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An analysis is given of multiphoton transitions between discrete quasimolecular states
during the near-adiabatic colli.sion of atoms and/or molecules. The variation of level spacing
with changing internuclear separation can permit resonance absorption of one or more pho-
tons. Sufficiently intense lasex beams can also significantly distort the molecular structure
to modify potential surfaces, change activation energies, and so on. Through these two mech-
anisms specific chemical reactions in gases can be made to occur with rates that depend on
laser power.

I. INTRODUCTION

The intense electromagnetic fields that are
achievable with lasers ean cause multiphoton' '
transitions to occur in atoms and molecules with
a significant probability. These fields can also
appreciably distort the structure of atoms and
moleeules, leading to types of transitions that
would not be observed for the undistorted parti-
cle.'

In the present paper we restrict ourselves to the
study of' radiative transitions between discrete
states of particles that are in a very intense laser
beam. If the beam has an angular frequency ~
and the energy separation of a pair of states is 6&,
energy conservation requires that

where n is a positive integer. ' To satisfy the con-
dition that n be an integer, three possibilities
come immediately to mind. Perhaps the most
obvious is that of tuning the laser frequency; this
will not be studied here. The other two possibili-
ties involve changing Ae. If the level separation
Aq is that of a quasimolecule formed during a col-
lision of two molecules, then Ae varies as the in-
ternuclear separation varies and Eq. (1.1) can be
satisfied at certain positions on the potential sur-
faces. %e shall see that, with the proper condi-
tions, transitions can occur with high probability
as the "resonance condition" Eq. (1.1) is satisfied.
The final possibility considered here for satisfying
Eg. (1.1) depends on the fact that ne depends on
the laser-beam power P, so that de(P) =nb u& can
be satisfied, in general, for certain discrete val-
ues of P.

When two atoms (or molecules)' collide, then,
in an intense laser beam, the adiabatic molecular

potential curves (or surfaces)' E,(R, P) depend not
only on the internuclear separation R but also on
the power flux P of the beam. Thus, the shape of
potential surfaces, including potential barrier s,
may be varied by changing the laser power. This,
along with the stimulated absorption and/or emis-
sion of photons, may provide a useful tool for con-
trolling chemical reactions in gases or molecular
beams, possibly stimulating lasing transitions,
and so on.

Our treatment does not use perturbation theory
for the electromagnetic field, but is restricted to
a finite number of modes for the electromagnetic
field and a finite number of discrete states for the
quasimolecule. In fact, we shall study in detail
here only the simple case of two molecular states
and a single field mode. ' A considerable literature
exists describing radiation between iwo molecular
states into a discrete set of cavity eigenmodes of
the field. 9 This has been extended to a description
of radiation of X identical two-level atoms into a
discrete set of field modes. " These treatments
have used the "rotating-wave approximation, "
which is quite inadequate for our present applica-
tions.

In Sec. II we formulate a general theory of radi-
ative transitions between discrete states of two
particles colliding in the focal spot of a, laser
beam. '~ Such a situation could be realized, for
example, by doing an atomic-beam scattering ex-
periment with a laser beam focused in the region
of collision. The analysis of atomic structure in
the laser beam is given in Sec. III and the analysis
of transitions in the "resonance region, "defined
by Eti. (1.1), will be described in Sec. IV. Several
numerical results are presented in Sec. V. Final-
ly, in Sec. VI, the case is studied in which the
laser power is varied to satisfy Eq. (1.1).
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II. ATOMIC COLLISIONS WITHIN A FOCUSED LASER BEAM

We consider the slow, or near-adiabatic, colli-
sion of two atoms' within the focal volume of a
laser beam. The beam is assumed to be uniform
in space and time for the distances and times over
which the collision occurs.

Ky = h co),a) a) (2.2)

where X refers to the cavity eigenmode, (d„ is the
frequency, and a and a are photon annihilation
and creation operators. Keeping only electric di-
pole transitions, that part of the Hamiltonian de-
scribing the interaction of the radiation field with
a quasimolecule is

V„=—(P 'A,

A. Cavity eigenmode description

We consider first the idealized case in which
the collision occurs in a resonant (to the electro-
magnetic field) cavity of volume '0, whose dimen-
sions are very large compared with the Bohr
radius ao. Only a small number N, of cavity modes
are excited.

For the detailed calculations of this paper we
shall further restrict ourselves to the case of

N, =1 (only a, single cavity mode is excited). It
will be supposed that there is initially a very large
number N, of photons in this mode. We shall see
that this case leads to the same equations and
transition probabilities as that of a purely classi-
cal, sinusoidal electromagnetic field.

The adiabatic molecular Hamiltonian for the two
colliding atoms (or "quasimolecule") is written as
h. The molecular states P, = P ($;R) are then
solutions to the eigenvalue equation

hg, =w (R)P (2.1)

Here ( refers to the electron coordinates and R
to the internuclear separation. This latter quanti-
ty is assumed to be a known function of the time t,
having been calculated as classical motion on the
appropriate molecular potential surfaces.

The Hamiltonian for the free radiation field is

momentum of the jth charged particle in the quasi-
molecule. The A' term has been neglected as giv-
ing a contribution only to the dielectric constant of
the cavity.

The Schrodinger equation is then"

where

H=h+K, + V~.

(2.6)

(2.7)

Adiabatic eigenstates (with R considered a param-
eter) of H satisfy the equation

HC „=E„(R)@~ . (2 6)

z=Vt, P2 =z2+b2 (2.9)

The laser-beam interaction is slowly turned on
and then the two particles collide. Following the
collision the beam interaction is slowly turned off
and the final quasimolecular state of the now sep-
arated atoms observed. The initial and final ki-
netic energies will, in general, be different, the
difference being determined by over-all energy
conservation (with the laser on). In the near-adia-
batic limit, transitions between adiabatic states
will occur only when two energy levels are very
close to each other —called a "pseudo-level-cross-
ing" here.

In preparation for our solving Eq. (2.6) let us
expand g in states of the quasimolecule IEq. (2.1)]:

(2.10)

Equation (2.6) represents the starting point for
our analysis. Since we are treating the orbits of
the two colliding atoms classically, the distance of
separation %(t) is determined for the appropriate
potential surface E~(R).

The Schrodinger equation (2.6) is to be integrated
subject to the following boundary conditions: In
the remote past the interaction V„has not been
"turned on" and the quasimolecule is in the state
+=1. The relative velocity of the two atoms is
V, directed parallel to the z axis, and the impact
parameter is b. We have, then, prior to the col-
lision,

where A is the vector potential,

~c
A =g, (a„+ai)ei,

and

(2.4)

where I' contains the dependence on photon occu-
pation numbers. Substitution into Eq. (2.6) then
gives us

N

iht — w + @co„a~a„ I'

(2.5)
8(&n) B (An)

Here e, , m~, and p~ are the charge, mass, and (2.11)
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The phases of the P have been taken to be inde-
pendent of R, so that the term corresponding to
n= P in the second term on the right vanishes.

The matrix elements of 6' may be evaluated in
conventional form'4 in terms of the oscillator
strengths f B for the transition p- a. This lets us
write (2.11) in the form

r, = E x„n)n, —,) ~ E a ))qr,,)I
v even v 0dd

t
xexp —i zUl+N&k(d df'

(2.15)

N

ihF — u + h(u„a„'a, F
v=1

N

=g g g„"Be' 8(a„+a„)r~ g—m(y ! ygr8,
B v=1 B («)

g" =g" =k(o 2n — f

(2.12)

and the nonradiative term has been dropped, where

F, = An N, —v + an N, —v)
v odd v even

t

r —i ),+Nil )dt, 'I .

Because we have considered the laser field to be
very intense, we can suppose that N„»!v! above
and write (we drop the mode subscript now)

aQ(N„v) = (N-„} ~'Q(N„v —1),—

a Q(N„- v) —= (N, )' ~'A(N„v+1) .-
At this point it is convenient to put Eq. (2.14) in-

to dimensionless form with the variables

ao 6 ave

v

(2.13)
Y —= Vf/ao, G = (ao/)f V) (N„)' ~'g,

G, —:(ia, /V)R (P, !Vz@,), F =a, ~/V,

and Q B=- pB is the phase of the matrix element
of 6'e„.

In the remainder of this paper we shall restrict
ourselves to the two-state approximation for the
quasimolecule, corresponding (say) to a=1, 2.
Then the phase Q B

can be eliminated and g" can be
written for g,", =g,",. We may also take i(Q, Q,}
real, in which case i(p, ! )I),) =i(Q, ! )I),). Then, with

W—= (ao/5 V)(w, —a),},
W„=—W- vF, v an odd integer,

-=- vF, v an even integer,

(2.16)

With these definitions and the use of Eqs. (2.15) we
can write Eqs. (2.14) for the case of a. single
strongly driven mode as

we have

iA„—W„A„=G[A„„+A, ,]+Gg„,

iB„—W'„B„= [BG„,~+ B„,]+G„A„,

(2.17a)

(2.17b)

N

ikF= 2 m, +so2 +2o, zv, —m2 + km~a a F
X=1

~ dA„
v=dY

~ dB„
dY

(2.18)

where v runs over all integers, including zero,
and (henc efo rth)

(2.14)

where o„o, are the Pauli spin matrices. This is
formally equivalent to a. finite set of harmonic
oscillators with linear coupling to a spin-& sys-
tem.

Equation (2.14) may be further simplified for the
case of a single, strongly driven cavity eigenmode.
In this case, let there be N„photons initially pres-
ent in this mode and let A(N„- a} be a cavity eigen-
function corresponding to N, —cr photons in the
cavity. We may then write

In the adiabatic limit the G„ terms are to be ne-
glected, since G„/G, G,/F, and G„/Wall vanish
in this limit.

Under some conditions the energy of the collid-
ing particles may be sufficiently high that a
straight-line trajectory may be used. Then we
have

g2 Y2 +$2 (2.19)

(all distances are measured in units of a, ) and in-
tegration of Eqs. (2.17) is considerably simplified.

To make our discussion in the remainder of this
paper appear specific, we shall discuss the case
that



13 INELASTIC ATOM-ATOM SCATTERING WITHIN. AN. . . 1021

W&0, (2.20) III. ADIABATIC STATES

or 262+Kg so a transition from state 1 to state 2
will extract energy from the radiation field. Our
results also apply directly to the case that W&0,
or electronic energy is transferred to the radia-
tion field.

The derivation of Eqs. (2.17) for the case of a
purely classical electromagnetic field is given in
Appendix A.

B. Numerical relations

We first consider the integration of Eqs. (2.17)
in the adiabatic approximation. As described in
Sec. II, we suppose that in the remote past
(t- —~, Y- —~) the atoms are separated and in
the quasimolecular state 1, so

lim Ap=1, A„=O for v40.
3& mm (&0

(3.1)

The adiabatic approximation to Eqs. (2.17) is ob-
tained on writing

271'e Ry ap U~
@c

(2.21)

The dimensionless coefficient G in Eqs. (2.17)
may be written in the form

Y

A, (r)=e p(-
' f d, (r')dr')A. "'(Y),

Y

B,(Y)=e p —( d'( Y')d Y) 8 '(Y), '„

(3.2a,)

(3.2b)

Here

P, -=w( )/F (2.22)

and introducing the approximate relations

iA„—= S„A„, iB„—= 8~B„, 6„=0

represents the ratio of the level separation at
F= ~ to the photon energy. The quantity U~ is

w2(Y) w&(Y)
L ~ (p()) ~ (p()) I » I

where

Pi =N„ ff &A)C/'0

(2.23)

(2.24)

G/F = (5.0 && 10 P U )(')' ~' (2.25)

This is plotted as a function of U~ in Fig. 1 for
several wavelengths.

The dimensionless frequency parameter F can
be written as

is the laser power flux. Since we do not wish to
specify the Y dependence of f„, we shall treat U~
as a constant in our analysis. (This simplification
is in no way essential for our method, but is con-
venient for this exploratory study. )

If we express U~ in MW/cm' and the wavelength
of the radiation X in micrometers, then

(8„-w„)x&'& = G(A&„',&, +a &"
&,),

(g) W )Bd( &e&G(B(x& +Boe& )

(3.3a)

(3.3b)

where X labels a particular eigenfunction A„' '

(or B„' '} and eigenvalue (p„(or (p'„), both depending
parametrically on F. Using the relation W„'= W„,
—F and setting (p~=(p~-F, B„'"'=A,'~'„Eq. (3.3b)
is seen to reduce to (3.3a). Hence it will be suffi-
cient to discuss (3.3a).

No transitions occur in the adiabatic approxima-
tion, of course. The system remains in the eigen-
mode that corresponds to the boundary condition
(3.1) as first Y- —~ then G-0. As Y-+~, and
G-O, following the scattering, we again have

into Eqs. (2.17}. There results the set of eigenval-
ue equations

F = 10/&(V, (2.26}

Ps = 3.2 && 10'/&(' MW/cm'.

If we write U~ =
~ f» ~Ps and substitute this into

Eq. (2.25), there results

(2.27)

where again )( is in pm and V is in cm/(((sec.
If the reactions which we are studying occur in

a gas it may be desirable to keep the laser-beam
power level below that at which cascade ionization
develops. To illustrate this, we consider the
breakdown threshold in air, which is"

10

10

10

10
I 10 10

U ( MW/CM )t

10 10 10

G/F i~ =0.13(if» iPoX) (2.28)

as the value of the coupling strength at breakdown.
FIG. 1. Coupling constant (G/F') p shown as a func-

tion of the laser power parameter Uz [Eq. (2.25)l.
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C, = p &tI Q(N„—v)A &" . (3.4)

The corresponding eigenvalues are

E~ = ni, + (ff V/a, )$~+N„R &u . (3.5)

For sufficiently small G, Eqs. (3.3) may be re-
placed by

(3.6)

with the solutions

~~= ~~ ~

(3 'f)

('3.8)

These correspond, of course, to adding (or sub-
tra. cting) the energy of X photons from the two
basic quasimolecular states (0, W). For G 00, we
index the eigenvalues 8~(G) and eigenmodes A„'"(G)
by the requirement that &&'~(G)- W„, A„' '(G)- 5„~
as G-O.

All solutions of Eq. (3.3) can be constructed
from any single solution by means of a simple al-
gebraic procedure. To see this, let us assume
that 8, and A„" are known for some 0. Then we
assert that

A„= 5„„justas in Eq. (3.1) with no photon absorp-
tion or state transition. Thus, to study transi-
tions, we must evaluate Eq. (2.17) in an approxi-
mation that includes nonadiabatic corrections.
This will be done in Sec. IV and will be formulated
in terms of transitions between eigenmodes. Be-
fore doing this, we need to study some properties
of the eigenf unc tion A "'.

In passing, we note that the eigenfunctions of H

[Eq. (2.8) with R fixed] are

of the same parity in X.
To relate a ~-odd to a X-even eigensolution, con-

sider X = 0 and X = 0, 0 odd. Then,

W(Y ) =Fp (3.13a)

where p is the ratio of energy gap at Y to the
single-photon energy. For Y-~, W is a constant,
having the va, lue

W(~) =Fp, . (3.13b)

The behavior of the unperturbed eigenvalue
spectrum [Eq. (3.8)] is illustrated in Fig. 3. The
two sets of curves are obtained from the two basic
curves of Fig. 2 by displacing these by integral
multiples of 2F. With the perturbation G "turned
on, " two things happen. The levels in Fig. 3 are
distorted and they are also rearranged so no
crossings occur. This is illustrated in Fig. 4.
Thus, the adiabatic perturbed curves involve a

(3.11)

(3.12)

as may also be verified by substitution.
The eigenvalues h~ are epeg functions of G. The

energy 8, is even in F and odd in W.
Before presenting some numerical analysis of

the eigenvalue equation (3.3), let us describe sev-
eral qualitative features of its solutions. To be
specific, let us consider a situation for which
W(Y) [Eq. (2.16)] has a Landau-Zener minimum at
Y= Y, as is illustrated in Fig. 2. At this point
we set

A'""=A")
P v-2n ~

(3.9)

(3.10)

as may be directly verified by substitution. Equa-
tion (3.10) exhibits the relation between solutions

-v
m

—Y
m

FIG. 2. Level spacing function W lEq. (2.16)l shown
as a function of position Y along the trajectory.

FIG. 3. Some curves of the unperturbed eigenvalue
spectrum, Eq. (3.9). (Only the Y&0 part is shown. )
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"switching" between the unperturbed modes of Eq.
(3.6).

In accordance with the mode-indexing convention
adopted above [just following Eq. (3.8)], the mode
index p along a particular adiabatic curve switches
as each "pseudocrossing" (henceforth referred to
as a PC) is passed. The particular values of Y
at which the index change occurs is indicated in

Fig. 4. At these values of Y every curve experi-
ences an index switch. While this convention may
seem unnatural from the point of view of the adia-
batic states, it leads ultimately to simpler book-
keeping. "

In addition to the solutions of Eq. (3.3a), illu-
strated in Fig. 3 and 4, there is a set of B modes
obtained by displacing the A-mode energies down

by I'. Thus, there are (A, B) crossings between
the (A, A) and (B,B) pseudocrossings. Since Eqs.
(3.3a) and (3.3b) are uncoupled, the (A, B) cross-
ings are true rather than pseudocrossings.

Now let us consider a typical scattering event.
For large negative Y the system is in the state
X = 0 and moving in from the left along the 0 curve
in Fig. 4. We shall see in Sec. IV that for suffi-
ciently small G and G„ the system always remains
on this horizontal curve, corresponding to a
straight line in Fig. 4. However, if G is finite and
the velocity small enough, the system will always
remain on the same adiabatic curve, moving from
curve 0 to curve 9, from curve 9 to curve 2, and
then, after passing through 9 again, ultimately
back to 0. In both of these cases no transition

A„=g„(A„,+A„,),
g„=G/(g —W„) .

For p&0, we write

A„=g„H„A„

and obtain 'rom Eq. (3.14)

H„= 1/(1 —g„g„„H„„).

(3.14)

(3.15)

(3.16)

Letting the maximum value of v be M, we deter-
mine H„ from the postulate that

H„=1/(1 —g„g„,H ) . (3.17)

Having H„we can calculate from Eq. (3.16}
H~ ~) H~ ~). . . )H, . Now,

A~ =g,H,Ap.

For v&0, a similar procedure gives

A, -g,H,Ap .
Finally, using the equations

Ao go(A~ +A ~)

and

g, =G/8,

we obtain

(3.18a)

(3.18b)

occurs, since the final state corresponds to curve
0. Only when the probability of curve jumping lies
between zero and unity can a transition occur.
The detailed analysis of these transitions will be
given in Sec. IV.

The eigenvalue equation (3.3}wa.s studied numer-
ically with a vector A„of maximum dimensionality
of 121 corresponding to -60 ~ v~ 60. For Y not
near a pseudocrossing, the following technique
was used:

Equation (3.3) is written as

8 =G(gH, +g,H, }. (3.19)

FIG. 4. Modification of the levels of Fig. 3 when the
perturbation is "turned on."

If an initial value is assumed for 8, Eq. (3.19)
gives a next estimate. By iteration of this proce-
dure the eigenvalue of 8 was foqnd. The eigen-
vectors were obtained (when needed} from Eq.
(3.15) and the corresponding set for v(0. The
eigenvector A was then normalized to unity by a
suitable choice of A, .

The above procedure usually converged in a few
iterations. The mode to which it converges de-
pends on the original choice of 8 with which one
begins the iterations. Continuous variation of 8
with G gave assurance that Sp was being deter-
mined.

Near the pseudocrossing the level separation
was generally very small and a different procedure
was required. Let us suppose the pseudocrossing
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of interest occurs at Y= Y„ the levels correspond-
ing to X =0 and X = o (o a positive odd integer; re-
call that we can generate all other levels from
this pair). For v&o, we use the procedure out-
lined in Eqs. (3.15)-(3.17} to calculate A,.„
A,.„.. . ,A„ in terms of 8 and A, . For example,

These two equations will be used to determine the
pair of eigenvalues 8, [Eq. (3.35)] at the PC.

It is shown in Appendix B that when the levels
X=0 and X= o are much closer together than is
either to a third level, we can set

(3.32)

e+1 ge+1 e+1 e ' (3.20)
and

A„= r„'A, + F-„A., (3.21)

For v&0, we also calculate as before A „
A „.. . , A „in terms of A„ the first expression
being (3.18b}.

In the interval 0(v&0, we write

6+ho=W .

Thus,

~.—S,= W, + aW,

2 W= —2G(giHi+g, H, ) .

(3.33)

(3.34)

where I and I'„are independent of A, and A, . To
evaluate I'„', we setA, =O. Then, from Eqs. (3.14),
we obtain

The eigenvalues, obtained from Eq. (3.31), are
seen to be

a-1 ge-1 e-2 or I', , =g, ,I, ,
Also, we introduce the relations

r„'=g„H„F„,,

(3.22)

(3.23)

g, = —,'(W, +[(W, +AW)'+4G"]' '}. (3.35)

For all cases of interest to us IG'
I

«I and is a
slowly varying function of S. The point of closest
approach is then given by

with

(3.24)

A, =g, A, or F, =g, I;. (3.25)

In analogy to Eq. (3.23}we introduce the relations

The H's are seen to satisfy Eq. (3.16) for v =a —2,
0 —3, . . . , 1. The F,'s are thus determined.

To evaluate the I „, we set A = 0 and then have

(3.36)

w-=, *,
, w'—= G 11,) .4G'W

1=1
(3.37)

At the point of closest approach of the levels,

W, + AW=O,

where the level splitting is 2IG'I.
When G is sufficiently small that perturbation

theory may be used, we have

r„=g„H„F„„,
with

(3.26) g, =- d, w/2+ IG'I . (3.38)

In the vicinity of the PC we evaluate AW and IG'
I

with the mean value
H, =1, F.-=1. (3.27)

g =- ~w($)/2 (3.39)

A, =g, H, A()+ FjA, ,

Aa- 1 Fa- l AD+&a- 1 He & Aa '
(3.29)

With the definitions

G' =GF, , G" =- GF,e-1~ 1~

4 =- G(gi Hi+g- i H .} (3.30)

The H's are seen to satisfy the recurrence rela-
tions

H„=l/(I -g„g„,H„,), 2v, 3, . . . , c1.

(3.28}

The H„'s and I'„'s are now determined. In parti-
cular, we have

rather than "self-consistently" with 8,. This is
justified because both quantities are smooth func-
tions of g, and because IG'

I
is very small. The

only Y dependence of g as given by Eq. (3.35) then
results from the Y dependence of W, (Y).

Near the PC's, numerical evaluation of G' and
~W was performed as outlined above with trial
values of S. The root 8 was determined from
Eq. (3.35) by iteration. Since W, is a known func-
tion, 8, can be obtained as 8, = W, —8 consistent
with Eq. (3.12). The point of closest approach was
next determined by calculation for a sequence of
Y values. At the point of closest approach, we
have

6, —= W, + G(g„,H„, +g, ,H, ,),

Eqs. (3.14) for v = 0 and v = o become

(g —~.)A, = G'A„($ —~)A, = G"A, . (3.31)

to an excellent approximation. For the time-de-
pendent calculations of Sec. IV this fixed value of
8 —= 8 was used to evaluate hW and G' near the PC.

For some illustrative calculations of the eigen-
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10 G/F in Fig. 5 for R(Y ) =1, or W=Fp . For small
G/F, we have just the value from perturbation
theory [see Eq. (3.37)]:

0 p2 1
(3.42)

1.0——
For the odd levels at R(Y ) =1, we have from

Eq. (3.11)

S,=F(p —(&+280/F), a odd. (3.43)

LL

10

10

10
0 1.0 2.0 3.0 4.0 5.0

FIG. 5. Eigenvalue 80/F as a function of coupling con-
stant for cases A and B tEqs. (3.41)].

values the following form was chosen for W(l')
[Eq. (2.16)]:

W(Y) =F[P, —2RO(P, —P )(1/R' —Ro/2R )],
(3.40)

with R'= Y'+O'. At R =R„W has its minimum
value Fp„, while for R-~, W-Fp, (see Fig. 2).

We describe now two typical numerical exam-
ples. The parameters chosen were

When G/F is small we have PC's for a =9, 11,13
photons for case A and 0 = 5, 7 photons for case B.
There are, in addition, true crossings for 0
= 10, 12, 14 photons for case A and 0 = 6, 8 photons
for case B. For larger G, displacement of the
levels changes the photon numbers at which PC's
occur. This is illustrated in Table I. For exam-
ple, for case A with small G the minimum number
of photons to give a transition is 9. When G = 4,
at least 15 photons are required.

The quantity ( G'~/F is shown for case A in Fig.
6 as a. function of G/F at the PC's. The curves
are labeled by the number of photons required for
the transition (compare with Table 1). The value
of G/F at which a PC disappears is indicated by
a circle at the termination of the curve. An arrow
is shown to indicate that the curves were not
evaluated for G/F beyond the range shown. From
Eq. (3.36) we recall that

~

G' ~/F is just one-half
the level separation (divided by F) at the PC. As
we have indicated, this tends to be small com-
pared with unity.

Since we are primarily interested in situations
in which F/W is small, an attempt was made to
develop an analytic approximation for 80 suggested
by the static-field Stark effect. A good approxi-
mation is provided by the expression

R =1, b =0.1,
p0 = 14.1, p = 8.2, case A

p0=8 1, p =4 1, case B.
(3.41)

The eigenvalue 80/F is shown as a function of

gr ~ 2 16G2
1 —— 1+ E(k)

where
n' /2

E(k) —= d 8 (1 —k' sin'8)' ~'
0

(3.44)

TABLE I. Numbers of photons for which PC's occur [see Eq. (3.41)].

Case A

G/F interval

0 & G/F &1.5
1.5& G/F &2.3
2.3 & G/F &2.6
2.6& G/F &3.3
3.3 & G/F &3.8
3.8 &G/F~4

Number
of photons

9, 11, 13
11, 13
11, 13, 15
13, 15
13, 15, 17
15, 17

Case B

G/I' interval

0 & G/F &1.1
1.1& G/F &1.4
1.4 & G/F &2.1
2.1 & G/I' &2.5
2.5& G/F &3.0
3.0 & G/F &3.3

Number
of photons

5, 7
7

7, 9
9
9, 11

11
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is the complete elliptic integral of the second kind,
and

ft = 16G'/(W —F + 16G ) .
Equation (3.44) is exact in the limit of either E/W
or G/W small, and is consistent with the symme-
try properties noted just after Eq. (3.12). It is
within 3% of the correct value for the range shown
in Fig. 5, and appears to become more accurate
at the largest values of G (within 0.5%).

rv. TRWNSIOw vROB~sir IES
In Sec. III we discussed the eigenmodes of Eqs.

(2.17) in the adiabatic limit —that is, solutions of
Eq. (3.3). It was observed that when the internu-
clear separation Y changes at a finite rate, tran-
sitions can occur at the PC's. We now study
these.

To do this we assume that transitions between
only fuo lepeEs at a time need be considered. For
this assumption to be valid, we require that the
separation between this pair of levels be much less
than that between either level and a third level.
To be specific, let us consider the PC that occurs
at F = y, for levels 0 and o (where o is a positive,
odd integer). According to Eq. (3.35), the level
separation at Y, is

iA —6 A =O'A, , iA, —A,A, =G'A (4.1)

Here we have used the adiabatic approximations
(3.29) as the solution to the less-singular compo-
nents of Eqs. (2.17), corresponding to vw0, o.
Equations (4.1) reduce, of course, to Eqs. (3.31)
in the adiabatic limit. Near the PC we assume
that

6 —b = —Qt, t=Y —Y

and introduce the relation

F 2

A, = exp —i dY' e "~ '" U t

(4 2)

(4.3)

Elimination of Ao from Eqs. (4.1) then gives us the
equation for U,

whereas the spacing between other levels tends to
be about 2I'. Reference to Fig. 7 suggests that

iG'i/Z «I,
so our assumed condition that only one pair of
levels need be considered at a PC has a consider-
able range of validity. Of course, for large enough
velocity V, transitions between more distant levels
can occur.

To integrate through the PC at Y= Y„we return
to Eqs. (2.17). For v=0 and v=a we have

2 Q QU» . Q Q$
dt' 2 4

(4 4)

10

lp

It suffices to consider a& 0, since a is real and,
if a solution U(f,

~
n~) is found, then

V(f, —fn/) =f/*(f,
f
oJ). (4 5)

IOn writing

10

g/gp=, n=fP, z=(in')'"fe (4.6)

Ik.

-lp
lp

10

10
-12

10

10

lp-14
10

IP

lp

-20
lp

G/F

10

10

10 0. 1 1.0
G/F

I I

10.0

FIG. 6. Quantity IG'II/E as a function of coupling con-
stant and photon number 0. Case A I.Kqs. (3.41)] is
illustrated.

FIG. 7. Values of [ G'/E} as a function of G/+ for
several photon number s.
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(4.'t)

Here P is a phase factor that we shall not need ex-
plicitly. If the eigenmode lables 0 and 0 are inter-
changed in Eqs. (4.7), corresponding to an initial
eigenmode o, then only the phase factor changes.

The probability for a transition 0-0 is seen to
be 1 —e "~. %'hen the coupling constant G is suffi-
ciently small, p = 0 and the system remains on the
8, curve of Fig. 3. %'hen p»0, on the other hand,
the motion is adiabatic, with the system remaining
on one of the curves of Fig. 4.

The criterion of validity for Eqs. (4.8) is that
we reach the asymptotic form of D functions for
values of f, small enough that the linear approxima-
tion (4.2) is still valid. If p 8 1, then the asymp-
totic form of D „,(-tZ} is reached when IZ I'»1
or when

I
n

I
6Y' » 1, where 5Y is the distance

from the PC. Now,

I~I ={~„f(.— .)/&v|)„~ . (4.8)

we obtain Weber's equation'8 for U. Solutions of
this are, in the notation of Ref. 18, D„(+Z) and
D „,(+iZ). The solution that corresponds to the
eigenmode 0 for negative t is D „,(-iZ).

The connection formula given in Ref. 18 gives
the asymptotic solution. for positive, large values
of t. From this, A, and A, may be calculated.
Comparison w'ith the eigenmodes obtained from
Eqs. (3.31) gives the connection formula across
the PC. The calculation is straightforward, but a
little tedious. For the initial condition that A=A~'~

for F«F, the result is

X=e '~X"'+e'o(l —e '")'/'X"' for Y» Y, .

n, —n, =-e+b(1'- Y„}',
where a, b&0. If we write

Y- Y.= t+-e""(ejb)'",

(4.9)

(4.10)

d,.—n, =-tnt, n=-2{at)'". (4.11)

Gn eliminating Ao and making the transformation
(4.3), we obtain once again Weber's equation.
Now, how'ever,

n = P - 1, Z = (n)'/'t, (4.12)

where p is given in Eq. (4.6).
The connection formula may be obtained as be-

fore after a straightforward, but even more tedious
calculation. The result, corresponding to Eq.
(4.V), is, if A=At'i for Y«Y, then

{2 P)1/2 —
2 &3 1/2~

A i X& )+ expr(I+p) 3 b

exp[- l-(n' jf )' "1« I, (4.14)

which is a requirement on the adiabatic approxi-
mation.

Near the value of G/E at which the PC is lost we
have

for 1'» Y . (4.13)

Here, Q, and Q, are phases not needed for our ap-

plicationss.

The validity of Eq. (4.13) requires that Eqs.
(4.9) and (4.11) remain valid into the asymptotic
regime of the D function. Also required for the
matching is the condition

IaI+b(Y- Y )2, (4.15)
In the adiabatic regime, for which e'/h =2 x 108
cm/sec» V, we expect our Eqs. {4.8) to be useful.
An exception occurs near those values of G/F at
which a, PC is lost and

I
o.'I is anomalously small,

however.
We have seen in Table I and Fig. 6 that as G/E

is increased we ean lose PC's when 8' has a mini-
mum value —say, at 1' —as is the case for Eq.
(3.40). This is illustrated in Fig. 8. As a PC ap-
proaches such a minimum from above, Eq. (4.8)
no longer applies, both because of the failure of
the linear approximation and because the two
crossings on either side of the minimum are too
close to be treated as independent. After the PC
is lost (because of further increase in G/E), tran-
sitions between the indicated states 0 and o may
continue to occur as long as the level spacing re-
mains sufficiently small.

To study this latter case we return to Eqs. (4.1)
and, near F=F, we write

a r = [,'W(I —o,)-+Z(n'n —tV„)]r

0+0+ G
)~ /2 e„1 + G„o I'. (4.16)

where the plus sign refers to the condition of Eq.
(4.8) and the minus sign to that of Eq. (4.13). In
eit er case we h ve IoI =2(Inlb)'". At}ust the
value of G/E at which the PC is lost, a = @=0 and
our connection formulas are invalid. As the gap
distance becomes large, the transition probability
(4.13) becomes very small because of the expon-
ential factor (4.14).

The preceding discussion ayylies unchanged to
transitions between solutions of Eq. (3.3b} (BB-
transitions) at pseudocrossings. To discuss the
transitions that take place at a crossing of a solu-
tion of Eq. (3.3a) with a solution of Eq. (3.3b)
(A Btransitions), -we begin with
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r= o(Y)r.+ p(Y)r, . (4.20)

Substituting in Eq. (4.16), taking the inner product
with F, and F~, respectively, and using Eq. (4.19)
and the equations

I
I
I

Y
m

(r., c„r ) =(r„o„r,}=o,

we find

i o.'(Y}—$,(Y)n(Y) = G„(I',a„r)))P(Y),

i p(Y) —8',(Y)p(Y) = G,(r~, o,r, ) o(Y) .

(4.21)

(4.22)

FIG. 8. Illustration of levels when a PC does not quite
OCClll .

b

Q B;A)N, — ))v 05d

a;))))),— ))

(4.17)

where the A„"' and B„'satisfy Eqs. (3.3a) and (3.3b),
respectively. Hence we have

[—,'W(1 —o,) +F(a~a —N„)]I',+G, &, o„r,= Sor, ,

(4.18)

[~W(1-o„)+E(a~a—N„)]r~+ G
( },&, o'„F~ = b', F~.

In addition we assume Ap"' and B,'" real, in which
case all the A„"', B„"'are real. Taking into ac-
count the normalization condition, we find

(r„r',) =(r„r,) =o, (4.19a)

and from Eq. (4.17) we can deduce (by inspection)

(r„i,) =(r„r.)=o. (4.19b)

We now assume that significant coupling occurs
only between mode pairs with nearly equal energy
a,nd we write

Equation (4.16} is the same as Eq. (2.14), special-
ized to a single cavity mode, expressed in terms
of the variables and parameters defined in Eq.
(2.16) (again a dot over a symbol means )f/d Y),
and with the energy shifted by means of the time-
dependent exponential factor appearing on the ex-
treme right in Eq. (2.15}. We now let I', and I',
represent normalized adiabatic states determined
by solutions of Eqs. (3.3a) and (3.3b}, respectively.
Explicitly [compare Eqs. (2.15) and (3.2)],

x."'))pv, — ))
v even

1,=
i

7

Q A„"'O(N, — ) ]v odd

From the discussion following Eq. (3.3), crossing
occurs only for odd 0, in which case the crossing
condition 8p'=Sp is the same as W Sp Sp
+ (cr+1)E, corresponding to a transition with ab-
sorption of cr+ 1 photons. Furthermore,

G', =G„(r~,o,I', ) = G„(1,c„r~)

We do not, however, have a satisfactory estimate
of G„. Presumably it is highly dependent on mo-
lecular structure and may well be small in many
cases. The cross sections computed in the follow-
ing sections omit the contribution from the A-B
transitions. Inclusion of these transitions would

yield larger excitation cross sections than those
we shall compute, but we would not expect large
increases.

V. EVALUATION OF THE CROSS SECTION

For a given impact parameter b the probability
of a transition to the upper level of the quasimo-
lecule is

P, (b) =I;m g IA. I'.
V Odd

(5.1)

The probability that the system remains in the
lower state is

P, (b) =lim g ~A„~'=1 —P, (b}. (5.2)

The cross section for a transition to the upper
level is then

=G ~~ A' 'B' '=G ~~ (-1)"A"'A' 'x~ v v x~ v ty+1-v '

(4.23)

Equation (4.22) is identical in form to Eq. (4.1} so
that the previously derived formulas for the tran-
sition probability can be applied immediately. The
ratio GQG„can be obtained from the solutions to
the adiabatic states, and in the perturbation-theory
limit is given by

G '+'
-1)(

[1 3 5 "o]' F
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0', =2m dbbP, 5 (5.3)
(5.10)

It is expected that the integration over impact
parameters will lead to phase oscillations that re-
move interference effects, so that we need calcu-
late only transition probabilities and not ampli-
tudes.

To obta. in P, (5) we have the following prescrip-
tion, based on the results of Secs. III and IV: Kith
80 determined numerically, as described in Sec.
III, the adiabatic energy eigenvalues (2.6) are

E,(R) =w, +(h V/a, )8,+(N„o)5&v-, o even,

where from Eq. (4.8) we have

~„(j)=e """, &,(j) =I —~„(i)

j =1,2, . . . , N. (5.11)

Here p(j) is the quantity (4.6) evaluated at the jth
PC, as is illustrated in Fig. 9. Now,

(5.4)

R,(R) = w, —(A V/a, )8, + (N„- o)a (g, (r odd,

r' dB d
N dR

(5.12)

except very near a PC. Removal of the field ener-
gy from these expressions gives us the adiabatic
potential surfaces for levels 1 and 2 of the quasi-
molecule:

8,",'(R) = u, (R) + (h V/a, )8,(R),
(5 5)

8,",'(R) =m, (R) —(h V/a, )8,(R) .

[In using these expressions, we recall that G/E
and W/F = (ao, —w, )/If ~ are independent of the as-
ymptotic velocity V.] The classical motion for
molecular state 1 is obtained from the equation

evaluated at R(1',.) [obtained from Eq. (5.8)]. The
quantity dR/dt is obtained from Eq. (5.6) and
(G'/F}' from Fig. 7. [Note that for the case with
spherical symmetry discussed here, integration
of the orbit equation (5.6) is unnecessary. ]

The probability of a transition between a pair of
levels at the point Y of closest approach (illus-
trated by the curves labeled 8, and 8O in Fig. 9)
is obtained from Eq. (4.13) and taken into account
in Eqs. (5.10).

Finally, the expressions (5.1) and (5.2) are re-
evaluated as

dR
&

u, iR) (b)' (5.6} P, (b) =@2(N), P, (b) =Q, (N) . (5.13)

V, (R) =8,",'(R) —8,",'( ) . (5.7)

There are, of course, similar expressions for
the motion in state 2. The PC's occur at those
points R,(o positive, odd integer) satisfying

8,",'(R.) —8,",'(R,) = a h (u, (5.6)

where R, is greater than the classical turning
point at dR/dt = 0.

Returning to the "time" variable

we label the PC's a,s occurring at l'„1'„.. . , 1'~,
where F, &I;«Y'„. Let Q (j), n=l, 2, be the
probability that the system is in the quasimolecu-
lar level a when Y is in the interval F,. & F & 1', „
and let the starting condition be

13

(5.9)

corresponding to the assumption that the system is
initially in level 1.

Recurrence relations for the Q's are

Y3 Ym

FIG. 9. Illustra, tion of PC's occurring for the evalua-
tion of Eq. (5.11).
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UI. EXAMPLES 10

In this section we apply the techniques described
in Sec. V to several examples.

For the first example we consider a single-pho-
ton transition, so G' = G. The wavelength is as-
sumed to be X=5 p, m and the oscillator strength

P» i=0.1. The laser beam is assumed to be just
at the breakdown threshold, so Eq. (2.28) gives

10

l0

If V= 0.1 cm/@sec, we obtain from Eq. (2.26)

I' =20, G=1.8,
and from Eq. (5.12)

i
ni—= 20. Then

ID

and we see from Eqs. (5.11) that the transition
probability is of order 1.

For the same wavelength, laser power, oscilla-
tor strength, and velocity, a two-photon transition
has a substantially reduced probability. In this
case Po= 2y G= 2.6~ and

O'=G'/m=0 3

The transition probability during a single atomic
collision is now approximately

4&p —= 0.04.

To give another example, we evaluate the cross
section, Eq. {5.3), for case A, Eq. (3.41), and a,

velocity V=3.1x 10' cm/sec. For this example we

assume the classical orbit to be a straight line and

the kinetic energy to be large enough that the ve-
locity is constant. The cross section (expressed
in units of ao) is shown in Fig. 10 as a function of
G/E. The solid curve is the calculated cross sec-
tion. The dotted curve shows the cross section
that would result from neglecting the PC transi-
tions and keeping only that resulting from Eq.
(5.13). For small values of G/E this is seen to be
the predominant contribution. The sharp peaks
occur when PC's are lost. As was noted above,
our matching equations (4.8) and (4.13) fail at
these peaks, whose heights cannot be determined
by our methods. "

The cross section (5.3) is shown in Fig. 11 for
the parameters [see Eq. (3.40)]

R, =1, p, =22.5,
(6.1)

p =3.2, V=2.8&&10' cm/sec.

The total cross section and the non-PC contribu-
tions are again displayed. Here again a simple
straight-line trajectory approximation was as-
sumed valid throughout the collision.

Our remaining examples take proper account of

lo

0.6 0.8 i.o

FIG. 10. Cross section lEq. (5.3)] for case A [Eq.
(3.41)] as a function of coupbng constant 6/+. The
dotted curve represents the non-PC contribution [Eq.
(5.13)], whereas the solid curve gives the total cross
section.

the actual trajectory (5.6). The first of these is
the reaction

H(1 s) + H(ls) (5 'Z„') —H(l s) + H(2pcr) {g'g,') .

(6.2)

The excitation energy required is 10.1 eV. If the
initial kinetic energy e is 9.0 eV, an absorbed en-
ergy of 1.1 eV is required from the laser beam.
For X=10.6 p.m, or 5~=0.117 eV, at least 10
photons are required. The cross section as a

10.0

1.0

TOTAL 0
—--—NON PC

10-'-

10
—2

10 j j I I I I I I l t 1 } I i i i I

0.01 0.02 0.040.06 0, 1 0.2 0.4 0.6 1.0
G/F

FIG. 11. Cross section t:Eq. (5.3)] for the parameters
given ln Eq. (6.1).
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1O-'

10

10 '-
H( 1 S) + H(1S) ~ H(l S}+ H(2P)

} = 10.6p

10—

1.0

1O '

10

2.4 X 1P6

10
10

1O'

10

0

10

—610

10

1P

2. 1 X 10 - MW/cm2

Xe+ Xe-+ Xe+ Xe"
}, = 1.06'

10-s
103 10

UL (MW/cm

10
10

.01 0.1
e(eV}

1.0 10.0

FIG. 12. Cross section [Eq. (5.3) j for the reaction de-
scribed in Eq. (6.2) using 10.6-pm photons. Failure of
the asymptotic connection formulas is indicated by the
dashed lines.

FIG. 14. Cross section [Eq. (5.3)] for the process
given in Eq. (6.3) as a function of the initial relative en-
ergy ~ (in eV) of the two Xe atoms. The curves are
labeled by the laser power parameter Uz expressed in
MW/cm .

function of the "laser power" U~ (defined by Eq.
(2.32}]is shown in Fig. 12. The dashed lines
through the peaks indicate the regions of failure
of Eqs. (4.8).

For X = 1.06 p, m and a kinetic energy e of 9.0 eV,
a single absorbed photon can cause the reaction
(6.2} to occur. The resulting cross section, cal-
culated in the same manner, is shown in Fig. 13.

A second example studied was the reaction"

1.06- JL(,m wavelength. In Fig. 14 we show the cross
section c, for the process (6.3) with X=1.06 iim as
a function of the relative kinetic energy of the
colliding Xe atoms for several values of the "laser
power" U~. The largest cross section calculated
was that for U~ = 5.6 && 10' MW/cm'. At this power
level, 0, =—10a~ for 1.0&&&4 eV. For U~=2 &&10'

MW/cm', c, =10 'ao.

Xe+Xe('Z,")-Xe+Xe('Z„'). (6.3)
VII. TRANSITIONS RESULTING FROM LASER

POWER VARIATIONS

1.0

1O-'

H(2P)

The molecular potential curves were taken from
the work of Mulliken. " The potential curve for
the 'Z„' state is very similar to that for the 'Z„'
state. (Spin selection rules are ineffective here
because the configuration is somewhat intermediate
between L Sand j-j coup-ling. }

For large internuclear separation the reaction
(6.3) requires 8.4 eV, or about seven photons at

It was mentioned in the Introduction that varia-
tion of the laser power can result in resonant ab-
sorption between two levels of an atom or mole-
cule due to the shifting of these levels. Our dis-
cussion is easily adapted to this case.

Let the level separation be W-=p,F before the
laser is turned on. With the laser on, the pair of
levels is separated by an amount

n8 = W- vF —280:F(PO —o —2eo/F—) (7.1)

except very near the PC. Here we shall use Eq.
(3.44) to write

g~ p 2 16(G/F)'
(7.2)

10

with

16(G/F }'
po —1 + 16(G/F)'

10
10 10 10

UL (MW/cm )

1O' 10

and G/F given by Eq. (2.34).
As the PC occurs, the probability of a transition

is, according to Eq. (4.8),

FIG. 13. Cross section [Eq. (5.3)] for the reaction de-
scribed in Eq. (6.2) using 1.06-pm photons.

T 1 e- 2''P

where [see Eq. (4.6)]

(7 3)
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(duo (G /F)
P

Now, from Eq. (4.2) we have

(7.4)
into Eq. (Al) to obtain

Ic,=[2Gcos(FY- Qo)+ G„]e ' c, ,

(Gl/F)2
~2g /F (7.6)

Since 8o/F and G'/F are independent of F, the (in
'this cRse) fic'tl'tlous velocl'ty V llas been ellIIllllR'ted.

In general, {d~„will be quite large, which can
lead to a substantial probability of transition. For
example, let us use case A of Table I, setting Po
=8.2 and assuming A. =10.6 p, m, v„-10 ' sec. Then
olv„-10'. At U~=—3 &&10' MW/cm', or G/F=1. 5,
we obtain a PC with 9 photons. From Fig. 7 we see
that G'/F = 10 ' and from Fig. 6 that 28o/F = 0.4.
Thus'

(7.7)

In this cRse, T Rs glvell by Eq. (7.3) ls comparable
to unity.
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APPENDIX A CLASSICAL RADIATION FIELD

To discuss the case of a coherent, or classical,
radiation field, we return to Eq. (2.6) and write

+ —e gE~t+

so

Ol~o tf(~o/F) &o &o 2~o/F
dY V dt V V 7'„

(7.5)

wher"e T„ is the effective rise time of the pulse
power. Combining results, we see that

ic, = [2G cos(FY- Po)+ G,]e'@c,.

W(Y') dY',

c, =dc, /dY, etc. , and the dimensionless variables
of Eqs. (2.25) are used.

To put Eqs. (A4) into the form of Eqs. (2.17) we
introduce the expansions

v even

-f V(EF-@0)g ~ e-i V&EY'-4O)g
v V&

v odd

(A6)

f(@-vEQ+ v@g g ~ ef(C-v+F+ v%0)ggCo= e ~V+ V e

v odd v everl

We substitute these expressions into Eqs. (A4) and
further define the A,„B,by requiring that the co-
efficient of each factor e '" vanish. The equa-
tions that emerge are precisely Eqs. (2.17). The
solutions of Eqs. (A4) are uniquely determined by
specifying initial values of e, and c„while those
of Eqs. (2.17) a,re determined by specifying initial
values of the A„,B,. While there are clearly an in-
finite number of specifications of initial values
that lead to the same solutions of Eqs. (A6)
for c, and c„we shall choose the initial values
for the classical formulation in the same way as
for the cavity eigenmode formulation (see Sec. III).
The connection between the two formulations is
then most transparent.

In a strict sense, the interpretation of the A„'s
differs in the eigenmode and classical cases. For

quasimolecule has absorbed v photons. The prob-
ability that the quasimolecule is in the upper level
2 ls

(A7)
[tl —6'A(t)]4 = i@, (Al) p odd v even

t
4= g c,(t)4 exp —t Io„&t'/'tt (A3)

A(t) = e(c/~)$, cos((ot —Po),

where Po is a, constant phase. Equation (A2) is
equivalent, for our purposes, to the assumption
that the electromagnetic field has a, coherence
time long compared with the collision time.

We adopt the two-state model and introduce the
expression

This is not in general the same as
~
c, ~', the cor-

responding probability for the classical-field
case. If our observation is averaged over a ma-
croscopic interval of time and/or space, however,
the interfering terms in ~c, ~' vanish and this be-
comes equal to Eq. (A7).

APPENDIX 8: PROOF OF EQ. (3.32)

At the PC for the curves 8 and S„we have
G' = G" if the curves at this point (Y,) a,re much
closer to each other than to any other of the adia-
batic eigenvalue curves. To see this, we set
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using Eq. (3.35). Then we obtain [Eqs. (3.14)]

(B1)

(B2)

Comparison of Eqs. (3.16) and (3.28) then gives

H, q=Hq, Hff+x =H

The desired result then follows from Eqs. (3.23),
(3.26), and (3.30).
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