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A many-body treatment of pressure shifts associated with foreign-gas broadening is presented. The theory
treats the case of electrically neutral molecules interacting through higher-order permanent moments. The line-
shape analysis is developed using graphical finite-temperature perturbation theory. It is shown that the
simplest application of the method of moments leads to unphysical results for the pressure shift. It is found
that, if certain "quasiparticle" approximations are made before computing the spectral moments, physically
sensible results obtain. Explicit expressions for the pressure shift are given for the case of dipole-dipole, dipole-
quadrupole, and quadrupole-quadrupole interactions.

I. INTRODUCTION

The theory of pressure-broadened spectral lines
has a long history, and the literature of the field is
by now considerable. As there exist several excel-
lent reviews of both the older" treatments and
more recent formulations, ' and an extensive biblio-
graphy4 of experimental and theoretical papers, we
shall attempt no comprehensive review of the lit-
erature here. We will be concerned primarily
with the problem of pressure shifts in neutral gas-
es due to multipole interactions, and shall make
some contact with the important formulation of
pressure broadening as developed by Anderson. '

Anderson has given an impact theory which in-
cludes both phase-shift effects and transition ef-
fects, for elastic and inelastic collision processes.
In addition, he extended previous work to include
the case where both the initial and final states of
the interacting molecules are degenerate. Ander-
son did not treat the case of overlapping lines, and
he also used the classical path approximation
which assumes that the molecules follow classical
straight-line paths except for extremely close col-
lisions. We shall discuss Anderson's work in fur-
ther detail presently.

A number of the more recent formulations of the
problem of pressure broadening and shifts employ
the techniques of graphical finite-temperature per-
turbation theory, and the treatment presented here
will make use of similar methods. As representa-
tive of the above category of treatments, we men-
tion the very elegant and general formulation of
Ross, ' and similar approaches of Bezzerides' '
and Zaidi. ' ' These papers treat a variety of
physical problems, and the approximations and as-
sumptions involved in treating the vertex or g
matrix equation are also rather diverse.

In spite of the recent advances in formulating
the problem of pressure broadening in a rigorous
fashion, it appears that much of the effort to ac-

tually cgrry out linewidth calculations" '~ {for
intermolecular broadening) has been done within
the framework of Anderson's theory. Undoubted-
ly one of the reasons for this is that most of the
newer theories are rather formal. Thus, as a
practical vehicle of calculation, Anderson's theory
has unquestionable value. Furthermore, no dis-
cussion of Anderson's work is complete without
mentioning the excellent paper of Tsao and Cur-
nette" who fully expounded and extended Anderson's
methods. Their contributions have resulted in a
theory which is now rather generally referred to
as Anderson-Tsao-Curnette theory. Henceforth we
refer to this treatment as ATC and shall refer to
Ref. 20 as TC.

While the ATC formulation of pressure broaden-
ing appears to provide a solid base for computing
linewidths of molecular transitions, it is less sat-
isfactory for treating the related problem of
pressure shifts. While the shifts tend to be small
in the case of microwave transitions, ' they become
more appreciable for infrared transitions. Fur-
thermore, with the recent advances in laser and
tunable laser technology, it has become possible
to measure, " "with high accuracy, the pressure
shifts associated with infrared transitions. It is
these considerations which have motivated the work
to be presented in this paper.

We now review, briefly, some of the results of
ATC theory. To first order in the intermolecular
interaction, ATC theory leads to a quantity called
S,{b) which is purely imaginary and will give the
lowest-order shift of the spectral line. To second
order in the intermolecular interaction, ATC ob-
tain a, quantity called S,{b) which is purely real
and this gives the lowest-order contribution to
the linewidth. From Anderson's general discussion
it appears that the result which gives only broaden-
ing in second order is an approximation which is
obtained by neglecting certain contributions due to
noncommutativity. One might suppose that any
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second-order shift should be small compared to
the first-order shift given by S,(b), and thereby
justify neglect of the second-order contribution.
The difficulty, as we now show, is that under cer-
tain circumstances the result for S,(b) may vanish.
(This point has been discussed by Townes and
Schawlow, "without giving a precise argument. )

Consider the case of foreign-gas broadening and
assume that the intermolecular interaction can be
expanded as a multipole series. As given by ATC
the quantity S,(b} involves diagonal matrix ele-
ments of the perturbing molecule's dipole, or
quadrupole, or octopole moment operator. If the
perturbing molecule is linear and has a dipole mo-
ment, its diagonal matrix elements vanish. If the
perturber is not linear this is no longer true.
However, in this case the diagonal matrix element
of the dipole moment is proportional to a Clebsch-
Gordan coefficient

(j, 1 m, o
~ j~ 1 j, —m, ) = -m, [j,(j, + I)]

When this is summed over the degeneracy index
(m, ), which is how it enters in S,(b), the result
is seen to vanish. Similarly, if the perturber has
a quadrupole moment, its diagonal matrix ele-
ments will be proportional to a Clebsch-Gordan
coefficient

3m', —j,(j, +1)(j,2-m, 0~j, 2 j, -m, ) =[(2 . 1).(. 1)(2. 3}j
Again when this is summed over m, the result
will vanish. More generally one can prove the
following result for integer j, &0,

sum= g (j,j, —m, o~j,j,j, —m) =0.
m I 1

A simple pl oof goes as follows. First use

2j~+1 i(a

2j~ +1

Second, note that the factor (-I)'i' i can be writ-
ten '

(-I)'&™&=(2j, +1)' (j~ j,—m, m~ ~y, g, oo) .
This gives

2j, + 1

I,i(a (AA —mimilA j j 0}
(2jg + 1J

1 1

x(j j m m, Iji ji oo)

2j, +1
(2j +1)i/a ~~, 0

i.e. , the result vanishes for j, &0.
It should be pointed out that there are cases of

interest where the above argument has no applica-
bility. An example is the case where the dominant
interaction is of the induction type, where the in-
ternal coordinates of the perturbing molecule do
not enter, and a first-order shift results. " Quite
a few theoretical papers" "have, in fact, con-
sidered the first-order shift of HC1 (or DCl) tran-
sitions" "perturbed by inert gases through induc-
tion forces. Several of these treatments have also
extended Anderson's treatment to include the sec-
ond-order shift contribution for this case.

In this paper we present a many-body treatment
of pressure broadening of molecular lines with
emphasis placed on obtaining formulas for the
shift of the line with pressure. As pointed out
previously, this is not the first paper to treat
pressure broadening as a many-body problem
(which of course it is). Often the many-body as-
pect of the problem is avoided, e.g. , in the ATC
formulation, by invoking the fact that the colli-
sions are binary and therefore the broadening is
proportional to pressure. We believe that the in-
troduction of field operators to describe various
identical molecules is actually a simplification.
In particular, one can choose a common axis of
quantization for all molecules and never have to
worry about quantization relative to the instantan-
eous axis of collision, as is done in Anderson's
classical path approach.

It often happens in considering line-shape prob-
lems that it is easier to calculate the moments" "
of the spectral function, rather than the function
itself. If a line is symmetric (or nearly symme-
tric) about its peak then a calculation of the first
moment is sufficient to yield the location of the
peak. Since many spectral lines are found experi-
mentally to be rather symmetric, the technique
would appear to be a useful tool in obtaining spec-
tral shifts. Futrelle" and Gordon have discussed
the application of the moment method to molecular-
collision problems, but their methods of applica-
tion as well as physical models are rather diffe-
rent from those which we shall consider. In spite
of the simplicity of the moment method, in general
it must be applied with a great deal of caution,
and blind application of the method can lead to un-
physical results. It is known, for example, in
magnetic-resonance theory that, under certain
circumstances, the perturbing Hamiltonian can
give rise to nonresonant or satellite structure"
occurring in the far wings of the line, and this
structure has little relevance to the main spectral
peak of interest. We will consider the method of
moments in this paper. We will show, however,
that the simplest application of the method leads
to unphysical results, and we will therefore be led
to consider a modified version of the technique.
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We close this section with a discussion of the
physical system to be considered, the approxima-
tions which will be em@'oyed, and the general plan
of the remainder of the paper. The physical sys-
tem is essentially that considered in ATC theory,
namely a set of molecules called a's which have a
dipole moment and can radiate, and a set of per-
turbing molecules called b's which have no radia-
tive transitions in the frequency range of interest
(we do allow the possibility that the b's have a di-
pole moment however). The molecules are all
assumed ta be electrically neutral, but are also
assumed to possess higher-order moments. We
consider the case of sufficiently high temperatures
and low pressures where the actual statistics
(Bose, Fermi) of the molecules will ultimately be
of no consequence. We also visualize the situation
where broadening of the a-molecule lines is due
primarily to interaction with the foreign 5 mole-
cules. Thus, we shall ignore self-broadening and
also Doppler broadening. These effects could be
treated in essentially the same fashion as the for-
eign-gas broadening.

The approximations we make are well defined.
First, we will not attempt to treat the problem of
overlapping lines. Second, we assume that ex-
tremely close collisions are rare and that the
dominant contribution to broadening and shifts can
be obtained from some type of multipole expan-
sion. We assume, in addition, that some form of
many-body perturbation theory is valid. We do

treat the case of degenerate levels and allow both
elastic and inelastic processes to occur. The clas-
sical path assumption is not invoked in the present
treatment.

We should like to emphasize that we will derive
exP/icit expressions for the pressure shift to sec-
ond order in the intermolecular potential. No at-
tempt to perform detailed calculations will be giv-
en here. As in the ATC theory, numerical calcu-
lations from these formulas will be nontrivial. Be-
cause we do not invoke the classical path approxi-
mation, our theory requires more integrations
than in ATC, but we show in Sec. V that all but one
of the necessary integrations can be performed in
closed form.

The organization of the remainder of the paper
is as follows. In Sec. II we set up the general
formalism needed to obtain the line-shape func-
tion. In Sec. III we derive an expression for the
pressure shift to second order in the intermolecu-
lar interaction using the simplest application of
the moment method. We show, however, that this
leads to unphysical results for the shift. In Sec.
IV we go on to develop the graphical perturbation
theory for obtaining the line-shape function. This
enables us to identify certain contributions in the

We shall consider the case of absorption of ra-
diation. The absorption coefficient o. (in cm ') is
related to the transition probability per unit time,
W,b„ for absorbing a photon of energy S(d and po-
larization e = z according to

(2.1)

with P =1/ksT and where n(~) is the refractive in-
dex. If we make the dipole approximation (ignore
Doppler effects), and assume that the perturbing
molecules (the b's) have no radiative transitions in

the frequency range of interest, we can write

x 5(EF —E„—b &u) . (2.2)

Here ~I) and ~F) are exact (many-body) eigen-
states of the system, and p(K) ~I) = p(Ez) ~I), where

p(K) =expf-P(K —p, ,&, —p~N, —0)] is the grand ca-
nonical density matrix. Also in Eq. (2.2), the di-
pole moment operator of the radiating a molecules
is given by

da = anraa ~ (2.3)

where r,„ is the position of the o.th charged parti-
cle in the molecule labeled by index a. From elec-
trical neutrality

A'TC theory whose physical meaning has not been
adequately noted previously. In particular, we
show that the contributions which ATC simply call
S,(b),„„,can be identified as self-energy contribu-
tions. Similarly the quantity S,(b);zd&, of ATC is
shown to correspond to vertex corrections. In
certain simple cases the lowest-order vertex cor-
rections may be shown to vanish. This result has
previously been noted by ATC. For the case where
vertex corrections can be ignored, we show that
if one makes certain "quasiparticle" approxima-
tions befoxe applying the moment method that a
sensible result for the pressure shift is obtained.
This calculation suggests a more general modifi-
cation of the moment calculation and the modifi-
cation leads to the result that the vertex correc-
tions cancel out in the final expression for the
line shift in the dilute-gas limit. Finally, in Sec.
V we give some details of reducing the line-shift
expression. Taking the dilute-gas limit we use
symmetry to perform all summations over the de-
generate quantum numbers. This calculation is
carried out explicitly for the case of dipole-dipole,
dipole-quadrupole, and quadrupole-quadrupole in-
teractions.

II. FORMULATION OF THE PROBLEM
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e, (2.4)

and we assume a similar condition for the per-
turbing 5 molecules.

We write the Hamiltonian for the system as

where k is the center-of-mass wave vector, and
p. , y correspond to internal quantum numbers of the
radiating and perturbing molecules, respectively.
Thus, the unperturbed energies separate as

K =+ +'0, (2.s) (2.10)

~ba

ap ~8 I ran rks I

(2.6)

where + is the Hamiltonian for noninteracting
molecules and g is the interaction between mole-
cules. Since we are going to ignore self-broaden-
ing, we include in '0 only the interaction between
radiating and perturbing molecules. Ignoring spin-
dependent interactions, this becomes

and similarly for eykk. Also in Eq. (2.9) we have
introduced a set of boson field operators which
satisfy [apk, a„k.] =sp p.sk k and [byk, by k]
=5&

&
5-k k. We are ultimately interested in the

dilute-gas limit, where the choice of particle sta-
tistics is irrelevant.

For the noninteracting system the gas pressure
is given by P =P, +P„where the partial pressures
are

(2.7)

We next introduce the transformation to center
of mass and internal generalized coordinates ac-
cording to

r,„=R,+f (a),

P, = N,)pV and Pk =Nk/PV,

with

(2.ii)

where the center of mass is defined by

Q„m,„r„
a +an an ~

n caa a n
(2.8)

N, = n e~k,
pk

Here

N, = g n(~';k) .
yk

(2.12)

(2.9)

For the Hamiltonian K, the center of mass of
each molecule moves as a free particle, and we
have

a b
Cpk+pk pk

+ Cykbykbyk i
pk yk

n(z /k
) LexP[P(~ pk P )] (2.13)

or n(k'pk) = exp[-p(epk —p, ,)] in the dilute-gas limit.
In second-quantized notation we can now write

Eq. (2.2) in the form

1
iv b. = 47y & Q Q (u ' Id:I p&&y' Id: ly& v Q 2 p(E, )&ilap'kQpk IF&&F I ~q;. ~yk I»s(E, —Ey -@~). (2.14)

We must now specify the internal states of the
molecules. "" We write these as

I p& = lj„m„&,
where j„stands for the total angular momentum
quantum number J„and other quantum numbers
necessary to specify the internal state. We take
the z axis (the direction of polarization of the in-
cident radiation) as the common axis of quantiza-
tion. Then rn„ is the quantum number for the z
component of the angular momentum. With the
above choice, the dipole moment operator is diago-
nal in the rn indices. Applying the Wigner-Eckart

V

theorem, 4' we have

& jp.m„. ld:lj„m„&

=&j„ lid. llj„&&dp 1 —m„ol&p imp -mp)S

(2. is)

In the above equation, the first factor is a reduced
matrix element4' and the second factor is a
Clebsch-Gordan coefficient. Since d' is diagonal
in the magnetic quantum numbers, we have

W,b, =4m (u Q Q (j„m„ld;Ij„m„&(jy.m„ ld;Ijym„&
fp Jy mpmpi

3 p&4~I

1
&PQ Q p( y)& I ~'„..„k, .„-klan&&FI~', „,k ~,.„.kl »(Ep-Ey-~~).

kk '
(2.16)
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We now assume that the transitions of interest
are all well resolved, i.e. , we do not attempt to
treat the case of overlapping lines. In this case it
seems rather clear physically that it should be a
good approximation to set jy. =j„and jy jp in Eq.
(2.16). Note, however, that it is not justified to
set rn„=m„ for the degeneracy indices. We next
wish to compress the notation somewhat. We de-
fine the following four states which will have the
same meaning throughout the paper,

IP& = li, m„&,

Ip ) =12()'m))'& I 0 &
=

Ip)) m))& ~

We also define the quantity

(2.17)

&,. =4+~ Q (-»' '&'&i„ lid. lli„&&i„ lid. fli, &

(2. 19)xf„,„(k(u) .
Here we shall call f„„(h(d) the total line-shape
function for the transition p. - p. , i.e., it is the
line-shape function summed over the degeneracy
indices (m„) of the transition. The expression for
this function is

g(m„, m„.) =(-1) )) ))'(J„1—m„OI J„ lg„.—m„)

x(J„.1 —m„0 I4„1J&- m„), (2.16)

where the dependence on the J's is suppressed in
the notation. Using Eq. (2. 15) we then write W,»,
in the following form:

and where the four internal states which appear in
Eq. (2.21) are defined explicitly by Eq. (2.17). For
the unperturbed ('U =0) system f„„(ku&) evaluates to
give

j, ,(lim)=(Q v(m„m„))5(e', -e', lim)-
l8

p

1
x —g n(e'„.-„)[n(e'„-„)+ 1],

k

(2.22)

with q'„& e'„. for absorption of radiation, and where
n(e~k) is given by Eq. (2.13).

We must now consider the interaction term g as
given by Eq. (2.6). It is, of course, difficult to
treat the problem of extremely close collisions,
where the center-of-mass separation IR, —R, l

is
small. In Anderson's theory this difficulty is
treated by introducing a minimum impact param-
eter bo and assuming S,(b) =1 for b& b, . This is
then joined to the result for S, (b& b, ), obtained
from a multipole expansion, using an extrapolation
scheme involving Anderson's "approximation num-
bers. " This scheme is not unique, but if the con-
tribution from collisions with 5& 50 is dominant,
the theory should give meaningful results. In the
present approach we have the same difficulty with
close collisions, but we will attempt to treat it in
a somewhat different fashion.

Making the usual multipole expansion of Eq.
(2.6) and using the electrical neutrality condition
(2.4), we obtain

f„.„(h(d) = Q v(m„, m„.)q„p(h(d),
mpmp &

with

Q„„(h(u)

(2.20)

ab

g|"R +g"' R +g'" R

(2.23)

x 5(E —E, —Ku&), (2.21)

1
P F-I I ~,-k&„k &' & ~-„'k~„k I

gp

where ', p&", ' are, respectively, the dipole-
dipole, dipole-quadrupole, and quadrupole-quad-
rupole interactions given by

z~' (R,») = (1/ I R,» I
')(d, d» —3R,»

' dg, » d, ), (2.24)

g~'~(R„) =( /IR„»2I~)[[2R,» Q»' d, —5R,» d,(R„Q,' R,»)]-[2R„~Q,' d»-5R, » d»(R, »'Q,''R, »)]] (2 25)

'0~ (R,»)
= ~(1/IR, »l')[2Tr(Q,' ~ Q») -20R, »

~ Q,'.Q» A,»+35(R,» Q, R,»)(R,» Q» R,»)]. (2.26)

Here R„=-R„=R,—R, in terms of the center-of-
mass coordinates. Also in these equations, the di-
pole moment operator is given by Eqs. (2.3), (2.4),
(2.7) and the traceless quadrupole-moment tensor
Q,' is given by

Q,'=P e, g„(a)f (a) ——,
'

If „(a)I'I], (2.27)

where I is the unit tensor. For simplicity in the
treatment which follows, in considering the dipole-
quadrupole term, we will consider the case where
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u"'(ii) = f1'rii"'(i)e "', (2.28)

either the matrix elements of Q,' or those of 3, are
negligible, so that we henceforth keep only the first
term in Eq. (2.25).

We next introduce the Fourier transform of the
potentials according to

g(q) = (4i{/s')e '", (2.33)

Qne simple method is given in the following. As
in Anderson's treatment, it is certainly not unique,
and other possibilities could be considered with-
out altering the general structure of the theory
which follows. Suppose we replace g, (q) =4i{/g' by
the exponentially cut-off potential

so that

+{i)(H ) ~ &{n(q)eiq {R~-R&)
ab y~

q

(2.29)

where the cut-off length r, is to be chosen from
physical considerations similar to those which de-
termine 5, in Anderson's theory. The Fourier
transform of g(q) is given by

The Fourier transforms are then given by

~{"(q)=-g.(q)(le'd. d, -q d.q. d, ), (2.30)

1, . -, 2 1
g(r) = —Q e'{''g(q) =— arctan—

V ~ frf 'c

(2.34)

+(q Q'q)(q Q' q)) (2.32)

&"'(q) =g, (q)aiIsq'(q Q,'d.)-(q ~.)(q Qt q)1,

(2.31)

v{3'(q) =g, (q) lI~q'»(Q.' Q,') —vY(q Q.' Q,' q)

It is seen that g(r) approaches the pure Coulomb
potential 1/frl for lrl/r, »1, but approaches the
finite constant g(0) =2/i{r, for lr I/r, «1.

The final step in the treatment of g is to put it
into second-quantized notation. This procedure
is straightforward and gives

where g, (q) =4ii/q' is the Fourier transform of the
Coulomb potential I/r

The difficulty, of course, is that the series
(2.23) does not converge for small R,». Equiva-
lently, in Fourier-transform space, the series
(2.30)-(2.32) does not converge for large q. In
order to make the multipole expansion meaningful,
it is therefore necessary to somehow cut off the
high-frequency (q) components of the interaction.

q k y kf gyp'

X 5y~ kf y~k~ q (2.35)

(2.36)

&„",„;,„„(q)=(-3e'&v, ld. lg', & &r, Id~fr &+iq &uild. le', &q r&, l d~l r'i&)~

If'„",„;,„„(q)=li(l4'&{i Id. lji', & &r, lQ'Ir', & q —q. &{i Id. lv', &q &r IQ'Ir', & q&,

If'„",„;,„„(q)=4IA~'»(&{,IQ.'I { ',
& &»IQ,'Iri&) -vq'q &{,IQ! I { i& &»IQllr'i& q

(2.37)

(2.38)

+q &~, IQ.'Ivi& qq &r, lQblr'i& qj. (2.39)

III. METHOD OF MOMENTS

J "„d(h(u) f„„(h{d)(h{d)"
1' "d(h{d)f„„(fi{d)

(3.1)

We define the moments of f„,„(hid) as'
d(h{d)f„,„(A(u)(8{d)", (3 2)

We define a set of averages of the line-shape
function f„.„(Fi&u) by

then

ln particular, we have

&h(u& =4„'!„/M{„'}„.

(3.3)

(3 4)

For a single line which is symmetric about its
peak, it is then easy to show that &h&u& =h&u~„„,
and the moment analysis can be used to locate the
line center.

From Eqs. (2.20) and (2.21) and using closure
we immediately obtain
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1
o m&, m„& Tr 0 ~u'] ~okapi&'~v'&'

mV mV

1
+p'p P +(~p ~p') p Tr(p(+)ap''kapf&[X ajar'ap'p'1]

mpmp' kk '

The above commutator is easy to calculate. Using Eqs. (2.9) and (2.35) we find

(3.5)

(3.8)

[X, a-„»a„.&] =(e&~ —e'„.q )a&f „k p~ g(q) ~ I~X„& y y (q)a„,k qa„p —fi,„(q)a-„&a„p, q]. by k by q

(3 7)

Using the separable property [Eq. (2.10)] of the unperturbed energies, e~„- —~'„.t, = eq~- c'„=a~- e'„, where
in the last step we have used the fact that the states

~ P) and
~

p, ) have the same energy, as do the states
~ P, ') and

~ p, '). This gives

+ p a(m m, ) —g —gg(q) g fA„~ yi(q) Tr[p(X)a&~isa&ga&~y, „a„,g,btqb, g, „]
pP K qg

-Kv qi y, y~(q) Tr[p(K)ajygaqTaqT, aq 4+ qbq~% by 4 q]], (3.8)

The above expression is exact, and in the absence
of interactions yields the expected result (S&u)

Let us now consider the first-order cor-
rection to the result. The second term in Eq.
(3.8) is already of first order in the interaction
(i.e., is of first order in the K's). Thus, the first-
order correction is simply obtained by setting
p(K) =p(Xq) in this term. Furthermore, p(Kq)
clearly factors into p(Xq) =p(K,')p(Kq) so that the
a, b traces can be done separately. The result of
this calculation gives

degeneracy index m&, the result will vanish.$17

Thus, as expected, we have to go to second or-
der to obtain a shift. To do this one has to expand

p(K) in the second term of Eq. (3.8). One does this
by writing

exp[ —P(X —p.P,' —p~N~)]

= exp[-P(X, —p..&.—p, &&)] &(P)

(3.13)

(5(u) =E p
—E qi,

where

(3.9)
and U(p) satisfies the Bloch equation

(3.14)

EN —&&
P P~ (3.10) with

and where G„' is the first-order (Hartree) self-
energy given by

1~ b~P=GPK = 17M k'PP, y, yP(&y Tr,') ~

k1y1

(3.11)

/gal, yjyy= [g(q)+pp, y, y, (q) ]q=o ~ (3.12)

From Eqs. (2.35)—(2.39) we note that for any mul-
tipole interaction higher than the dipole-dipole
case g p p yly1

vanishes. " Moreover, even lf this
were not the case, we note that Eq. (3.11) involves
the diagonal matrix element (y, ) 8( y,), where 8
stands for the b molecule's dipole or quadrupole-
moment operator. Using the argument presented
in the Introduction, when this is summed over the

Note that this is independent of the center-of-mass
index k. Also in Eq. (3.11)

g(P I) 8'+~ -O'Fq

To obtain the second-order correction, we need
only the first iteration of Eq. (3.14). The traces
can then be evaluated using Vfick's theorem for
thermal averages. We shall not give the details
of this calculation as it is straightforward but

lengthy. In performing this calculation one may
again ignore pairings of operators which lead to
[g(q)K(q)]q q factors. Some of these correspond
to the Hartree corrections which we have already
discussed in the first-order calculation. Others
correspond to improper polarization graphs which
also vanish except for the dipole-dipole case."
Similarly, one can ignore pairings which lead to

„or 5». since j&.0 j& by assumption.
The result of the second-order calculation can

be written
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M„' „=(&'„—&'„.)M'„')„—g o'(m„, m„i)5, —g ]n(8'„i„-)Z(pk) —[n(8'„„-)+1]Z(p. 'k)}
mp k

P + ~P~k Pp p j Pk fL E pk
+ 1 pj ~ p

m~ mpi
(3.i 5)

Here Z(ibk) is a quantity that can be expressed in
terms of the self-energy for state

~
ibk), while the

g's are contributions from vertex corrections
(see Sec. IV for further discussion of these two
types of corrections). The explicit expressions"
for the above quantities are presented in Appendix
A along with an alternative derivation based on an
expression for the line-shape function obtained
from the graphical analysis of Sec. IV. To obtain
(h&u) one has only to divide Eq. (3.15) by M&'i„.

Since the correction terms in Eq. (3.15) are al-
ready of second order in the interaction, M&.&

can(o)

be evaluated to zeroth order and gives

M~ ~
= O' PPl~ Pl~ — tl C~ k

'fl 6~k +11

=
b [(2J&+ 1)(2Z&~+ 1)] —p n(8&&)[n(e'„&)+ 1] .

k

(3.i6)

The above method of obtaining the spectral shift
is simple and direct. Unfortunately, the result ap-
pears to be quite unphysical. For simplicity, we
drop the vertex contributions (they suffer from
exactly the same malady). Then, in the dilute-gas
limit where the factors n(e. „~}«1, the result of
Eq. (3.15}states that only the self-energy correc-
tions in the initial state (p, ') are important. What
we expect physically is a result similar to that
which we obtained in first order [Eqs. (3.9) and
(3.10)], i.e. , something involving the differences
of the self-energy corrections in the initial and
final states. The exact source" of the previous
difficulty is not completely obvious, but it appears
to be due to a rather general asymmetry associated
with the thermal population factors of the initial
and final states.

Our main purpose in considering the moment
method was to obtain a formula [Eq. (3.15)]which
includes both self-energy and vertex corrections.
In Sec. IV we show for the self-energy terms that,
if one makes certain "quasiparticle" approxima-
tions (similar to the assumptions invoked in im-
pact approximation theories) before calculating
the spectral moments, a sensible result for the
first moment can be obtained. In Appendix A this
analysis is generalized to include also the vertex
corrections.

IV. GRAPHICAL ANALYSIS OF THE LINE-SHAPE

FUNCTION

We begin by defining the quantity

Q~.„(l3', 0) = —Q e &aQa. „(g, ),
p

la

(4.2)

with $, =2wilgP and i~=integer. The function

Q„ &(ktiu), as defined by Eq. (2.21), is then given
by

Q„.„(k(u) =(1 —e "
) '(1/2vi)

x [Q„„(h&u+i0') —Q&, „(ha& —i0')],

(4.3)

where the analytic continuation g, - h&v+i0' is tolp
be carried out at the last stage in the calculation.

We introduce the basic unperturbed propagators
according to

D~„-(P,, PJ) = Trg(R, )T[a„~(P,.)a„l-, (P~)]}, (4.4)

D',-(0;, (3;) = T (p(36.)T [f,"-(P;)f,-(P,)]}, (4 5)

where 8(P;) =e8~"a8e 8~ 'a. We denote D'„k(P, , PJ) by
a solid line with a single arrow going from P; to
ll, , and similarly for D&t, (P;, P, ) except that it will
carry a double arrow. The propagators have the
Fourier representation

a
( ) E, (8;-8;i1

(4.6)

Db (P P )
i P Kg ;(-8&D8b ((t)

(b
(4.7)

with g =2@i i/p+ p.„$b,= 2' l/p+ lb„and where ib„
p. b are the chemical potentials. The Fourier coef-
ficients are

Da ((a) = (ea —(a) -1

D (&,b)= (b8'-„—(b, )
'

yk l yk l

(4.8)

(4.1)

where P &P'&0, 8(P') =e "8e, and where T is
the P-ordering operator. The function Q„.„(P', 0)
will have a Fourier expansion of the form



12 MANY- BODY TREAT MENT OF PRESSURE SHIFTS. . . 935

The graph giving the zeroth-order contribution
to guru($, ) is shown in Fig. l. Explicitly, its con-
tribution is given by

1 1
Q;u($l, )=~ „, „,~Q pQD'uk(g, )D'uk(Q, +tl, )

k Kl
1

(4.9}

The Fourier sum over (l is carried out using the
standard formula

y.'k
I

++~~1 ~1

q=O

(a)

y k

1—g F(g, ) = —[sum of the residues of E($)n'($) p k

at the poles of E(t)], (4 10)

where E(() has simple poles, and where n'(g) de-
notes the Bose function [Eq. (2.13)]for chemical
potential p, This yields

1 n(~'„,k-) —n(c'„k)
Qu u(hl, )=~ „, „.p Q,~-",. ( (411)

k
~ g —&

I
'k— p.

' k'

q=O

Iyk ty k

Performing the analytic continuation of Eq. (4.3)
immediately yields the result of Eq. (2.22) for
fu. u(Iild) .

Going to first-order perturbation theory there
are only the Hartree self-energy contributions
shown in Fig. 2(a). We have previously shown that
these can be ignored. In second-order perturba-
tion theory we can also ignore such Hartree in-
sertions, and in addition, we ignore improper
polarization graphs having the structure shown in
Fig. 2(b). The remaining second-order graphs
are the two self-energy graphs shown in Fig. 3,
and the vertex correction graph shown in Fig. 4.
We have explicitly inserted the labels of the states
in these graphs in order to make some connection
with the ATC theory of pressure broadening. In
particular, one need only examine the structure
of the matrix elements to see that the self-energy
contributions correspond to the quantity S,(b),„„,

(b)
FIG. 2. Two graphs vnth @=0 matrix elements. (a) A

first-order Hartree self-energy graph. (b) A second-
order improper polarization graph.

of ATC theory, while the vertex corrections cor-
respond to S(b) m«„ in their treatment.

To go further, .we can define the exact propaga-
tors by replacing Ko by 3C everywhere in Eqs. (4.4}
and (4.5). While the self-energy function is diago-
nal in the center-of-mass indices (k) due to mo-
mentum conservation, it is not diagonal in the in-
ternal indices. However, in the present problem
we will ignore off-diagonal elements of the self-
energy function, since this is sufficient for ob-
taining a second-order approximation equivalent
to that resulting from the moment analysis of Sec.
III. This approximation is often made anyway, '' '
in order to yield a formalism which is tractable.
With this approximation, Dyson's equation can be
solved to give

Duk((;) = [e'uk —0'uk($l) —t;] ', (4.12)

& D'k(C +0 )
1 0

where D denotes the renormalized propagator,
and where G is the proper self-energy function.
The general expression for Qu. u($, ) can then be

0
written

qu, u($l ) =—Q —Q D'u. k(t'l )D'uk(gl+$, 0)

ll

)&Au'u', uu(k, $;, $, ) . (4.13)

0
FIG. 1. Zeroth-order contribution to Q& &((~ ).

Here A is the vertex function which satisfies a
Bethe-Salpeter equation of the form
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1 1
5u' u'bu u.+

p u u, uu (k 1& ~l~ ~l )Du, k (kl2)au k ((g + $( )Au&u& u u(kgb k( q (g ) 1
a

2

(4.14)

1 "dE A k(Eu)

I
with A k(E) =ImD'„-(E+f0+), the spectral densitypk

function. The function A„„-(E) may be shown to

(4.15)

where I is the irreducible scattering function.
Unfortunately, Eq. (4.14) is very difficult to

solve. This, of course, was the basic point of
the moment analysis, because it avoided the prob-
lem of having to solve a complicated transport
equation. Let us, however, consider for the pres-
ent the case where vertex corrections are ignored.
In this case we will show that if certain "quasi-
particle" approximations are made before com-
puting the moments of the spectral function, phy-
sically sensible results can be obtained. This pro-
cedure suggests a modification which can also be
applied to the vertex corrections.

For the case where vertex corrections are ig-
nored, Quipu((, ) is given by Eq. (4.9) with the un-
perturbed propagators D replaced by the renor-
malized propagators D. One can carry out the
Fourier sum over g in the same fashion as be-
fore by introducing the spectral representation of
the corrected propagators,

Auk(E)=«e ~'-1) p p(E.)(&In'kI»(Fl~ukl»

x Q(Ez E&+E) . (4.16)

From this expression one immediately has the
following two sum rules

Oo

A
uk (E) dE = 1,

«oo

A„„-(E)n'(E)dE = Tr [p(K)a~~ a„„-]
1
7T «QQ

(4.17)

(4.18)

where again n'(E) denotes the Bose function for
chemical potential p, and n» is the number of
molecules in state ~gk). For the noninteracting
system nuk = n(c+) .

Performing the Fourier sum in Eq (4.13.) using
Eq. (4.15) gives

Qu u($),) =&,
u p Q —, dEdE'Auik(E')Ag (E)

1 1

„n'(E') —n'(E)

0

have the following spectral representation in terms
of exact eigenstates of the system,

p. k

K~~ ~ y (-q)

y& k&-qI, ,
I

y& k&

K (q))t ez&xzq

p. k

T) 7p~q)

q

Vp.&k-qadi p, k

K~~~ y y (-q)

q

(b)

FIG. 3. Two second-order proper self-energy graphs. FIG. 4. Second-order vertex correction.
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Carrying out the analytic continuation indicated by Eq. (4.3), and using Eq. (2.20), we obtain the following
result for the line-shape function (for the case where vertex corrections are ignored),

f„.n(Etn) = (P n(mn, mn) —P —, dEdE'An. „(E')A„„(E)n'(2')(n'(E)+ l)il(E —E' —lltn) .1 1

mp k

(4.19)

For the noninteracting system where A»(E)
=m5(E —e»), we immediately recover the result
of Eq. (2.22).

In Appendix A we demonstrate that calculating
the first spectral moment from Eq. (4.19) without
introducing further approximations yields exactly
the (unphysical) result of the moment analysis. We

now want to introduce a number of approximations
before attempting to compute the first moment of
the line-shape function. Although we shall refer
to these approximations Rs quaslpal ticle Rpprox-
imations, they appear to be essentially equivalent
to assumptions invoked in impact approximation
theories of line shapes. Two features of the usual
impact theories are (i) the assumption that the
widths of the perturbed states are in some sense
small and (ii) a further approximation such that
the analysis is valid only near the line center,
and may be expected to break down in the far
wings.

,- (, )
1

" dE' I Et (E')
lk /1 =77 Er ~a~(2O lg

(4.20)

where I'g(E') =ImG'„k-(E'+iQ') is the imaginary
part of the self-energy. From Eq. (4.20) one also
obtains the Kramers-Kronig relation

( )» " dE' I',k-(E')
pk ~ Ei E ) (4.21)

where hqk(E) =Re G»(E+20+) is the real part of
the self-energy. The imaginary part of the self-
energy as given by the graphs of Fig. 3 is readily
found to be

Before proceeding further, it is convenient to
introduce the spectral representation of the self-
energy function. Because the first-order (Hartree)
self-energy vanishes in the present problem, we
can write

I„-k(E)=(1—e ' "') Q—Q g(q)'l&„, ,„„(q)l'n(~'k -q)ln(&yk)+I][ (&( k-q)+ ]
ski pi fi f2

X~(&y kf eI2k'-q+ eq k-q (4.22}

We now return to Eq. (4.19) and make some
quasiparticle approximations before computing the
spectral moments. We first assume that A„„-(E')
and A»(E) will be sharply peaked near the two
quasiparticle energies E'„.k and E», respectively,
which will be defined below. Hence we approxi-
mate the factor n'(E') [n'(E) + 1] by n(E'„nk) [n(Eg)
+1]. We then approximate the spectral density
functions by simple Lorentzians with the self-en-
ergy evaluated at the unperturbed energies, i.e. ,
take

gives

f,„(h,(d ) = g g (m &, m
& ) —g n (E & nk ) [n (E&k ) + 1 l

1

1x —
2

dE' Aq, k (E')A» (E'+ h(u) .
1T 4 qo

Consider now the function

g(E') = (1/7f')Aq. k (E')Aqk (E'+5~)

~(g r'() 0 k
q k( ) (El EE )2+ln2p'k p'k

(4.23)

I'u k r„;
(E' —Eqnk) + j .k (E'+ 6&() —E'k)2+I'2-p'k Pk pk

(4.24)
with I'„k = I'„k(e'„.k} and where E'„.k
=cq k —beak(erik) is the quasiparticle energy. Per-
forming the integration on dE in Eq. (4.19) then

Under the resonance condition

pk p'k pk
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the above function is seen to be sharply peaked
near F.' =E'„.„. We turn it into a 5 function by
writing

(4.25)

(4.26)

g(E ) =C„-(h~)5{E'-E'„.„-),

where Ck(h&u) is to be determined such that the
normalization is correct, i.e. ,

g(E') dE' = Ck-(h(u) .

This calculation is straightforward and gives

Fuk + FU'k

w (E'- E—~.k —h(u}2+(r~k+ r„.k)'

(4.27)

With these approximations the line-shape func-
tion becomes simply the sum of Lorentzians

1 1 . ~rk+ r"k
f„&(hu&) = p o(m„, m„) —p n(E'„.k)[n(E») 1)—

(
k

(4.28)

The moments of this function are readily computed, and we obtain

M„„=(&'„—&'„)Mq „-Q v(m„, m„)y Q n(E„'k)[n(E'„k)+1][bg(e'„k) —a~ k(e'„,k)],
1

(4.29}

with

M„', = Q v(m„, m„) —Q n(E'„.k)[n(E'„k)+I] .1

(4.30)

Again one obtains (hu) by dividing (4.29) by M~&0)&,

and because the 6's are already of second order in
the interaction, the correction term can be evalu-

ated setting n(E'„k) = n(e', k), n(E'k} =n(e'„k).
The result (4.29) now makes good sense physical-

Ly. In Appendix A we demonstrate that thissame
result can be derived by making a simple modifi-
cation in the formula obtained from the moment
method calculation of Sec. III. When a similar
modification is applied to the vertex corrections
(see Appendix A) we find that the modified first
moment can be written

1
M. „'„=(e'„—e'„)MIt „—g o(m„,m„.)5~ ~, & g n(e~ k)[n(e»)+1][a~k(e») —S„~k(e'„-k)]m ~fftI„i y

flip fit pI k

with

+ 0 m„,m„. — n c'„k n e'„k +1 y„„- „.-„. P.k —X„-„„-„~P, 'k
~y

mpmpl

(4.31)

(4.32)

and where &p„»,„(ilk, E)"is given by

y„„-„,„-,(~k, E) = (e~+ +i —1)—,p g g(q)'K„-„(q)K„.- ~z (-q)
qk' y~yg

xn(E& k &)[n(E& k e) + l]n(E'&k+ q)5(e& ki q
—E'& kt+ e&k+ &

—E) . (4.33)pk+q 3~ a

From Eqs. (4.21), (4.22), (4.32), and (4.33) ex-
plicit expressions for 4»(e'„k) and yqp ~ p(pk) can
readily be obtained. Finally one obtains (h&u) by
dividing Eq. (4.31) by M )„as given by Eq. (3.16).

In Sec. V we will find that all of this considerably
simplifies in the dilute-gas limit. We find in this
limit that the vertex corrections cancel out, be-

cause y„„„„(pk)=-}t~~-„„.(p'k) for-the dilute gas.

U. REDUCTION OF FORMULAS
a

In the dilute-gas limit we have n(e'k)- e I'uk-~~'
«1 and similarly for n(e~k). From the formulas
given in Sec. IV one readily finds that p, , cancels.
out of the expression for {h~). The chemical po-
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tential p, b can be eliminated in terms of the partial
pressure P~ using Eqs. (2.11)-(2.13), i.e. , using

1 6b 1 6b
pP, =e~'( —e '»=e~'( e ")- e-"a. (5.1)

It is convenient to introduce the normalized Boltz-
mann distribution functions

e-/el r
c, b

p(~,',) =~~(if or r)&
(5.3)

where E'„rb stands for E' or Erb and similarly for
We then find

(1lV)e ~'),
'

P( f ) (1/y)Q ()6 ~ (5.2)
(k(d) = (E~ —&~i) —[(+(o)BE —(4(0)vx) )

where the self-energy contribution is

(5.4)

(a~)m =(gv(m„, m„)) 'g ~(m„m„.)& „,gp(~ )(&„"„(~'„;)—&„,.„(~;.;))
mp m m k

and the vertex contribution is
1

(Ss)) „=(Q (m„m„) Q ~(m, m, )Qp(C )[)!,,-,„;(u&) —)!,.-.. , (u'k)l.
mp mpmp& k

In the dilute-gas limit we also find

b,~-('-)= 'g g~(q) I~, .„(q)lilk pk y
qk' vl rl r2 ~1 1 1 2

(5.5)

(5.6)

(5.7)

x.-„„-.(vk) =
P g gr(q)'&„;,,„,(q)&;-;„,„,(-q)»..I'.P

1 2r r apl-q rlkl + p,k+q v.k

(5.8)

We now note that the vertex contributions in Eq. (5.6) cancel out because the energy denominator in Eq.
(5.8) is seen to be independent of the internal energy e&. Thus, although the vertex corrections must con-
tribute to the linewidth, we find that they cancel out of the expression for the line shift. We mention in
passing that there are also simple cases where the y's themselves vanish due to the vanishing of the ma-
trix elements K -, , and K„,-, „„.This has been noted previously by ATC for the case of a rigid linear
a molecule whose interaction with ke perturbers is through its dipole moment, i.e. , they find that
S,(b) «d„vanishes in this case.

We next put (d&u)a~in a form where the summations over the degeneracy indices can be easily carried
out. We can write

(am)„=Z, ()(Pv(m„,m„)) Q v(m„, m„.)5 „,—Q Q p(e', )g(t()'
ml m lt m l q l lrlr2

with

x [ [
K „,(q) ) 'y;(~;, ~;,e', , e t ) —[K„,. „„(q)('y;(e'. . .~'„,, ~"„,, ~'„,)], (5.9)

1

1

(5.10)

The important point, in reducing the results further, is to note that when the sums over k and k,' in Eq.
(5.10) are carried out, y; can only be a function of ~q~. Thus, g(q) y; is spherically symmetric. One can
then perform the angular integration over q, after which it is relatively easy to perform the summations
over the degeneracy indices.

We now give the results of this calculation for the case of dipole-dipole, dipole-quadrupole, and quadru-
pole-quadrupole interactions. First def ine

b b (5.11)

We consider first the dipole-dipole case. When the angular integration over q is performed in Eq. (5.9)
wef nd
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(a&0),E= " Q a(m„m„) ~ o(m„m„,)5„„+p(s,' )
1

m p m p ~1 12

x&L,&"(~:,s;, s„',s„')[l &v, Id. l v& I'1&r, Id~ ly.& I' s-l&p, ld. l p& &r& ld, lr.& I'+ I&p, Id. l v) &r, ld&lr. &*l']
—(same with g- p. ')]. (5.12)

Using the Wigner-Eckart theorem, we can write

d. l
q&= &j, lid. II j.&((J, 1 m. o

I J„1J„,™.)z6„
—(J„1—m„—1IJ,1J, (-m„-1))[(»—iy)/W]6

1 V1~

+(J„l—m, ll J.1J„(-m,+1))[(x+iy)/W]6„„,].
Here the reduced matrix element &j„ Ill, II j„)is to be calculated in the usual way. 4' For the special case1

I of rigid symmetric-top molecules with
I j m ) = J' K„m„),whereK denotes the projection of Z„along the

symmetry axis (K =0 for linear molecules), it evaluates to give

(5.14)

The reader may consult the appendix of TC for the details of this calculation. Using E&l. (5.13), the sums
over the degeneracy indices in Eq (5.1.2) can be carried out using various well-known theorems concerning
Clebsch-Gordan coefficients. When the sums over m„, m„, m„are carried out in E&l. (5.12), the result
is found to be independent of m„=m, . Hence the factor of [[I'„e(m„,m )] ' cancels out of E&l. (5.12). The
final result for the dipole-dipole case is

(«~~as rl(»p& g =(~lp&(«(,, +(&I&i,, l&~l&,,&l*g(~" ( l&i„, ld. ( & *I"'(~:,"...~„',, ~&&

jy yy1 2 ff1

24~ +1
„l&i Illd &;&.I*,I".'(~:.~:,.~l, , ~l, &)

.

(5.15)

Next we consider the case of dipole-quadrupole interactions. Applying the Wigner-Eckart theorem, the
matrix elements of the traceless quadrupole moment can be written

&~, I@,'ly. &
= &j,, IIC I j,,&(6.„,.„«,,2- m, , 0l J„,2 J„,-m„,)-.'[zz - -.'»--.'yy]

+6,2(J„2—m„—2
I
J'„2J'„(-m„—2))2 vT[(xx —yy) —i(xy+yx)]

,p„2—m„2 IJ„2J'„(-m„+ 2))-,'&( 2 [(xx -yy) +i(xy+yx)]

—6 „„P„2—m„—1
I
J'„2J„(—m„—1))~&(, [(zx+xz) —i(zy+yz)]

+5„,((j'„2—m„ 1
I
J'„2J'„(-m„+ 1))-,'W[(zx+xz)+ i(zy+yz)]] . (5.16)

For the case of a rigid symmetric-top molecule the reduced matrix element is

&~, Il&. ill&, &= I(&, I~. .(""*") (~, 2-», oI~, 2~, -«, &,' '2Z, ' (5.17)

where IQ~I =P(&e~~f~(b).'.., is one-half the definition given by TC, and where z denotes the symmetry
axis. The remainder of the calculation proceeds in the same fashion as for the dipole-dipole case. The
final result for the case of dipole-quadrupole interactions can be written
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~)sE 225 Z p«', )(~., + 1) I &f„Ql II ~„& I

' g

(5.18a)
In the case that the dipole-quadrupole interaction arising from matrix elements of Q, and d~ is also im-
portant, the total shift is given by Eq. (5.18a), plus an additional term which simply replaces Q, -d„
d, -Q,. A similar, rather tedious, calculation yields the following result for the case of quadrupole-
quadrupole interactions:

(~~)..=+f',e g p(e,',)(2J„,+»l&i,, IIQ,'lli, ,&l'g " l&i. IIQ.'lli.&l'L"'('. , ', , e„',", &

gy jy1 2
2J +1

l

-' " "l&&„,llq'. II&„&I'~"'("., "., ~l, , "„,&) .
2J ~ +1

(5.18b)

It may also be shown that when all three interac-
tions discussed above are simultaneously present
and important, the contribution to the shift is just
the sum of the shifts given by Eqs. (5.15), (5.18a),
(5.18b), i.e., there are no interference terms be-
tween the various multipole interactions. This con-
clusion is in agreement with a similar result ob-
tained from ATC theory for second-order broad-
ening due to multipole interactions.

We turn next to the function y;(s'„q', , e„',e'„) as
given by Eq. (5.10). Using the separable property
of the energies, this can be written as y;(hE„),
where ~„=(e'„—e')+ (eq~ —e~ ). Although the in-
tegrations over d'/t and d4,' in Eq. (5.10) appear
to be rather complicated, we show in Appendix B
that y;(bF „) can be put in the remarkably simple
form

1 Pm '/' "dE'exp(-PmE"/2k'q')
V'2m 5'q2 Pr bE +R'qq/2m —E'

(5.19)

where m =Mjlf,/(M, +M~) is the reduced mass of
the colliding molecules. Equation (5.19) expresses
y;(~ ) as the Hilbert transform of a simple Gaus-
sian. This transform is known' and can be ex-
pressed in terms of the error function of imaginary
argument. " The result can be written

y = (Pm/28 q')' q(8 q'/2m +~ ) . (5.22)

The properties of the function f(y) are easily de-
duced. ~ The function is an odd function of y (posi-
tive for y )0), with the asymptotic behavior

f(y)=I/2y as ly -", (5.23)

and with a maximum and minimum occurring near
&m~=o-92 &mgn=-0 92.

From the above result one sees if )I'q'/2m &) hZ„
that y and f(y) are positive and that the maximum
value of f(y) occurs for 5'q'/2m = 3.38ksT, i.e. ,
the maximum occurs for 5'q'/2m of order thermal
kinetic energies. This might suggest that the in-
elasticity 4E„plays a minor role if AE &&ksT.
This conclusion turns out to be misleading because
the minimum cut-off length (r,) leads to a conver-
gence factor e ""q in Eq. (5.11) which constrains
the important values of q to be q 6 I/2r, . With r,
of order angstroms, a rough calculation shows
that 0'/8m' ', can be substantially smaller than thermal
kinetic energies for typical molecular constituents.
This point is important because if one could make
the elastic collision approximation ~„=~,=0,
then it is possible to show from Eqs. (5.14), (5.15),
and (5.18) that the self-energy shifts would cancel
for rigid symmetric-top molecules.

Next we insert Eq. (5.20) into Eq. (5.11), perform
the angular integration over q (which simply gives
a factor of 4w), and obtain

y;(m„) = (2Pm/a'q')'/'f(y),

with
-2 ' t'f(y) =e " e' dt =e " erfi(y),

and with

(5.20)

(5.21)

t/S m

I &n&(~ ) 8 dq qn-3e-2qqqf(y)
0

(5.24)
where f(y) is given by Eq. (5.21). The integral
over dq is the only remaining integration in the
present theory. Here we simply wish to study the
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sensitivity of Eq. (5.24) to the cut-off parameter
x„which should typically be of the order of a few
angstroms, but whose proper choice is always
somewhat uncertain.

For every multipole interaction of interest
n= 4, 6, . .. , the integral (5.24) is surely divergent
at large q if x, is allowed to approach zero. This
follows from the asymptotic behavior [Eq. (5.23)]
of f(y), which gives f(y) ~q ' as q- ~. Hence if
r, -0, Eq. (5.24) diverges like 1/r, for the dipole-
dipole case (n = 4), diverges like 1/r', for the di-
pole-quadrupole case (n= 6), etc. This means that
the results will indeed be sensitive to the choice of

At first sight it appears that this dependence
is reduced in the present theory as compared to
the second-order results of ATC theory for broad-
ening which diverge as one higher power of 1/5„
where b, is the minimum impact parameter, for
each order of multipole interaction. This again turns
out to be misleading because, from physical con-
siderations, the limit x,-0 is not appropriate.
Whether one identifies r, with the kinetic diameter,
effective hard-sphere radius, etc. , typical values
of r, correspond to a few angstroms. With this sort
of estimate for r„and for typical reduced molecu-
lar masses m, we have found from rough calcula-

tions that the dependence of the function L'"'(4E )
[as given by Eq. (5.24)) on the cut-off parameter r,
is approximately the same as what one would ex-
pect from the ATC classical path approach. This
is a reflection of the fact that the classical path
approximation is reasonably well justified for in-
termolecular collisions.

To perform detailed numerical- calculations from
these formulas, one must evaluate the integral
(5.24) and carry out the sums over states in Eqs.
(5.15), (5.18a), and (5.18b). This should be amen-
able to high-speed computer calculation provided
that the various matrix elements and energies are
known.
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APPENDIX A

The explicit expressions" for the quantities
Z(pk) and P„-. ..-,, (pk) which appear in Eq. (3.15)
(derived from the moment method) are

~(uk)= " g g g(q)'iK, „,» (q) ~'[n(~; g~)+1]n(~t „-, ;)[n(~,'„,)+1]
Qk l

exp[P(e'„, -„,, - —~'„,„i+e',-„-e'„,-„-)]—1

b b a aEy kl~ Ey kl + 6pk Cp

(A1)

, ;,(pk) = [n(e'„-)+1]—p p g(q)'K„„-, „(q)K,-„. , „(-q)n(&'„- -)n(&t p -) [n(=~ f, )+ 1]
qkl yly2

b b a a
&r2kl-a &ylkl+~~k+a ~uk

(A2)

Note that there is no singularity in these expres-
sions when the energy denominators vanish.

Next, for the case where vertex corrections are
ignored, we show how to derive the moment calcu-
lation result [Eq. (3.15)] using the graphical line-
shape formula given in Eq. (4.19). We begin by
observing from Eq. (A1) and Eq. (4.22) that
Z(gk) can be expressed in terms of the imaginary
part of the self-energy according to

(A3)

Notice also, from the Kramers-Kronig relation
(4.21), that one term in this expression is just
n(&', „-)a,-„(e'„-).

Now we compute the zeroth and first moments
of the line-shape function using Eq. (4.19) and find
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M'„7, = Q o(m„m„)- Qn', , «(n «+1),
1

(A4)

1 im 0O 1
MI„',I„=g n(m, m„)—g n'„.- dEE-E .(E)[n'(E)+I] —(n'-+I) — dEZZ„. ;(E)n'(E)) .

~I'» OO W 0O

mg Pt

(A5)

In obtaining these results we have used the sum
rules (4.17) and (4.18). Consider next the integral

]nn 00

I= )' dE—EA„«„(E)[n'(E)+I]
»OO

(m 00

dE Im(ZE'-(E + i0') [n'(E) + I]].
7T J 0o

(A6)

We write E=«'-„- G'-„(E+iO') —3' (]E+i 0') ', insert
this into Eq. (A6), and note that one term vanishes
because

Im(3' «(Z + i0') 'D'];(E+ i0') [n'(E) + I]]= Im[n'(E) + 1]

=0
This gives

I= «', «(n';«+ 1)

1 ~"
——

Jl dZ [n'(E) + 1]Im[G'-„(E + i0')3'-«(E i i0")],
(A7)

where we have again used the sum rules (4.1V) and
(4.18). From this calculation we obtain

M(~"~ = («'„—«'. )M") —g o(m „,m'„)- p n'„.„-d-E[n'(E) + 1]Im[G'„-„(E+i0')3' «(E+ iO')]1, 1
P

mp

—(n'„„-+I)— ddn'(E)im[G'„. „-(E+10')Z'„.;(E+i0')]) .
» 00

(A8)

Since the G's in the correction term are already of
second order in the interaction, we can evaluate
the rest of the expression to zeroth order. Thus,
we can set n'„, ];=n(«', «), n'„«=n(«', -«), and replace
the 3's by unperturbed propagators, which gives

Im(G'„«„(E + iO')O'„I(E+ iO')]

= I'„-„(E), + 0'5(«'„« —E)E .„(E).
(A9)

From this last relation we note that

dZ Im[G „-„(E+i0')D'„I(E+ iO')]
»OO

= m4„«(«'„«) + Pr «(Z )

f

because of the Kramers-Kronig relation (4.21).
This result tells us that we can replace the factor
[n'(E)+1] in Eq. (A8) by n'(E). Using Eqs. (A8),
(A9), and the Kramers-Kronig relation (4.21) we
then obtain precisely the (self-energy part) result
(3.15) of the moment analysis, with Z(p, k) given by
either of the equivalent expressions (Al) or (A3).
This verifies that the graphical formalism and
moment method agree when the graphical formula
is treated "exactly."

Finally we show how to modify the result (3.15)
of the moment method to give a generalization
(which includes vertex corrections) of the "quasi-
particle" approximation result obtained in Eq.
(4.29). To do this we note from Eqs. (Al)-(A3)
and (4.32)-(4.33) that Eq. (3.15) can be written as

=0, (A10)

M'l ( n'„I)IIII,I'I„—g n(m „,m.„.)0„„,z~ P ( n(n'„. ;)—"
E . [[n(n;;) + I] —[n'(E) « II]

m pm@0 k

—[n(n'„;)+ I]— "."[n(n;.",) —n'(E)])
Pr ""dE I' .«(E)

m)» 00 P,

o'(m, m„,)- g n(«'„, -„)— " "' ', ' —([n(«'«)+I] —[n'(E)+1]f1 Pr ""dZQ„- „.-, ( pk, E)
ng ~d» 0O gk

mii m~0 k

—[nin'„;)+1]— "E."'"'." ' [n(n'„. -„) —n'(E)I),Pr "dE Q -„."-I(p, 'k, Z)
~d»00

(Al 1)
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where I',„-(E) and @ -„,-„,(gk, E) are given by Eqs.
(4.22) and (4.33). The principal value symbols in
Eq. (All) are unnecessary, but will be needed in
the step which follows. Note also that we have
added and subtracted the same term inside two of
the integrands in Eq. (All).

Qur procedure now is simply to drop the terms
proportional to n'(E) and [n'(E)+1] in Eq. (All).
This leads immediately to Eq. (4.31), and while
the above procedure is rather ad koe, we see that it
agrees exactly with the result obtained from the
quasiparticle approximation (for the case where
the vertex contributions are ignored).

APPENDIX B

We present a few details of the reduction of the
function y& as given by Eq. (5.10). We define
~„=(«', —»')+ («„' —«," ), and make the change of
variables k-k'+q. Equation (5.10) can then be
written

y;(~„)= &r „„~„-E

d 'k d 'k' e-~'-e-~'p1 o b
R k'

»[E+(«;~- «-')+(»-' -- »-')]

where

(al)

a a 2w(M M
Z= d'kd'k'e t"fe "r= ' ' ' . (B2)pk'

The integration over one of the k vectors (say
d'k) in Eq. (Bl) is precisely the same integration
which occurs in the problem of Doppler broadening,
where in that problem q is the wave vector of the
absorbed radiation. This integration is easily done
and leads to the familiar Gaussian form character-
istic of Doppler broadening. We find

1 ph' 'M. M.
2 (M+I,)' ~' 5'q Ph'

d kI2dk, e g(Q y /2~b)

PM, Ã2q' 1 1 I'qk't'
x dt'exp —,', E+ —+-

Pa] 25 a b b

(B3)

where it remains to perform the integration over k' = ~k'~ and over t', the cosine of the angle between k'
and q. The integration fo dk'f', dt' can be manipulated into the more convenient form f,'dt'f"„dk', and the
integral over dk'' can then be performed by completing the square in the argument of the exponential. Mak-
ing the change of variables E'=E+8'q'/2m, where m =M, M~/(M, +M~) is the reduced mass, we obtain

where

1 Pm '~' " dE' M 't' ' dt' PmE' (1+M /M )
2/2yg E~ +

M f(t')~&2 212q2 f(t')
PmE" M t"(1+M,/M, )
k 'q' M~ f(t') (B4)

f(t') = 1+ (M,/M~)t" .

We next make the change of variables

(1+M,/M, )'t't'
[1+(M,/M&)t"]' ' '

and find

(B5)

(B6)

(B7)

where

J(o) = dz e" (1+2oz'),
0

with

(BS)

PmE" M
21 M

We can rewrite Eq. (B8) as

(B9)

(alo)
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J'(0) = 1. (B11)

where we have let f = v a z =xs. From (B10)we
note that

It is easily verified that the solution of this equa-
tion which satisfies the boundary condition (Bl1)
is

We then differentiate Eq. (B10)with respect to x
and obtain

= --J(x)+-e"'(I+2x'),

J(x)=e" =exp„2 pmE~ M
2h q' M~

Inserting into Eq. (B t) yields the final result

(BIS)

or

x +J(x) = e" (2x'+ 1) .d J(x) (B12)
""dE' exp( —PmE "/25'q')

~„+5'q2/2m —E'
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