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%e outline a complete theory of the nonlinear susceptibility of cesium around 1.06 p,m, and present the first

measurements of the negative nonlinear refractive index n, primarily responsible for the self-defocusing that is

observed. For linearly polarized light, our measured value of ~ is —(1.4 ~ 0.2) X 10 ' N esu, where N is the
atomic density. This is in reasonable agreement with our calculated value of —2.62 X 10 ¹ The main

portion of n~ comes from a two-photon resonance between the 6s and 7s levels, and an additional negative

term arises from induced population changes between 6s and 6p. For circular polarization, n2 arises mainly

from the induced population changes, giving the measured and calculated values of - -(0.26+0.03)X 10
and —0.525 X 10 ' N, respectively. In our experiments where the 35-psec pulses were shorter than the 6s-6p
inverse linewidth, the nonlinear susceptibility depends mainly on the instantaneous intensity; however, for
longer pulses, one would obtain additional contributions proportional to time integrals over the intensity. Since
the useful output power from large Nd laser systems is limited by self-focusing due to the laser glass, our
results suggest the possibility of increasing this power by using Cs vapor for compensation.

I. INTRODUCTION

In x'ecent years, a number of authors have ob-
served self -focusing, self- defocuslng, and
other related effects" owing to a resonant en-
hancement of the electronic nonlinear suscepti-
bility in atomic vapors. These effects arise from
optically induced population changes associated
with single-photon' "' or two-photon' absorp-
tion.

Recently, we reported the observation of self-
defocusing of mode-locked 1.06-p. m pulses in
cesium vapor. ' For linearly polax'ized light, we
attributed this px'imarily to a two-photon reso-
nant enhancement of the third-order nonlinear
susceptibility. This contribution leads to an in-
tensity-dependent refractive index

on&'&(i) - n, I(i) -1(t)/((o2O - 2&v),

where n, is the nonlinear refractive index and v
and (&020 are, respectively, the optical frequency
and the near-resonant atomic frequency. In ce-
sium vapox around A. = 1.06 Jti. m, 2& lies slightly
above the 6s-7s frequency; hence n, &0, and at
pxessures of a few Torr its magnitude is com-
pax'able to that of laser glass. " Since the useful
output power from large Nd laser systems is or-
dinarily limited by self-focusing in the glass am-
plifiers, the existence of a negative n, at 1.06 p. m
raises the possibility of increasing this power by
using Cs vapor for compensation.

The nonlinear behavior of Cs is complicated
somewhat by additional self-defocusing contribu-
tions arising primarily from pulse-induced popu-
lation changes in the 6s and 6p levels. For pulse
widths tp short in comparison to the 6s-6P de-

phasing time I'... this effect remains intensity
dependent, ' ' and for linearly polarized light, its
contribution to n, is relatively small; howevex',
as a result of atomic collisional relaxation, it
can also contribute terms proportional to time in-
tegrated intensities, "and these "inertial" terms
can easily predominate if t~ » I'„'.The result is
then similar to thermal defocusing. "

In this paper, we outline a complete theory of
the third-order nonlinear refractive index 5n~'~(t),

and relate this to earlier theoretical work. "'""
We then describe the first measurements of n, in
Cs vapor at 1.064 p, m under conditions whex'e the
instantaneous terms are expected to predominate,
and compare these results to the theory.

Assuming only that tp is short in comparison to
the atomic radiative lifetimes, and that v and 2e
lie outside the atomic line profiles, we show that
5n"'(t) can always be expressed as the sum of in-
stantaneous and inertial contributions. The in-
ertial terms derived here include the effects of
excited-state collisional mixn~ (e.g. , among the
6p sublevels) in addition to atomic phase relaxa-
tion. Specializing to a three-level model applica-
ble to Cs around 1.06 p, m, ' we then derive simple
approximate expressions for the two-photon and
induced-population terms described above. In
particular, we show that the 6s-Vs two-photon
term disappears if the light is circularly polar-
ized.

The measurements of n, were carried out by
observing the self-defocusing of linearly and
circulaxly polarized mode-locked pulses in a
cesium cell. We also measured the insertion loss
of the cesium at different peak intensities, and
found a broad minimum (&5/q absorption) centered
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around 5 GW/'cm'. The measured values of n, are
—(1.4+ 0.2) x 10-ooiV esu for linear polarization
and —(0.26 + 0.03) x 10 ooiV esu for circular polar-
ization, in reasonable agreement with the calcu-
lated values of —2.62 x 10 & Rnd —0.525 x].0
x'68pectlvely.

II. THEORY

A. Hasid equations

The lowest-order nonlinear refractive proper-
ties of an isotropic medium can be found from the
po 1Rrl zRt ion

widths are negligible in comparison to the detun-
ing fre(luencies l(d 8

—(dl and l(d„o—2(dl that arise
in the expression for 5n('}(t). Condition (i), which
is generally necessary to avoid optical pumping
effects, ~6 requires that the laser pulsewidth t& be
short in comparison to the radiative lifetimes of
the excited states. Condition (ii) is well satisfied
for cesium vapor around 1.06 p, m with N» 10'9
cm ' and laser linewidths up to several angstroms.

The resulting solution of E(ls. (1)-(6), which is
outlined ln the appendix yields the expx'ession

6n('} (t) = 6n'(t)+ 6n"(t)

=n,(E'(t)& +2' Q }(„[(I(t) -q (t)]. (Vb)

induced by the optical field

E(t) = oE 8((d~ t)e + o(+g (- (d (}e (2)

Here X ls the atomic density~ p. g~
= el"8~ ale the

atomic dipole matrix elements between states
l n& Rnd

l p&, p('}a(t) are the corresponding third-
order density matrix elements, g((d, t) = [g(-(d, t)]*
is the slowly varying optical field amplitude, and

ls R unit vector deflnlng the optlcRl polRrlza-
tion state. The density matrix elements are ob-
tained by solving the Boltzmann equations

In 6n'(t), the nonlinear refractive index is

lf'81', I@81'

—27tX q, ~+

p, 8 6'p, o ~ C* p&„E*'p.
k((dao —(d) II((d o+ (d)

fol" 8 = 1,2, 3, subject t'o the condition phoo~ = 1. Here
@S = Q ~ 'p aa~ pao~~

'llama~*

'pao'
n((d, —(d) }I((d„o+(d) '

IIo= Am on a, (Qc)

f0& is the ground state, h(d„o is the energy dif
ference between ln& and l0&, and [p("}(t)]
scribes 'the Rt0111ic 1'elRXRtion. If we write p(o)(t}
in terms of its slowly varying amplitudes, o(o8}((d, t)
= [ ".(-,&)]*,

P(o}(t) —&O(3)((d t)e iv)( ~ 10(3}-( ~ t)e+imt

+ (third-ha. rmonic terms),

then the nonlinear contribution to the refractive
index of an isotropic medium is

5n" '(t) = 2((iv
0"}((d, t)

Ba $((d t)

The follow'lng two simplifications Rl 6 RssuDled
to be valid throughout the remainder of this papex":
(1) Olle cR11 lg1101'e all longltlldlllR1 1'elaxRtlon pl'0-
cesses, except for collisional mixing among the
excited levels, and (ii) the atomic and laser line-

is a, linear susceptibility, the (Iuant sties & (t) are
solutions of the x'ate equations

q (t) = —w„q (&)+ g w, q, (t)+s„(s'(t))

subject to 'tile 1111'tlR1 condltlons (I (-~) = 0, tile
dX'lvlng termS RX'6

S =—(r ——'W)ft +g Wa„fta, (Iso, (12a)

s, -=P r.,ft„, (12b)

I ao ls the 1101110gelleolls 1'elRXRtioll 1Rie of pao(t) ~

slid the bracket () denotes Rn average over Rn

opti«cycle [I.e. , «'(&)& =-,'lS(~, t)l']. In 6n" (t),
le '}l.sl', le* }1.81'

5((da8 —(d) 5((da 8+ (d)
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and S'8 is the P n coQisional mixing rate, which
SRtlsf les the conditions

g7 gf e~A Q)+ 8/k T
sn a8 (13a)

W„=—Q W„s& 2F„e,
8

(13b)

where W s =0 if o. or p are zero. From Eqs. (11),
(12), (13b), and the initial condition q (-~) =0, we
obtain the useful identity

(14)

The instantaneous term 5n'(t) is equivalent to
the results obtained from the usual third-order
perturbation theory, ""while 5n" (t) arises from
a change in the total susceptibility as a result of
incoherent population of the excited levels. Ac-
cording to Eq. (A8), the total population change
o@'„(0,t) consists of an instantaneous (coherent)
portion plus the inertial (incoherent) portion q (t)
that arises from atomic relaxation. The coherent
contributions, which can be explained in terms of
Grischkowsky's adiabatic following model, "are
included in expression (8). Butylkin et al."have
derived results similar to ours, but their inter-
pretation is A&erent. In their formalism, our
q (t) would represent the total population change,
while the coherent population terms would be in-
cluded gd hog by inserting Stark-shift terms in
the off-diagonal density matrix equations.

For short pulses (i.e. , I',t~ «1), the inertial
terms are negligible, and Eq. (7) reduces to

B. Three-level model

6n' (t) = 6n'(t) =n (E')

At the opposite extreme, l",t~» 1, and

6nt3)(t) = 6n" (t) . (16)

The expression for 6n" (t} can be simplified in the
second case by noting that coQisional mixing oc-
curs only among the sublevels of each n/ mani-
fold. Since the mixing rates Wz are usually com-
parable to I' 8,

'7 these sublevels are completely
thermalized if I'„0t~» 1.

6n&')(t) = ~(Z'(t}& + ""
[q, (t) —q, (t)]

2zXp, »
h((u —(o) q'

~2 +20 ~10 (18a)

and q, (t) and q, (t) are solutions of Eq. (11). The
term q, (t) has not been included in (1'!)because
it is fourth order in E(t), and is therefore negli-
gible unless w20 —2~ is comparable to the atomic
linewidth. Such terms were discussed by Butylkin

ses

5d D

IO K-

a first approximation, we can therefore ignore all
other levels and all nonresonant contributions to
5nt') (t). We will also ignore the I. Ssp-litting of
the 6P level, and approximate 6p by the degen-
erate magnetic substates ~a), ~b), ~c) represent-
ing m =+1, 0, —1, respectively. This appears to
be reasonable at 1.064 pm, where (&u, e

—&u)/2vc
= 2149 cm ' and the L,-S splitting is only 544 cm '.
The error that this causes in the evaluation of n,
is small in comparison to that caused by the ne-
glect of higher-energy states and nonresonant
contributions.

For linearly polarized light, we choose i =-z;
hence the only nonvanishing matrix elements of
intel'est Rle z p. ~

=—p, , = p. ,* and 2 p. ~=- p.„=p
Using the simplifications described above, one
can approximate Eqs. (7)-(10) by

The theory presented so far is applicable to R11

atomic vapors under suitable conditions. For ce-
sium VRpox' Rx'ound 1.06 pm~ one CRn obtRln R use-
ful and instructive approximation to this theory by
examining the lower lying energy levels, shown
in Fig. 1." Around 1.06 p m, 5n~3& appears to be
determined mainly by the ~6s) =— ~0), [6P) =- (1),
and ('ts) —= ~2) levels because of the nearby one- and
two-photon resonances with 6p and Vs, respective-
ly (l.e ~ (dio —(d (( (dio+ QP~ and iQP2O —2(di (((02e). To

SI'S
lo)

I"IG. 1. Energy-level diagram of Cs, showing the
three levels ( Ss) —= [ O), [ Sp) —=[ 1&, and ( 7s) =—

) 2& pri-
marily responsiMe for self-defocusing at; 1.064 pm.
The dotted lines show the position of the laser funda-
mental at 1.064 pm and its two-photon level at 0.532 pm.
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"and have recently been observed in po-
tassium vapor. '

The neglect of I.-S splitting allows one to ob-
tain simple expressions for q, (t) and q~(t) with

only two relaxation constants. By symmetry con-
siderations, it follows that I'.,=I'„=I'„=-I"„,W,
='fV, =5', —= W, and W &=,-'W for o. t P equal to v, 5,
or c. Equation (11) then reduces to

qo= [1 iopxo/" (~io

j~ ——
~ Wq~ —2 Wqo

(19a)

+ (&„-—.'W) [V',./@'(~,.—~)'1(E'), (19b)

where the identity q, + q, + q, + q, = 0 [Eq. (14)I has
been used to obtain (19b). Solving for qo(t) and

q, (t), and substituting them into (17), we obtain
the result

6n" &(t) =n, (E'(t))+C, (E'(t')) dt'

~t
e-(3/2) w(t t~)(E2(-pl)) dtI

tt
+ C e -(3/2) We t~) did (@2(-~It) ) dtrt

(20)

C~ =- —I'xo&~o ~

C, -=-(r„-—,'W)(n„-n„),
C3 2W~10(nlo 21) t

(21a)

(21b)

(21c)

27TNp 2~/ go

h'(cu„—(u)'((u„—(u)
(22)

As we indicated in Sec. IIA, the integral terms
arise from incoherent redistribution of the 6s and

6p populations, and will predominate if I"„t~» 1.
For pulse widths comparable to or less than the

atomic relaxation times I"yp and W ', the most

important contribution to 5n&'~(t) is the two-photon
term n» defined by Eqs. (18), as we will show at
the end of this section. This term is positive in
most substances around 1.06 p. m, and is partially
responsible for the self-focusing observed in ma-
terials such as laser glass. " In Cs vapor around
1.06 p, m, however, n„is large and negative due
to the strong resonant enhancement by the two-
photon denominator (+» —2&v)/2vc =-261 cm '.

The instantaneous portion of 5n& &(t) can be in-
terpreted physically by rewriting expression (18b)
in the form'

KNjLL 2~/, ~o 1 1
5'(&o„—2(u) (&u„—&u)

2 2 2PAP ~o 2P ~o P~~
h (Ago —(d) (d» —(d (d2~ —(d

The first (and largest) pair of terms arises di-
rectly from the two-photon "polarization" o~»~(2~),

which drives cr~',~(e) and o2~", (&u). The second pair
arises from the coherent redistribution of the 6s
and 6p populations, as described by adiabatic
following theory. "We have recently shown that
the combined coherent and incoherent population
terms in a two-level system (i.e. , in the absence
of p» and W) can be described by a generalized
adiabatic following approximation that takes ac-
count of the phase relaxation I'yo. '

For circularly polarized light, we choose ~ = f"
—= 2 '/2(x+iy); hence the only nonvanishing ma-
trix elements of interest are f" p,„=p, yp p gp and
f" p,„=p» =

JL(.,*,. The magnitudes of p, „and LL(.
„

are equal to ~hose in the linearly polarized case.
Using the same approximations and procedure as
above, we again obtain Eq. (20), but the constants
n, and C, are now defined by

(24)

(25)

The n„term does not appear in this case because
the corresponding virtual transition 6s -6& - 7s

TABLE I, (&,/+ x103o (esu).

Polar ization

Linear
Circular

—1.5 + 0.02
-0.35~ 0.04

—1.4 + 0.2
-0.26+ 0.03

Expe r i mental

-2.70
—0.335

-2.62 d

-0.525 d

Theoretical Miles and Harris

-0.66

Experimental values obtained from analysis of data that ignores the integral terms of
Eq. (20).

Experimental values including an adjustment to account approximately for the integral terms.' Theoretical calculation using the near-resonant three-level approximation [Eqs. (18) and
(24) J.

Theoretical calculation including antiresonant terms, higher excited states, and L-S
splitting [Eq. (8)].

Theoretical calculation of Ref. 23.
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I'IG. 2. Cesium transmission vs pulse Qux (and peak
intensity) for linearly polarized light and atomic density
0.32 &10 cm

requires zero net angular momentum transfer
from the light to the atom, whereas two photons
of circularly polarized light must transfer 4J
=+2." (Two-photon contributions do arise from
the n'D levels, but they have not been included
in this simple approximation. ) From Eq. (24) and
definitions (18a) and (18b), we see that n, reduces
to the expression derived by Grischkowsky, "as
one would expect in this case.

To evaluate n„,n„,and n„,we used matrix ele-
ments obtained from the total 6s'$, &,-6p'P, &„,&,
BIll 6p P$ / 3 &,

—vs'S, &, line strengths calculated
by Heavens, "and took the energy of 6p to be
11547 cm ' (the weighted average of 6P'P, /, and
6p'P, /, ). The magnitudes of the matrix elements
are (in atomic units) (p, )

= 3.16 and )p„)= 2.92,
giving the results n,0=-2.36&10 "N, n„=0.335
@10 N, and n»=-0. 256~10 N esu for A. =1.064
p. m. The resulting values of n, obtained from Eqs.
(18) and (24) for linear and circular polarization,
respectively, are shown in the third column of
Table I. In the fourth column, we show the values
of n, calculated from the exact expression [Eq.
(8)], taking account of the contributions from non-
resonant terms and higher-lying states (up to 8s,
8p, and 6d), and including the effects of L-S split-
ting. The magnitudes of the matrix elements were
again calculated from Heavens's data, "while the
signs were taken from Table I of Miles and
Harris. "

In the case of linear polarization, the good
agreement between the third and fourth columns
of Table I justifies our simple three-level model.
The small discrepancy arises primarily from the
contribution of the Vp levels in the exact expres-
sion. For circular polarization, the discrepancy
is significantly larger, and stems primarily from
the two-photon 6s-5d and 6s-6d contributions that
were not included in the three-level model.

III. EXPERIMENT

In order to measure n„we studied the self-de-
focusing of mode-locked Nd: YAG pulses in a 100-
cm-long cesium vapor cell. The measurements
were made at several densities between %=0.08
x 10"and 0.32 x 10' cm ' with linearly polarized
pulses and at 0.32 x10" cm ' with circular polar-
ization. The density was controlled by adjusting the
temperature of a cesium reservoir (260-305 C),
while the main cell was held at 460 C in order
to minimize linear absorption from Cs dimers. '4

For N= 0.32x10" cm ', the 6s-6p transverse re-
laxation time I"»' is approximately 80 psec.

The input radiation consisted of single pulses
of full width at half-maximum (intensity) duration
t~= 35 psec, as determined by measurements with
a 5-psec-resolution streak camera. Since I„'
& 2t~ at all Cs pressures, the instantaneous terms
are expected to predominate in Eqs. (7) and (20);
hence expression (15) should be a good approxi-
mation, at least for the linearly polarized pulses.
The input beam, which was well collimated (radi-
us of curvature p, = 20 m), had the form of an
Airy profile truncated at the first minimum, with
a 1/e intensity radius of a, = 0.58 mm. The pulse
energy entering the cell was measured with a
calorimeter, and was monitored with a calibrated
photodiode. For the linear polarization case, si-
multaneous energy measurements were made at
the output to determine the transmission of the
cesium, which is plotted versus input pulse energy
in Fig. 2.

The energy profile at the output of the cell was
recorded by imaging the exit window onto a silicon
photodiode array of 25-p. m resolution. Figure
3(a) shows typical oscilloscope traces of these
output profiles for the case N= 0.32&&10" cm '.
At low intensities, the beam profile was identical
to that obtained with linear propagation in an emp-
ty cell. At intermediate intensities, the beam
size increased, but its smooth characteristic
shape was retained. At the highest intensities
used, further increase in beam size was observed,
accompanied by beam distortion and the appear-
ance of ring structure near the axis. This be-
havior is similar to that observed in the self-de-
focusing experiments of Grischkowsky and Arm-
strong. ' All of the data that was used in deter-
mining n, was taken at the intermediate intensi-
ties (=6 GW/cm') where the beam distortion and
cesium insertion loss were negligible.

ln analyzing the data, we calculated the output
profile of the beam from a solution of the wave
equation in the paraxial-ray approximation. Using
Eq. (15), along with a constant-shape assumption, "
and approximating the shape of the input beam with
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a Gaussian distribution, we obtain for the intensity
profile at the end of the cell

1(r, f) = [P(f)/«'(f)] exp[~'/~'(I)] . (26)

Here P(f) is the input beam power and a(t) is a,

time-dependent radius given by'

a'(f) = a',{(1+z/pJ'+ [I -P(t)/P, ](xz/2va', )'],
(27)

where' is the length of the Cs cell, a, and p, are
the input radius and beam curvature, respectively,
and P, —= X c/32m'n, & 0. The energy profile was
then obtained by numerically integrating expres-
sion (26) over the pulse duration. For each data
point, measured values of a„p„andP(t) were
used and the value of n, was chosen to give the
best theoretical fit to the measured energy dis-
tribution at the half-maximum points. This pro-
cedure is justified by the good overall agreement
between the calculated and experimental profiles,
as illustrated by the examples shown in Fig. 3(b).

IV. RESULTS AND DISCUSSION

0.027x IO W/cm
Io 2

0 64x IO W/cm

I.9 x IO W/cm

MEASURED BEAM PROFILE
AT OUTPUT WINDOW OF CELL

The results of our v, measurements for linearly
and circularly polarized light are shown as a
function of density in Fig. 4, and are compared
with the theory in Table I. The first column of
Table I gives the experimental values of n, /N ob-
tained using Eqs. (15), (26), and (27), as de-
scribed above. The second column gives ad-
justed experimental values which account approx-
imately for the contribution of the integral terms
in Eg. (20), as we will discuss below. The third
and fourth columns give the approximate and exact
calculated values of n, /N that were discussed in

Sec. II, and the last column gives the value ob-
tained from the susceptibility calculations of Miles
and Harris. "

In using Etl. (15) to analyze the data, we have,
in effect, treated the small integral terms of
5n~'l(t) [Eq. (20)] as instantaneous, and lumped
them into an effective contribution to the measured
value of g, . One can estimate the relative im-
portance of these integral terms by averaging
their contribution to 6n (f) over the incident in-
tensity, and comparing this to a similar average

N=0
LINEAR POLARIZATION

N = 0.080 x lo cm
LINEAR POLARIZATION

N=0.M x IO cm
LI NE AR POLARIZATION

N = 0.32 x IO cm
CIRCULAR POLARIZATION

INTENSITY = 0.8 x lo W/cm
IO 2

BEAM PROFIL ES
AT OUTPUT NINDON OF CELL

FIG. 3. Spatial profiles of the pulse at the exit window
of the Cs cell. (a) Oscilloscope traces of photodiode
array measurement at low, intermediate, and high in-
tensity. g) Comparison between theoretical proMes
(soHd lines) and typical measured profiles (dotted lines)
at intermediate pulse energies.

04
N

Q
Ã

0.2
I

0
0 O. i 0.2 0.5

N x IO (cm-3)

FIG. 4. Effective nonlinear refractive index n2 vs
atomic density N for linearly and circularly polarized
light at 1.064 pm.



NEGATIVE NGNI INEAR SUSCE PTIBII IT Y OF CESIUM ~ . ~

of the instantaneous portion; i.e. , we consider
the quantity

(28)

using Eg. {20) and the exact values of n, from the
fourth column of Table I. The corrected values
of s, would then be approximately (1+@)

' times
the numbers shown in the first column. Assum-

t I",o' —80 psec 25 and that S'= I,o
'7 we o

talll 'g(linear) —0.08 aIld 'g(circular) —0.36 l)y 1111-

merical integration of Eq. (28). Integral terms
thus contribute little in the case of linear polar-
ization, but they result in a significant correction
for circular polarization, where ~n, ~

is relatively
small.

The experimental and theoretical values of n2
(second and fourth columns of Table I) are in rea-
sonable agreement, considering that one is com-
paring ab ~@etio calculations with absolute mea-
surements. Since the oscillator strengths corre-
sponding to our matrix elements are probably too
large by a factor of about 5%%uo,

22 the numbers in

the third and fourth columns could be overesti-
mated by as much as 10/0, hence the actual dis-
crepancy between theory and measurements is
probably smaller than indicated in Table I. The
remaining discrepancy appears to arise from
systematic errors in the values of the concen-
tration N or the pulse power P(t). N was ob-
tained from vapor-pressure tables'6 and the mea-
sured temperatures of the bulb and cell. As other
authors have noted, ' the accuracy of this proce-
dure is limited. In the ratio n,{linear)/n, (circu-
lar) the factor N cancels, and the agreement be-
tween theory and measurements is within 8% (i.e.,
the ratio is 5.4 from the second column of Table
I and 5.0 from the fourth column).

Although the cesium insertion loss was negli-
gible for the pulses used in the n, measurements,
its existence at higher and lower intensities (Fig.
2) may have a bearing on the possible applications
of the negative n„and requires some further
comment. The attenuation at low intensities ap-
pears to arise from cesium dimers, whose ab-
sorption band extends from the vicinity of the D
lines to about 1.12 pm. 24 Using a cross section
of approximately 0'&= 4X 10 cm, and concen-
tx ation28

we obtain the absorption coefficient NDvD=0. 017
at T = 460 C and X= 0.32 ~ 10"cm '. The small
signal transmission for a 100-cm path length is
then approximately 18'7p. If N is actually smaller

by a factor of about 2, as we suggested above,
then the transmission would be approximately
65 jp. The increase in transmission with intensity
up to about 3 GW/cm' is apparently due to either
bleaching" or hole-burning effects in the dimers.
Evidence for this is shown in Fig. 2, where one
pair of points corresponds to a double pulse with
a 3-nsec separation. The first pulse, whose en-
ergy density was 200 mJ/cm', was virtually un-
attenuated. It apparently bleached out the dimers,
however, because the second pulse, whose density
was 40 mJ/cm' (indicated in Fig. 2 by the cross),
had significantly higher transmission than other
pulses of comparable magnitude.

One is tempted to ascribe the losses at high in-
tensities to two-photon absorption or multiphoton
ionization; however, the theoretical cross sec-
tions for these processes do not support such ex-
planations. The two-photon cross section
o "1(1.064 p. m), which stems primarily from the
6s-Vs contribution, is approximately 3.3
~10 "M,"where intensity I is measured in
W/cm'. For N= 0.32 && 10"cm ' and incident in-
tensity I= 3x10', the maximum absorption co-
efficient is ¹"'(1.06 p. m) = 10 ' cm '. The three-
photon absorption is also negligible. One can es-
timate the four-photon ionization cross section
fronl calculations carried out by Morton for A,

=1.0590 p, m. Morton's results correspond to a
cross section o"1(1.059 t1 m) = 3.V &&10 "I';" how-
ever, this number is strongly enhanced by a near-
ly exact resonance between 3+ and the 6f levels
around 28329.7 cm '. The detuning is only
--1 cm ', whereas for 1.064 p. m, it is 134 cm ';
hence (r'"(1.064 p. m) = (I/134)'o'"(1.059 p. m) = 2.1
.&10 "I', giving a maximum absorption coefficient
of 1.8 ~ 10 ' cm ' for %= 0.32 & 10"cm '. With
beam spreading (and thus lowering of the inten-
sities and cross sections), the absorption over
100 cm is negligible.

The flattening of the high-power pulses, as
shown in Fig. 3(a), suggests that dimer absorp-
tion could also be responsible for the attenuation
at these as well as at the lower powers. To see
this, we assume for the moment that the constant-
shape approximation remains valid, even when
the beam spreading is large. If this were valid
[and P(t)»P, ], then Eq. (27) would reduce to a'(t)
= (Az/2va, )'P(t)/P, ; hence the on-axis intensity
I(0) = (21ta„/Xz)'P,/v would remain independent
of the total power P(t). However, because the
flattening does occur and becomes more prominent
as P(t) increases, it is evident that the intensity
I(0, t) can actually decrease as P(t) increases. The
central portion of the beam may therefore become
more susceptible to dimer absorption under these
conditions.
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In future papers, we will report on additional
defocusing measurements using longer pulses to
observe the integral terms, and on investigations
of the higher-power transmission under conditions
where beam flattening is negligible. %e will also
report on both theoretical and experimental studies
of the application of cesium vapor for compensa-
tion of self-focusing and self-phase-modulation in
high-power laser systems.
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(r{„')s((o)+ i((s s —(o —tF s)ere)s{(o)

= (i/h)g((o)s p s(6s, —6,), (A2e)

where

s{"],(n'(o) =-—Q "„g ro{rs'(n'(o) —c {» (n'(o){i,„],
(A3)

and I'
&, 8', and W& are the phase relaxation and

collisional mixing rates described in the text.
With the exception of (A2d), all of the equations

(A2) have the general form

(r(t)+(iA+ I')o(t) =R(t), ~Q~ »F, (A4)

To obtain the solution of Eqs. (3), we use the
harmonic expansions of p{„"s)(t),as in Eq. (5)„i.e. ,

with the formal solution for o(-~) = R(-~) =0,"
p{3]{t) ) o{3)(~ )teil( + (o{38( ~ t)e(QJt

+ (third-harmonic terms), (Ala.)

o(t) = dt'e {(o"'){'-"&R(t-')

p{»s(t) =(x{»s{o,t)+-,'oP, (2(o, t)e " '

+-', o{')s(-2(o,t)e" ', (A lb)

p
'&{(st)=-'o{()((o t)e ' '+-'o"'( (o t)e'~' (Alc)

where the amplitudes o~"~s(n'(o, t) = [o{s)„(n'(u, -t)]*

vary in times on the order of the pulse width t~.
Substituting Eqs. (Al) into (3) (and dropping the
time label for brevity), one obtains

(r{„')s(o))+'i((o„s—(o —iF„s)o{„»s((o)

=tg(-&u)s*. s{»s(2(o)+2ig((o)c s{,"s(0), (A2a)

(r{»(s(2)o't+((o s —2(o —il' s)o{')s(2(o)

= tg((o)e s{„'~s((o), (A2b)

('r{')s(0)+t((o s —iF s)o"',(0)

=-,'ig(-~)&* s{„'s(~)+—2ig(~)&. s")s(-(o),

(o s@0, {A2c)

o{„')„(0)+ W.o{.').(0) —g W,.o{,')s(0)

= Re[i g( (o)e* s'."-((o)], (A2d)

(
-)

)
''d R(t

For example, (A2e) yields the result

m+( s)))g(& t)
r((o~s —(o)+I ~s Bt

Since Q represents quantities such as +„8,2u,
s+ (o, or (o„ss2(o, but ((I/R) dR/dt{ is on the

order of the laser linewidth, postulate (ii) leads
to the condition ((I/R)(dR/dt) «0; hence it is nec-
essary to retain only the lowest-order terms of
(A5) and (A6).

Equation (A2d) may be rewritten by substituting
(A3) and expansion (A6). Retaining only the zero-
and first-derivative terms of (A6), and noting that
I'& =I'

&, one obtains

g».(0, t) + w.c {».(0, t) —g ws„o{s»s(0,t)

2— ) I (r,„-) )''~", .
''~"

)) ( )), &) i(,)&)-t (os~ —(d —lTs~) r((()~s —(o

(A7b)

le ~

basal

le 'P~ l sg( o) t) { ' + c.c. (A'la)
((o s —(o —il"s )' ((o s —(o —»sn)

= g(6,.—6.„)R,F,.«'(t)&"—.
' «E'(t)&
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where (E'(t)) =-,'
~
g(&u, t) ~', Rz is defined by Eq.

(9c}, and postulate (ii} has been used to justify
the neglect of I'80 in the denominator of R8. Al-
though the zero-derivative term is the largest
contribution to (A6), it is evident that the corre-
sponding term I'8,(E'(t)) in (A7b) may be com-
parable to or less than the first-derivative con-
tribution -', d(E'(t))/df. This results from the fact
that the largest portions of the zero-derivative
terms in (A7a) cancel when they combine with
their complex conjugates. If we define the vari-
able q (f) by the relation

(A8)o~.'~.(0, f) =—g (6,„-6„,)R,(Z'(t)) +q.(f),

then Eq. (A7b) leads immediately to Eqs. (11) and
(12).

The near cancellation of the zero-derivative
terms occurs only in the evaluation of Eq. (A2d).
In the solution of Eqs. (A2a)-(A2c) and (A2e), one
can therefore use postulate (ii) to omit all but

(,) (2 )
g((o, f)c sf~((u, t)

na

(A9a.)

(A9b)

y~ z g(-QP, f)E ' S~~~g((d, t) + g((d, t)E ' S~&(- (d, /)

CO~ g

~, 8~ 0, (A9c)

(,) )
g(cu, t)e g ~(6~, —6,}

along with the instantaneous portion of (A8), are
equivalent to those obtained from ordinary per-
turbation theory. " " Combining these results
with expression (6), one obtains Eqs. (7)-(10)
after some tedious but straightforward algebra.

(A9d)

the zeroth term of (A5), and to ignore all I'„z
factors. The resulting solutions

(,), g(-(u, t)e" s"8(2(u, f)+2g(co, t)e s"~(0, t)
(d~g —(d

*Work supported jointly by the Defense Advanced Re-
search Projects Agency, ARPA Order No. 2694, and
the U.S. Energy Research and Development Adminis-
tration.

~D. Grischkowsky, Phys. Rev. Lett. 24, 866 (1970).
S. A. Akhm~~ov, A. I. Kovrigin, S. A. Maksimov, and
V. E. Ogluzdin, Zh. Eksp. Teor. Fiz. Pis'ma Red. 15,
186 (1972) [JETP Lett. 15, 129 {1972)].

3J. E. Bjorkholm and A. Ashkin, Phys. Rev. Lett. 32,
129 (1974).

4S. A. Bakhramov, U. G. Gulyamov, K. N. Drabovich,
and Ya. Z. Faizullaev, Zh. Eksp. Teor. Fiz. Pis'ma
Red. 21, 229 (1975) [JETP Lett. 21, 102 (1975)].

5D. Grischkowsky and J. A. Armstrong, Phys. Rev. A 6,
1566 (1972).

V. M. Artyunyan, N. N. Badalyn, V. A. Iradyan, and
M. E. Movsesyan, Zh. Eksp. Teor. Fiz. 58, 37 (1970)
[Sov. Phys. -JETP 31, 22 {1970)].

7D. Grischkowsky, E. Courtens, and J. A. Armstrong,
Phys. Rev. Lett. 31, 422 (1973).

R. H. Lehmberg, J. Reintjes, and R. C. Eckhardt, Appl.
Phys. Lett. 25, 374 (1974).

~P. D. Maker and R. W. Terhune, Phys. Rev. 137, A801
{1965).

' (a) R. Speck and E. Bliss, Lawrence Livermore Lab-
oratory Semiannual Report, Jan. —June 1973 (unpub-
lished); (b) A. Owyoung, Symposium on Laser Induced
Damage in OPtical Materials, Nat. Bur. Stand. Special
Publication 387 (U.S. GPO, Washington, D.C., 1973);
(c) M. J. Moran, C. Y. She, and R. L. Carman, IEEE
J. Quantum Electron. QE-11, 259 (1975).

'V. S. Butylkin, A. E. Kaplan, and Yu. G. Khronopulo,
Zh. Eksp. Teor. Fiz. 59, 921 (1970) [Sov. Phys. -JETP
32, 501 (1971)].
S. A. Akhmanov, R. V. Khokhlov, and A. P. Sukhoru-
kov, in Laser Handbook, edited by F. T. Arecchi and
E. O. Schulz-Dubois (North-Holland, Amsterdam,
1972), Vol. 2.

~3J. A. Armstrong, N. Bloembergen, J. Ducuing, and

P. S. Pershan, Phys. Rev. 127, 1918 (1962).
B. J. Orr and J. F. Ward, Mol ~ Phys. 20, 513 (1971).
P. W. Langhoff, S. T. Epstein, and M. Karplus, Rev.
Mod. Phys. 44, 602 (1972).
R. Bernheim, Optical Pumping, An Introduction (Ben-
jamin, New York, 1965).
P. R. Berman and W. E. Lamb, Jr. , Phys. Rev. 187,
221 (1969); C. G. Carrington, D. N. Stacey, and
J. Cooper, J. Phys. B 6, 417 (1973).
C. E. Moore, Atomic Energy Levels, Nat. Bur. Stand.
(U.S. GPO, Washington, D.C. , 1958), Vol. III.
J. T. Fournier and E. Snitzer, IEEE J. Quantum
Electron. QE-10, 473 (1974).
R. H. Lehmberg and J. Reintjes, Bull. Am. Phys. Soc.
20, 635 (1975); Phys. Rev. A 12, 2574 (1975).

2~P. P. Bey and H. Rabin, Phys. Rev. 162, 794 (1967).
O. S. Heavens, J. Opt. Soc. Am. 51, 1058 (1961). This
particular set of matrix elements was chosen because
the corresponding oscillator strengths come closer to
satisfying the Thomas-Kuhn sum rule than those tabu-
lated elsewhere. For example, the total 6s-6P oscil-
lator strength is f(6s, 6p) =1.05, whereas the value
given in the tables of Ref. 23 is 1.13.
R. B. Miles and S. E. Harris, IEEE J. Quantum
Electron. QE-9, 470 (1973).

24D. S. Bayley, E. C. Eberlin, and J. H. Simpson, J.
Chem. Phys. 49, 2863 (1968).
This was obtained by taking the weighted average of
the 6p &&&2 and 6p P3&2 linewidths measured by C. L.
Chen and A. V. Phelps, Phys. Rev. 173, 62 (1968).

26Handbook of Tables for Applied Engineering Science,
edited by R. E. Bolz and G. L. Tuve (Chemical Rubber,
Cleveland, 1970).

27P. P. Sorokin and J. R. Lankard, IEEE J. Quantum
Electron. QE-8, 813 (1972).
M. Lapp and L. P. Harris, J. Quant. Spectrosc. Radiat.
Transfer 6, 169 (1966).
V. M. Morton, Proc. Phys. Soc. Lond. 92, 301 (1967).
M. D. Crisp, Phys. Rev. A 8, 2128 (1973).




