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Photoabsorption of the neutral sodium atom: A many-body calculation*
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By applying many-body perturbation theory, the effects of electron correlations are included in the
calculation for the photoionization cross section of the neutral sodium atom from threshold to 16 eV
for the photoejected electron energy, The improvement of the lowest-order Hartree-Fock approximation
for the cross section by the first-order and second-order correlation corrections is small. The discrepan-
cy between the experiment and the calculations at the short-wavelength side of the minimum is still not
understood.

I. INTRODUCTION

The alkali-metal atoms with a single valence
electron outside a core would appear to be partic-
ularly simple for photoionization calculations.
However, for the photoionization cross section
of atomic sodium, all previous calculations' '
are in reasonable agreement near threshold but
disagree with experiment' by approximately a
factor of 2 at the short-wavelength side of the
minimum. An excellent review of photoionization
of the alkalis has been given by McDowell. ' In
this paper, we attempt to include electron corre-
lations starting from first principles in order to
discover if possible the reason for the lack of
agreement between theory and experiment. We
use the many-body perturbation theory of Brueck-
ner' and Goldstone" (BG) to calculate the photo-
ionization cross section of the 'S ground state of
the neutral sodium atom. In a previous paper,
we have reported relativistic Hartree-Pock (HP)
calculations for photoionization cross sections
and the spin orientation of photoejected electrons
from potassium, rubidium, and cesium atoms. "
With a view to extension of the many-body pertur-
bation theory to these higher alkali-metals in
mind, we have used relativistic single-particle
states in the calculation for sodium, in addition
to using nonrelativistic single-particle states.
Not surprisingly, the lowest-order HF results of
cross sections are nearly the same, when using
these two kinds of states. We have used both
relativistic and nonrelativistic single-particle
states for zero and first-order terms in electron
correlations. The contributions from terms
which are second-order in electron correlations
were calculated with nonrelativistic states. In
order to make certain types of higher-order dia-
grams become zero, as will be described in Sec.
III, we choose a particular potential for computing
nonrelativistic excited d states.

Our methods for applying the BG theory to the
photoionization cross section of the atom have been

discussed previously. "'" In Sec. II, we review
the theory in terms of the linear response function.
Section III contains results. Section IV contains
discussion and conclusions.

II. THEORY

The photoionization cross section" 0 for an atom-
ic system is given by

a= W/j,

where j is the incoming photon flux density, and
TV is the rate of the electron transition probability.
By using the Golden rule, W is expressed as

where we take

o=Q A p»
tPlC

for the interaction between the photon and all the
electrons of the atom in the nonrelativistic case
and

0= eu, A

in the relativistic case." We sum over all pos-
sible final states and take an average over the l
degenerate initial states. The 5 function refers to
the transitions to higher states in which the photon
energy u& (in atomic units) is absorbed. The func-
tion 4; and 4& are exact wave functions of the
atom with energies E; and Ef, respectively. The
term e' ' ' in the vector potential A is replaced
by unity in the dipole approximation. From

1
5(~ Ef + E;)= —Be—

we obtain
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where o "(s)= e'"' oe '"' is a Heisenberg opera-
tor. The total Hamiltonian H for the atom is com-
posed of an unperturbed part H, and a perturba-
tion H.„ i.e. , H = II0+ H, . The matrix element
(4, I

o'(s) o(0) IC;) in (4) is the time-ordered pro-
duct of two Heisenberg operators, averaged over
the initial state of the atom. We have assumed
that 4

&
is a normalized wave function. If 4; is an

unnormalized wave function, we divide by
(4; I 4;) and evaluate the matrix element in the
interaction picture" as

(~i I
o'(s) o(o) I +i&

(C, IU(, s)o '(s) U(s, 0) o(0) U(0, — ) IC $
(c,!U(+, — ) Ic,)

= (C, IU(, s)o'(s)U(s, o)o(o)U(o, — }IC&,,

(5)
where o'(s) = e'""o'e '"o', U is the time-evolu-
tion operator, and I. indicates that the summation
is over the linked terms only. '4 If we assume that
the initial state is the ground state of the alkali
atom, then 4 0 is a determinant for the solution of
'H„when we choose H0 as a sum of single-particle
Hamiltonians. We express W as a sum of diagrams
which are the same as the diagrams derived from
the imaginary part of the frequency-dependent
polarizability. "

The lowest-order diagram is Fig. 1(a). The
diagrams with one H., interaction are shown by
Fig. 1(b)-(e) and include their inverted diagrams.
Some of the diagrams with two B, interactions are

(e) (f) (g) (h)

FIG. 2. Some second- order diagrams. Each diagram
has two Coulomb interactions.

shown by Fig. 2(a)-(e).
Each diagram has two heavy dots and an odd

number of horizontal lines. The upper dot refers
to o' and the lower one to 0. Since denominators
D can vanish, they are replaced by D+ iq." The
horizontal line indicates that the imaginary part
is taken from the right-hand side of the equation
(D+ iq) '= PD —im5(D), where P represents a
principal-value integration.

When the diagram has only one horizontal line,
we may well only consider the part either below
or above the horizontal line. In such a way, many
more higher-order diagrams will be included by
adding the parts below the horizontal line and

squaring the sum. For instance, the diagrams
Fig. 2(f)-(h) and many others may be included by
adding the diagrams Fig. 3(a)-(e) and then squar-
ing the sum.

III. RESULTS

In order to calculate the diagrams, it is nec-
essary to obtain a complete set of single-particle
states for each orbital angular momentum.

In the nonrelativistic case, the s states were
computed from the Hartree-Fock (HF} 3s equation.
The P states are calculated with a Silverstone-
Huzinaga"'" potential by removing the 3s electron
so that the 2P orbital is the HF 2P orbital, and

U
'

(0) (b) (o) (d)

FIG. 1. Diagrams which are zero, and first-order
contribution to photoionization cross section. The hori-
zontal line indicates that the denominator contribution
is treated by —i~4. The solid dot indicates a photon
operator.

(a) (b) (c) (e)

FIG. 3. Open diagrams corresponding to diagrams in
Fig. 1, by taking the parts below the horizontal lines.
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excited p states have the property of being com-
puted in the field of the (1s)'(2p}' core. The e(lua-
tion satisfied by the excited nP radial wave func-
tion P„~ becomes

BPI' 'Ik'd

-4

2P kd

2P' k'd

A kd

2PI
2p

gkd

where J„, and K„, are defined as
(6}

d„,P;(r) fdr'(r=, /r, ")P„,(r')P„, (r )P;(r), '

0

2+ (fk),k -K,r) ——,K',
k)

P„k

+ (2PlO'„--,'K3B lnP)P» =- ~„,P„P,

(a) (b) (c} (d)

+, + [(2J'„-5Z'„)(
1 d2 11 6
2 6'

FIG. 4. The diagrams used to obtain the part of po-
tential referring to six 2P electrons for computing ex-
cited d states.

K„,P, (r) fdr'(. r,=(r )P„)(r')P,(r')P„(r),
0

(6)
and r, (r, ) is the smaller (larger) of r and x'.

The potential for d states is chosen from the
field of the nucleus, two 1s electrons, two 2s
electrons, one Ss electron, but the part for six
2P electrons is obtained by setting the sum of the
diagrams Fig. 4(a)-(d) to zero. With this potential
for d states, the sum of the diagrams Fig. 5(a)-(d)
may become zero, "'"and so is the sum of the
similar higher-order diagrams. Then the equa-
tion for the radial wave function P„„ is written

+(d', , —+K', )))P„k=k kP k. „„
(9)

In the relativistic case, the s--,' states are com-
puted from the Dirac-Hartree-Fock (DHF} 3s„,
equation, and the P„, states and P„, states are
computed from the DHF equations by removing
the 3s electron. The excited d„, states and d„,
states are computed in the field of the atom with
a 2p1g2 electron missing and with a 2p„, electron
missing, respectively. For example, the equa-
tions for the d, &, states are

dP„, 3 1 Y(nd; r)
Png+ 2c+ Gnat ~g+ g ~ pgqr 0 tdr r "d r

dQ„~ 3 1 Y(nd; r)+ —
(kk)„~+

— ' —e„~ P„d —W~(nd;r) = 0,r r " ci r

(10)

where

Y(nd; r) = 11 —2Y,(1s, ls; r) —2Y,(2s, 2s; r) —2Y,(2P, 2P; r) —3YQ(2P, 2P; r)+ ~»Y, (2P, 2P; r) —Y,(3s, 3s; x),

W~„q(nd;r) = ——(-', Y,(nd, 1s;r)[P„re„]+ —,
' Y2(nd; 2s;r)[P„or Q„]+—,

' Y,(nd, 2P;r}[P» or Q»]I
rc

+ [-,' Y,(nd, 2p; r }+ ~2Q2B Y,(nd; 2p; r)][P» or Q»] + ('s Y,(nd, 3s;r )[P~ or Q~]], (12)

and

Y (K, B;r)=rf;,(P„(r')P (r')+ Q (r')Q(r ))dr . ,
0

(13)

In our calculation, we may choose the incoming
photon as linearly polarized or as circularly
polarized. We have assumed the photon linearly
polarized along the 2 axis for the nonrelativistic
case so that there is an operator VQ (or an opera-

tor Z for the length form) in the photon operator
o, but we have assumed right-circularly polarized
photons for the relativistic case so that there is
an operator n, in the photon operator o.

Our lowest-order cross sections calculated
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FIG. 5. The diagrams having zero contributions, be-
cause we used the potential as mentioned in Fig. 4.

TAB LE I. Lowest-order contributions.

Ka
(a.u. )

0'p g
b

(10-20 cm2)

C
0'p y

(10 20 cm2)
pR

(10 20 cm2)

0.1
0.2
0.3
Q 4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2

6.612
1.632
0.058
2.375
5.933
8.622
9.875
9.959
9.339
8.411
7.395
6.435

4.976
0.963
0.299
3.318
7.222
9.992

11.151
11.061
10.249
9.127
7.947
6.839

5.307
1.033
0.234
3.234
7.033
9.766

11,239
11.334
10.190
9.194
7.892
6.800

a The ej ected electron momentum X .
Nonrelativistic results using the length form,
Nonrelativistic results using the velocity form.
Relativistic results.

from the nonrelativistic single-particle states by
using both the velocity form and the length form,
are compared with that computed from the rela-
tivistic single-particle states in Table I. These
results are essentially the same as the HF results
of Seaton. '

Over the energy range which we calculated, the
denominator in the diagram Fig. 3(b) never van-
ishes. The matrix element of diagram Fig. 3(b)
with q= 2P, kl = kd is about ten times larger than
that with q = 2P, kI = ks, where k refers to the
particle line and l to the angular momentum.
When the velocity form is used, the magnitudes
of matrix elements for the first-order diagram
Fig. 3(b) and 3(c) are sometimes as large as the
lowest-order diagram Fig. 3(a), but they are
opposite in sign so that there is a large cancella-
tion between diagrams 3(b) and 3(c). The sum of
them contributes about one-tenth of the lowest-order
results. The other diagrams Fig. 3(d) and (e) in
the first order are small when compared with the
diagrams Fig. 3(b) and (c).

In diagram Fig. 3(b) with q= 2p, kI = ks, the core
e~/ on state 2jp can be excited into the 3s state,

whereas the core electron state 2P,' is prohibited
from doing this as the 3s' is an unexcited state.

Using the velocity form for nonrelativistic
single-particle states, the matrix element of the
lowest-order diagram changes sign near the
energy 0.034 a.u. for the photoejected electrons
and causes a zero minimum of cross section. The
matrix elements of the first-order diagrams of
Fig. 3(b)-(e), however, do not change sign around
the minimum and this minimum shifts from the
energy 0.034 to 0.032 a.u. for the photoejected
electrons.

For relativistic single-particle states,
(p1/2 I/2I ~, I si/. , i/. ) an«p. /„». I ~, I sl/2 -I/2)
(p,/„„,~c/,

~ s,/„,/, ) come to zero at different
energies. This results in a nonzero minimum
photoionization cross section. Our estimated non-
zero minimum photoionization cross section by
including first-order correction is 4&10 "cm'
as compared with 9x10 ' cm' calculated by
Weisheit. '

For both the nonrelativistic cases, the cross-
section curve from the lowest-order contribution
is brought downnear threshold by adding the con-
tribution from the first-order terms, but is pushed
up at the short-wavelength side of the minimum.
The results of adding the diagrams of Fig. 3(a)-(e)
and then squaring the sum are shown in Table II.
We note that nonrelativistic results including first-
order correlations are quite similar for both ve-

TABLE II. Photoionization cross section for sodium
including correlation effects.

K 0'~ Pgy 0'~a b C 0' d

(a u ) (10-20 cm2) (1Q-20 cm2) (10-20 cm2) (]0-20 cm2)

0.1
0.2
0.3
0 4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2

4.759
0.785
0.401
3.714
7.954

11.Q39
12.408
12.428
11.608
10.409
9.050
7.759

4.634
0.733
0.424
3.689
7.950

11.169
12.508
12.474
11.500
10.185
8.668
7.307

3.583
0.345
0.897
5.190

10~ QQ1

13~ 369
15.200
15.411
14.120
12.992
11.483
10.217

2.309
0.413
0.363
2.972
6.655

10.051
12.133
13.119
12.709
11.413
9.931
9

Nonrelativistic results obtained by adding the diagrams
of Fig. 3(a)—(e) and squaring the sum. The length form
was used for dipole matrix elements.

"Nonrelativistic results obtained from the diagrams of
F.:. . . ."-I'a': '- ) with the velocity form.

Beia~~vi. stic results obtained from the diagrams of Fig.
3(a) —(e).

Final nonrelativistic results obtained by adding:ig. 3(a)—(e), Fig. 6(a)-(f), and Fig. 7(a)—(j), and then
,:quaring the sum with use of the velocity form.
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locity and length matrix elements, although they
are different in the lowest order. Of course, the
cross sections should be the same for both the
velocity form and the length form if the exact wave
functions for 4; and 4z are used in Eq. (2).

We have also included matrix-element contribu-
tions which are second-order in. H' as shown in
Fig. 6. We found that the main contributions are
from the diagrams of Fig. 6(a) with q = 2P,
k, l2 = k,P, k, l, = kP and with q= 2P, k, l~ = k,d,
k, f, = k,d and from the diagram of Fig. 6(e) with
q= 2P, kl = kd. The exchange diagram Fig. 6(b)
is small as compared with the diagram Fig. 6(a).
For example, the diagram Fig. 6(b) with q = 2p,
k2 l2 k28 k3 l3 k34 h as the same radial part inte-
gration as the diagram Fig. 6(a) with q = 2P,
k, l, = k,d, k, l, = k,d, but the former has an angular
factor 0.044 444 from the two Coulomb interactions
by summing over the magnetic quantum numbers
and the latter has an angular factor 0.888 888.

The diagrams of Fig. 6(a), (b), and (e) are the
first ones to have denominators with singularities
and were calculated by taking the principal value.
But denominators for the diagrams Fig. 6(c), (d),
and (f) do not vanish.

The diagram of Fig. 6(c) represents initial-
state correlation, since the 3s' hole line is ex-
cited to the particle line k, l, through two Coulomb
interactions with the core-electron hole line q
before the interaction with the photon. We note
that the diagram exists only when the particle line
k, l, is the k,s state so that total angular momentum
is conserved for the ground-state configuration.
For the photon interaction matrix (kP ( o [k,s), we
have to deal with the continuum wave function k,s
transition to the continuum wave function kP.
Since the continuum wave functions become si-

nusoidal in the asymptotic region, the value of
(kg[o ~ks) involves integration to infinity. But,
from the fact that the photon is only absorbed
within the atom, we expect to be able to use a
cutoff. We have chosen cutoffs such that radial
part of the Ss wave function becomes zero to 10 '
or 10 ', i.e. , around 15 a, or 30 a, from the
origin, respectively. We note that the matrix
elements (kP ~

o ~k,s) peak sharply (and are ~)
at ko k3 but the integration over k, should con-
verge. We found that the triple integration over
k„k„and k, for the diagram 6{c)is approxi-
mately invariant with respect to the cutoff radii
of 15 a, or 30 a„although the (kg [ D ~k', s) matrix
elements have different values using the two cut-
off radii. Et is often desirable to present both
length and velocity results for comparison. How-
ever, in calculating diagrams with continuum to
continuum dipole matrix elements such as shown
in Fig. 6(c) and 6(d), it is numerically more con-
venient to use the dipole velocity rather than the
dipole length form. This is because even when the
cutoff in the radial integration is used, the matrix
elements (k(zjk') and (k)&jdz(k') are rather
sharply peaked for values of k' near to k and it
becomes necessary to calculate many states k'.
The matrix element (k ~d/dz~k'), although large
for k = k', is much less sharply peaked than
(k ~z ~k') and so a much smaller mesh can be used
with the velocity operator. For convenience, then,
the higher-order diagrams were calculated only
with the velocity operator.

We have also explicitly calculated the diagrams
of Fig. 7(a)-(j) and have found that they do not
have large contributions. These contributio~e
might be neglected, but we have included ther

p

kala" k l~ 'P q

k)p

"k,p

'ik I (a)

-0 --0

(b) i0 0 . 0.

G 0

(d)
'

(e) (f)

FIG. 6. The dominant second-order open diagrams. FIG. 7. Some second-order open diagrams.
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our final results which are obtained by adding the
diagrams of Fig. 3(a)-(e), Fig. 6(a)-(f), and Fig.
7(a)-(j) for the velocity form, and then squaring
the sum. Our total final results are shown in
the last column of Table II.

20
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l I ) ) l
I I

~ 0~ a

IV. DISCUSSION AND CONCLUSIONS

The first accurate theoretical calculations for
the photoionization cross section of sodium were
the HF results obtained by Seaton. ' As already
mentioned, these calcuLations are essentially our
lowest-order results. The nonzero minimum in
the cross section is explained by including spin-
orbit effects. The HF results do not agree well
with experiment at the short-wavelength side of
minimum. This motivated us to include correla-
tions effects carefuLLy, with the hope of reconcil-
ing this discrepancy. We have included first-order
correlation corrections both with relativistic and
nonrelativistic states. The nonrelativistic calcula-
tions were carried out with both length and velocity
forms for the dipole matrix elements. All three
types of calculations were in close agreement
with each other, but did not differ greatly from
the HF results, and so the discrepancy with ex-
periment still remains. We also included second-
order correlation effects with nonrelativistic
states and the velocity form of the dipole matrix
elements. The discrepancy with experiment still
remains.

Recently, Weisheit' has calculated the photoion-
ization cross section for sodium using a core-
polarization correction to the dipole transition
moment and a model potential plus the spin-orbit
interaction. In Fig. 8 our results are compared
with those of Weisheit and also with the experi-
mental results of Hudson and Carter. ' Near
threshold our results are lower than those of
Weisheit and not in as good agreement with ex-
periment. Beyond the minimum in the cross sec-
tion, our results are in reasonable agreement with
those of Weisheit. Both calculations disagree with
experiment at the short-wavelength side of mini-
mum.

In Figs. 8 and 9 we have only presented our
velocity results. In Fig. 8 we have omitted the
length results because the figure would then be
cluttered. However, the length and velocity results
in lowest-order and with first-order Coulomb
corrections are compared in Tables I and II. It
is interesting that 0» and a,„ in Table II are very
close.

Previous calculations were also carried out by
Cooper, 2 who used a simplified one-electron model
based on the effective central potential obtained
from HF orbitals. His results gave too low values

O l40
Al'0—l2—

& l0—

uJ SM

cn
V)

O
0
O

2400 2000 l600 1200

near threshold, but had reasonable agreement with
experiment from the minimum to 6 eV for the
photoejected electron. Boyd' used a Hartree
potential, modified to include polarizability effects
and his results are shown in Fig. 9. Sheldon4 used
the quantum-defect method of Burgess and Seaton'
and obtained results in excellent agreement with

experiment from threshold to 6 eV for the photo-
ejected electron, but beyond 6 eV his results

N
25—

E
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Ol
'O

20—
b
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I
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I
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' I ' I

'
I
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I

' I
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4J I i I i I i I

0 2 4 6 8 (0 (2 IA 16

ENERGY OF EJECTED ELECTRON, ev

FIQ. 9. Photoionization cross section of sodium vs
the energy of the ejected electron. Curve 1 represents
the experimental results; 2, Sheldon; 3, Boyd (dipole
velocity); 4, our final results (dipole velocity).

PHOTON WAVELENGTH (A)
FIG. 8. Photoionization cross section of the sodium vs

the energy of incoming photon. Solid line, results cal-
culated by Weisheit (Ref. 6). Filled circles, measure-
ments reported by Hudson and Carter (Ref. 7). 00& and

0~~ are our lowest- and first-order results, respectively,
by using nonrelativistic single-particle states in the ve-
locity form.
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also disagree with experiment as shown in Fig. 9.
Our final results at the short-wavelength side of
the minimum fall between those of Sheldon and
Boyd as shown in Fig. 9. From 10 to 16 eV for
the photoejected electron, all the theoretical
curves decrease: Sheldon's curve from 15 &10 "
cm' to 10&10 ' cm'; Boyd's curve from 10&&10 '
cm' to 8X10 "cm'„our curve from 12x10 "
cm' to 10~10 "cm'. However, the experimental

curve increases from 20x10 "cm' to 23@ 10
cm'. This discrepancy is still unresolved, and
it is not clear to us that there are important dia-
grams which remain to be calculated. A recent
calculation by Chang" approximately included
higher-order diagrams by use of a semiempirical
polarization potential but also did not find the in-
crease in o at 10 eV for the ejected electron as
shown in Fig. 9.

*Research supported by the Aerospace Research Lab-
oratories, Office of Aerospace Research, U. S. Air
Force Contract No. F33615-69-C-1048.

~M. J. Seaton, Proc. R. Soc. (Lond. ) A 208, 418 (1951).
2J. W. Cooper, Phys. Bev. 128, 681 (1962).
A. H. Boyd, Planetary Space Sci. 12, 729 (1964).

4J. W. Sheldon, J. Appl. Phys. 37, 2928 (1966).
5A. Burgess and M. J. Seaton, Monthly Not. B. Astron.

Soc. 120, 121.
J. C. Weisheit, Phys. Rev. A 5, 1621 (1972).

VR. D. Hudson and V. L. Carter, J. Opt. Soc. Am. 57,
651 (1967).

M. B. C. McDowell, in Case Studies in Atomic Colli-
sions Physics 1, edited by E. W. McDaniel and M. R. C.
McDowell (North-Holland, London, 1969), p. 47.

9K. A. Brueckner, Phys. Rev. 97, 1353 (1955).
J. Goldstone, Proc. B. Soc. (Lond. ) A 239, 267 (1957).

~J. J. Chang and H. P. Kelly, Phys. Bev. A 5, 1713
(1972).

~2H. P. Kelly, Phys. Rev. 136, 8896 (1964).

~3H. P. Kelly and A. Bon, Phys. Bev. A 5, 168 (1972).
~4A. J. Glick, in The Many-Body Problem (1961 Bergen

International School of Physics), edited by C. Fronsdal
(unpublished); P. Longe and A. J. Glick, Phys. Bev.
177, 526 (1969).

~A. I. Akhiezer and V. B. Berestetsky, Quantum Elec-
trodynamics (U. S. GPO, Washington, D. C. , 1957),
p. 313.

~6A. L. Fetter and J. D. Walecka, Quantum Theory of
Many-Particle Systems (McGraw-Hill, New York,
1971), p. 83.

~TH. J. Silverstone and M. L. Yin, J. Chem. Phys. 49,
2076 (1968).

~ S. Huzinaga and C. Arnau, Phys. Bev. A 1, 1285 (1970).
~~M. Ya. Amus'ya, N. A. Cherepkov, and L. V. Cherny-

sheva, Zh. Eksp. Teor. Fiz. 60, 160 (1971) [Sov. Phys.—JETP 33, 90 (1971)l.
T. Ishihara and R. T. Poe, Phys. Rev. A 6, 111 (1972).
T. N. Chang, J. Phys. B 8, 743 (1975).


