
cles,

W(QIN):%fw oy () (QY2) e dt (4)
0
where
N o
on =TI [ ultar) fo,(an) day )
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Here a, is the contribution of the nth particle to
the amplitude of the scattered light; specifically,
if there is only one scatterer in the system, then

a, =(Q"?; (6)

fan(@,) is the probability density function of a,.

In the situation envisaged, all of the scattering
particles will have the same probability density,
so that Eq. (5) reduces to

- (LQfa(a)Jo(ta)day. (1)

If f,(a) obeys
fal@)=b6(a = (Q)"?) (8)

(in other words, all of the particles are of the
same fixed size and thus scatter light equally),
then

ox(t) =[ Il 201 (9)

and Eq. (4) reduces to the case previously studied.
Since the observation time T is taken to be small-
er than the reciprocal of the characteristic line-
width of the spectrum of the scattered light, the
shape of the spectrum of the scattered light does
not enter into the analysis and the two relevant
parameters are the time 7 and the average count
rate w. In other words, we are looking at a sin-
gle-mode scattering problem.

In an actual experiment, it is very difficult to
keep the number of scatterers fixed in the scat-
tering volume and it is more realistic to consider
that the number of scatterers is itself a random
variable. We take N to be a discrete random vari-
able having a Poisson distribution. Thus (N), the
average number of independent scatterers in V,
characterizes the random scatterers since (N) is
also the variance. Any higher moments of the
Poisson distribution can be expressed in terms of
(N).

For convenience in typography we now drop the
explicit time dependence in P, W, and . Since
the solution for a random (Poisson) number of
scatterers depends on the solution for a fixed num-
ber of scatterers, we begin with the latter case in
Sec. III.

III. PHOTOELECTRON STATISTICS FOR FIXED NUMBER
OF SCATTERERS

For N =0 (no scatterers), we have
(9\0):_f Jo(QYV20) 1t dt =5(%) . (10)

Consequently,

{1, m=0
Pm10)=3o i z0. (11)

This is exactly what we expect, namely, that the
probability of obtaining no photoelectrons is unity.
For N=1, we follow Ref. 4. We express W(Q|N)
in the form of a Fourier-Bessel series whose co-
efficients are sampled values of the characteristic
function ¢,(¢) of W(Q|N). We now assume that

fda)=0, a>a, (12)
where «is finite. Obviously
W(QIN)=0, Q>N%a?. (13)

Consequently ¢,(¢) is a band-limited function since
its Fourier-Bessel transform W(Q|N) vanishes
identically outside a compact region. It can be
shown that (see details in Ref. 4)

1/2
JO(Y"Q >, 0< Q <N?a?

[¢,(y./Na)]¥
Z 1\ o

N2 o[, (y,)

0, elsewhere,

W(QIN)=

(14)

where y,,v,, ... are the positive roots of J, [i.e.,

Jo(yn) =0]. Since this is a Fourier-Bessel series,

its convergence is governed by the smoothness
(continuity) of W(2|N). The smoother W(Q|N), the
more rapid the convergence of its series expan-
sion.

In the special case where all of the particles are
of the same fixed size, it is possible to obtain
closed-form solutions of W(Q|N) for N=1,2,3.
These expressions are listed in Appendix A.

As N becomes very large, W(2|N) approaches
a negative exponential probability density

W(QIN)~ (1/2)e-Y @, (15)

so that the underlying statistics of the field ampli-
tudes are Gaussian. The corresponding expres-
sion for P(m |N) is the Bose-Einstein distribution

Pm|N)~(@"/(1+(@))™*". (16)

The expressions in Egs. (15) and (16) are the
leading terms in the asymptotic series in powers
of N-! (see Appendix B for details).

In spite of the fact that W(Q|N) varies drastical-
ly for small N, the resultant photoelectron count-
ing distributions are not strongly dependent on N.
This is simply a consequence of the smoothing ac-
tion of the Poisson term in Eq. (1). The factor Q™
effectively damps out any irregular behavior of
W(Q|N) for @< 1, while the negative exponential
accomplishes the same result for > 1. It is for
this reason that we have confined our numerical
calculations to the case of identical particles. Even
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FIG. 1. Photoelectron counting distributions P @m| 1),
open circles; Pm|(1)), solid circles.

though W(Q|N) will be somewhat different accord-
ing to the situation considered (e.g., particles
with different fixed sizes, particles with range of
different sizes, etc.), the smoothing action of the
integrand in Eq. (1) is the determining factor.
The results for N=1, 2,3, 8 are shown in Figs.
1-4 (see curves with opern circles), in all cases
(Qp =1. Note that the maxima of these distribu-
tions are at m =0, as we would expect.

We have chosen to work with (), but it is also
just as easy to work with the average total count
rate w,

w=(Q)/T=N(Q)/T. am

The question naturally arises as to how large N
must be in order that P(m |N) approximate the
Bose-Einstein distribution. Answering this ques-
tion is not a simple matter, but we can offer the
following remarks: Based on test calculations
(not reproduced here), it appears that for practi-
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FIG. 2. Photoelectron counting distributions P(m| 2),
open circles; P@m|(2)), solid circles.
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FIG. 3. Photoelectron counting distributions P(m| 3),
open circles; P(n|(3)), solid circles.

cal purposes N = 5 gives a Bose-Einstein distribu-
tion. Of course, this is not strictly true. The fac-
torial moments of P(m |N) are evaluated in Sec. V
and compared to those of the Bose-Einstein distri-
bution; one can see how they differ as a function

of N. Nevertheless an experimenter would be hard
put to dintinguish P(m |5) from P(m|100), say,
purely on the basis of a onefold counting experi-
ment. The probability of obtaining no photoelec-
trons is a useful statistic, and its behavior is de-
picted in Fig. 5.

1V. PHOTOELECTRON STATISTICS FOR RANDOM
NUMBER OF SCATTERERS

We have just examined the case of N fixed, so
we can interpret these results as holding for a
canonical ensemble in the language of statistical
mechanics. The case of random N leads to an in-
terpretation as a grand canonical ensemble.

It is a simple exercise in probability theory to
prove that if N is distributed according to a Pois-
son distribution having a mean value (N), then

)<N>Ne—(N)

N (18)

W@l = 3 welN
N=o
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FIG. 4. Photoelectron counting distributions P@m| 8),
open circles; P@m|(8)), solid circles.
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PROBABILITY NO PHOTOELECTRONS

N, <N>

FIG. 5. Photoelectron counting distributions P (0|N),
open circles; P(0|N)), solid line.

N =N}
)(N) e .

Pmiw))=3 Plmin) L

N=0

(19)

As (N) is made to increase, the Poisson distribu-
tion becomes very peaked at (N) =N and acts some-
what like a Dirac 6 function centered at (N) =N.
Consequently,

W@QIN))~W(QIN), Pm|N))~P(m|N) (20)

for large (N).

We can easily plot W as a function of (N ), but it
hardly seems worthwhile to do so, and we pass
directly to the photoelectron statistics. Numerical
values of P(m |(N)) for (N)=1,2,3, 8 are plotted in
Figs. 1-4 (see solid circles). As we would expect,
the photoelectron counting distributions for the de-
terministic and stochastic situations are measur-
ably different for one and two scatterers. How-
ever, even for three scatterers, the two situations
are not very different. For more than three scat-
terers, the two situations yield practically the
same result, as witness N =(N) =8 (Fig. 4).

We can also derive integral representations for
both W(Q |(N)) and P(m |(N)). If we substitute Eq.
(19) into Eq. (4) and sum the series, we obtain

W(Ql(N))=%f e~ MU=y @Q2ntar. (21)

0

When Eq. (21) is substituted into Eq. (1), we can
prove that

P(mI(N))=—;-f e=WN=0i (O] o=/ (L2 gy
0
(22)
1 - /
=3 [ ever e L ay.
0

(23)
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In its second form, the integral can be evaluated
via Gauss Laguerre quadrature if desired.®

The probability distributions for fixed and ran-
dom numbers of scatterers, P(m |N) and P(m |{N)),
resemble each other closely, as we have seen. To
distinguish between these two cases under the con-
straint of onefold counting it is perhaps easiest to
examine the probability of obtaining no photoelec-
trons during the measurement. These distributions
are shown in Fig. 5. A clear distinction can be
seen for N =(N) =5, but the distributions merge for
larger numbers of scatterers.

V. MOMENTS OF W(Q2|N) AND W(2[KN?))

In order to calculate the moments (more precise-
ly, the conditional moments about the origin), we
introduce the generating function

QIN) = fwe‘\QW(ﬂlN)dQ (24)

from which the moments can be obtained by differ-
entiation,

k
(@) = (1P QIN)| L k=12,
x=0
(25)
Q@(X|N) can be expressed in the form
1 « 2
Q(MN)=ZX.£ et oy ()t dl (26)

by substituting Eq. (4) into Eq. (24) and employing

f e“‘"zJo(tx)xdxzie“z/““. 27
o 2a
It is convenient to express € as a power series
in A; the differentiations are then trivial. To this
end, we express ¢y(f) as a power series in £ by
expanding J,(fa) in a power series and then inte-

grating termwise; we have

oo N
pn(t) = <Z Af") : (28)
where
Ay=1, A,=-xa®, A =&dh,..., (29)
and
(a™) = fmfa(a)a" da . (30)

We now rewrite ¢y (/) in the form
ou(t)= D Bl (31)
n=0

The B coefficients can be calculated from the A
coefficients via the recurrence relation’
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1 n
B,=—— B(N+1)-n]A,B,_,, n=1. 32)
Mo’;[ JAB, (

When Eq. (31) is substituted into Eq. (26), the
resulting integration is trivial and the final result
is that @(A|N) is a power series in A. The result-
ing differentiations can now be performed, and the
first four moments about the origin are

(QIN)=N(a*),
(Q%|N)=2N(N - 1Xa*)* +N(a*) ,
($®|N)=6N(N - 1)(N - 2)a?)®
+9N(N = 1Xa®)a*)+ N{a®) , (33)
(Q*|N)=24N(N —=1)(N = 2)(N - 3Xa?)*
+T2N(N = 1)(N - 2Xa®)¥a*)
+16N(N = 1Xa?)a®) +N{(a®) .

When all the particles are of fixed size then these
expressions reduce to those given in Ref. 3.
The limiting values of (2*|N), when N>1, are

(QF|N) ~ R IN*(a?)*, (34)

characteristic of a negative exponential probability
density function, Eq. (15), as expected. Thus the
rate at which the moments approach their limiting
values depends not only on N (as in the case of
identical particles) but also on the spread of the
probability density function f(a) as measured by
the ratio of the various moments of a.

Since W(2|N) is a true probability distribution
as regards our problem, then P(m|N) is the prob-
ability distribution of a mixed Poisson process.?
It is a well-known property of mixed Poisson pro-
cesses that the kth factorial moment defined by

(m®|N)y=(m@m =1)+(m -k +1)|N),
k=1,2,..., (35)
is related to the kth moment of W(§2|N) by
(m®N) =(Q"N) . (36)

Thus we can list the factorial moments of P(m |N)
once we have the moments of W(s2|N).

The same procedure can be employed to deter-
mine (2*|(N)). We define the generating function

QINKN)) = fme"‘“W(SZI(NMdQ. (37)

0

Upon substituting Eq. (21) into the integral and
subsequently employing Eq. (27), we can show that
1

QAN =7

f e~ W= o=t>/aNs gy (38)
(o]

In order to obtain the moments, we expand the

first term in the integrand in a power series in ¢;
thus

e_w)[l-dal(ﬂ]:ic,,tz", 39)

n=0

where
Co=1, C,==1(N)Xa*),
Co=m(N)Xa®)* + (N Xa*)s- - -

Proceeding as before, we obtain @Q(A|(N)) as a
power series in A. Differentiation then yields the
moments about the origin, of which the first four
are

(QIN)) =(NXa?),
(2N =2(N)Xa*)? +(N )a*) ,
(Q°I(N)) = 6N )Xa) + XN )X(a® X(a*) +(N Xd°) ,
(QFKN)) = 24N )a?)* + TN )¥a*)Xa*)
+ 34N YXa? W (a®) +{N)a®) . (41)

When all the particles are of same fixed size,
then these expressions also reduce to those given
Ref. 3.

The limiting values of (Q2*|(N)) for large (N) are
again given by Eq. (34), with N replaced by (N).
However, specifying (N) instead of N permits the
number of particles in the scattering volume to
fluctuate. This introduces additional fluctuations
in the intensity of the scattered light. Accordingly
the moments for the random case will approach
their limiting values more slowly than the corre-
sponding moments in the deterministic case.

P(m|(N)) is also the probability distribution of
a mixed Poisson process because W(Q|(N)) is a
probability density; consequently,

(m® (N =(QF(N)) . (42)

(40)

VI. fa(f) IS NARROW GAUSSIAN

It is useful to examine the case where f,(a) is
sharply peaked around its mean value, because
this provides an approximation to a slightly poly-
disperse suspension of particles. For computa-
tional simplicity, we let

fal@) = (1 /o 2m) exp[—(a =(Q,)*/*)/20%],  (43)

where (@,) >02. The moments of a are

(@)= [ fiatda, (44)

If we form the dimensionless parameter 6=02/(R,),
then for 6 <1, the negative contribution of the
probability density function in Eq. (43) is negligible
and we can safely replace the limits (0, «) by

(==, ) in Eq. (44). Consequently, we obtain
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(@) =(1+6XQ,),

(a*) =(1+66+35°KR,)?,

(a®) =(1+156+4556%+156°KQ, )3,

(a®) =(1+286+2106% +4205° +1056* KR, )*. (45)

In order to utilize these explicit formulas, let
us consider, for example, the variance of Q:

var (Q|N) =N(N - 2)(a®)? + N(a*) , (46)
var (Q[(N)) =(N)Xa?)? +(NXa') ; @
then
_var(Q|N)
ViN,0)= N¥a?)?
= (1 *’2%\7) +—I%-(6-362+253_-~-),
(48)
_var (Q(N))
V (<N>76) - <N>2<a2 >2

1 4 2,953 ...
:(1+z}v—>>+<—NS—(6—35 +26— ).

(49)

The first terms (in large parentheses) are the
contributions when all of the scatterers are iden-
tical. The second term represents the influence
of the width of f,(a) and arises from the varying
amounts of light scattered by different-sized par-
ticles. The second term is the same for both
situations. Some typical numerical results are

2.8 T T TTTTTT T T TTTTT

V(N), V(<N>)

1 10 100
N, <N>

FIG. 6. V(N,6) and V,({N), 6) as functions of N, )
for fixed 6. V,(N,0), open circles; V;(N, 0.2), solid
circles; V ((N),0), dotted line; V,(WN),0.2), solid
line.
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shown in Fig. 6 and are self-explanatory. Other
moments can be handled in much the same manner.

VII. COEFFICIENTS OF SKEWNESS AND EXCESS FOR W

Since both W (R|N) and W (Q|(N)) are far different
from their limiting values for small N and (N), it
is important to evaluate their global shape param-
eters, their coefficient of skewness, and coeffi-
cient of excess.

The coefficient of skewness vy, is defined as

v, ={@ (@ PAQ - (D2, (50)

The skewness is a normalized measure of the
mode minus the mean and serves as one indicator
of the length of the “tail” of the density function.
If v, is positive (negative), then the corresponding
probability density function is skewed to the right-
hand side (left-hand side) of the mode. The larger
|71, the longer the resultant tail. If ¥, =0, then
the density function is symmetric about the mean.
In the special case where all of the scatters are
of the same fixed size, the explicit formulas are

2N -4
n(N)=(—IE,2£_—N—)%gzz-%+o(N'2) (51)
and
7 () 2RI o 2o,
(52)
4 T T T T T T TTTTT

o A1 1111l 11t

1 5 10 50 100
N, N>

FIG. 7. Coefficient of skewness, v, as a function of
N and (N) for fixed 6. (N, 0), open circles;
(N, 0.2), solid circles; y;({N), 0), dotted line;
v1(dN),0.2), solid line.
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Both approach thelimiting value y, =2 character-
istic of a negative exponential probability density.
We have calculated y, (N) and y, (N)) for 6 =0,0.2;
the results are shown in Fig. 7. For fixed N, the
result of allowing 6 >0 is to hasten the rate at
which v, (N) tends to 2. When N is allowed to fluc-
tuate, v, (N)) is larger than the limiting value,
thereby indicating that the tail dies off more slow-
ly than for the corresponding fixed case. This is
exactly what we would expect.

The coefficient of excess y, is defined as

L, @ =@ - ))?
2 (@-(D¥)

and is a measure of the peakedness of the corre-
sponding density function about the mode. y,=0
for a Gaussian, and y, =6 for a negative exponen-
tial. Explicit formulas for y,, when all of the
scatterers are identical, are

(53)

6N3—36N24+45N - 15

¥,(N) = NoN
~6-24/N+0(N™2) (54)
and
_B(N)2+36(N)* +3HN) +1
?’2(<N>)— (N>3+2<N>2 +H{(N)
~6 +24/(N) +O (N)"2). (55)

24 T T

T TTTT] T T T TTT

o
12 | L1 11l
1 5 10 50 100
N.<ND>

FIG. 8. Coefficient of excess, v,, as a function of
N and (N) for fixed 6. 7v,(N,0), open circles; y,(N,0.2),
solid circles; v,((N), 0), dotted line; y,({(N),0.2),
solid line.

The limiting value y, =6 characteristic of a nega-
tive exponential is approached in both cases. yz(N)
is always smaller than 6, while y,((N)) is always
larger than 6. Again, numerical calculations were
performed for 6 =0,0.2, and the results are sum-
marized in Fig. 8.

VIII. FACTORIAL MOMENTS OF P

We can list the factorial moments of P(m|N) and
P(m|(N)) by virtue of Eqs. (36) and (42). However,
we content ourselves with deriving the second
factorial moment (variance). Thus

var(m|N)=N (N - 2)(a®? + N(a*) + N{a?) , (56)
var (m|(N)) =(N)*(a*)% + Na*) + (N)(a? . (67

When f,(a) is the Gaussian discussed in Sec. VI,
then we can show that

var (m|N) =[(N? = N)(Q,)? +N(Q,)]
+(26 +0%)N2(Q,)2 +ON(Q)) , (58)
var (m[(N)) =[ ((N)* +(N)){(Qp? +(NXQ,)]
(26 + 82 (N2 + 2N YR, +ONR,) .
(59)

When all particles are identical,

var (m|N) = (N2 - N)(Q)? +NQ,), (60)
var (m[(N)) = (N?) +«(N)){Q)* +(NXQ) .  (61)

The variance for the stochastic situation is larger
than that for the deterministic situation, as ex-
pected; both approach the same limiting value.

APPENDIX A

For N=1, we have
1 (e
W(sz|1)=§f0 J(Q)V2t)d QY2 ) dt

=52 -(2y)) (A1)

(i.e., there are no fluctuations in the light scat-
tered by a single particle). Thus the system is in
a coherent state,® and the photoelectron counting
distribution is Poisson with mean value (),

P(m|1)=(1/m!){Q)me~ A2)
For N =2, Rayleigh® evaluated the equivalent of

W (2|2); his result, translated into the language of
the present problem, is

/7@, - )2, 0<os<«Q,)

Q|2)=
w@l2) 0, elsewhere. (A3)
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Note the square-root singularities at @ =0, 4%,).
The corresponding photoelectron counting distribu-
tion is

1[4 omedn
P2 = [ a9

2K (k)

Although this integral cannot be evaluated analyt-
ically, it is easily handled by Chebyschev quad-
rature,® which automatically takes account of the
square-root singularities at the end points of the
integration.

Finally, N =3 can be expressed in terms of el-
liptic integrals,'®

ﬂ2«91>1/2+Ql/2)[(3<91>1/2_91/2)«901/2 +Qllz)]1/z ’

K(1/k)

w(@|3)=
@13) Tay e (S 8s 98y

0, elsewhere,

where K (k) is the complete elliptic integral of the
first kind with modulus % given by

4(903/491/4
«Ql>1/2+91/2)[(3<91>1lz _QUZ)«91>1/2 +91/2)]1/:‘2 .

(A8)

k=

The elliptic integral is logarithmically infinite at
k=1 (i.e., when £ =(2,)). The logarithmic singu-
larity is very weak and P (m|3) can be evaluated
numerically by a trapezoidal rule with a very
close mesh,

APPENDIX B

The probability density function of the envelope
7 of the sum of N independently distributed random
sine waves approaches the Rayleigh probability
density function as N becomes very large. If we
apply the procedure described in Cramer!! for
corrections to the central limit theorem, we can
show (details are omitted) that

Fr) =~ @r /N@)e ™ ™1 4D, 4 -], (BY)

where
_ 4r? re
D= (2'N<a2> +N2<a2>2>

X(N{a*) —2N{(a?®?)dN*a®?)". (B2)

J

PonlN) ~ Bo@) + (RE2ZEGD ) (1 (o)

N2<a 2>2
where

B, (@) =()™/(1 +(@))""".

(m +1)
<Q> Bm+1 (<Q>) +

0<Q<(Qy

(A5)

r
In the short-counting-time approximation, we can
equate the integrated intensity Q to the square of
the envelope 7 to within a proportionality constant.

Upon transforming to the new independent vari-
able , Eq. (B1) yields

WQIN)~(1/(@) e ¥ 1 4C,+ -], (B3)
where
_ Na*) - 2N(a?)? 2N¥a?? - 4Na > +Q?
C2 -( 1\’2((1 2>2 > < 4N2<a 2>2 ) .
(B4)

Note that the fourth moment, (a?), enters into the
correction term.

In the special case of identical particles {(a*)
=(a??, the correction term reduces to the classi-
cal result of Pearson!? and Rayleigh®:

1 /1 Q Q2
Cz*‘ﬁ(i‘@*m)- (%)
If the particles are distributed according to the
narrow Gaussian, Eq. (38), then
(1-26—62)<1 Q Q2 )

Cp=— 2=

N 2 @) TK?? (B6)

The asymptotic expression for P(m|N) can be

obtained by appropriate integration of Eq. (B3).
The final result is

(m+1)(m +2)
—-—WBm+2«Q>)) , (B7)

(B8)

The leading terms of Eqs. (B3) and (B7) are the negative exponential probability density function,

Eq. (15), and the Bose-Einstein distribution, Eq. (16).




1130 RICHARD BARAKAT AND JULIAN BLAKE 13

*Also, Bolt Beranek and Newman Inc., Cambridge,
Mass. 02138.

TResearch supported by the Air Force Office of Scien-
tific Research (AFSC) under Contract No. F44620-72-
C-0063.

IB. Chu, Laser Light Scattering (Academic, New York,
1974), Chap. 6.

’D. Schaefer and P. Pusey, in Coherence and Quantum
Optics, edited by L. Mandel and E. Wolf (Plenum,
New York, 1973), p. 839.

’P. Pusey, D. Schaefer, and D. Koppel, J. Phys. A 7,
530 (1974).

‘R. Barakat, Opt. Acta 21, 903 (1974).

°R. Glauber, in Quantum Optics and Electronics, edited
by C. deWitt, A. Blandin, and C. Cohen-Tannoudji
(Gordon and Breach, New York, 1965); and in Fund-

amental Problems in Statistical Mechanics, edited by
E. D. G. Cohen (North-Holland, Amsterdam, 1969).

M. Abramowitz and L. Stegun, Handbook of Mathe -
matical Functions (Nat. Bur. Stand. U.S. GPO, Washing-
ton, D. C. 1968), pp. 888 and 889.

"H. Gould, Am. Math. Mon. 81, 3 (1974).

8F. Haight, Handbook of the Poisson Distribution (Wiley,
New York, 1966), Chap. 3.

Lord Rayleigh, Philos. Mag. 37, 321 (1919).

10M. Slack, J. Inst. Elec. Eng. 93-3, 76 (1949).

1Y, Cramer, Mathematical Methods of Statistics (Prince-
ton U.P., Princeton, 1946), Sec. 17.4.

12K pearson, “A Mathematical Theory of Random Mi-
gration,” Draper’s Co. Research Memoirs, Biometric
Series III, No. 15 (1906).




