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A three-body general-type rearrangement collision is considered where the initial and final bound states
are described by hydrogenlike wave functions. The solution obtained is for the first Born approximation
where the full interaction potential is taken into account. When the initial state is the ground state, it
is shown that for n/p, Z p 1, where n, p„and Z are, respectively, the principal quantum number, the
reduced mass, and the nuclear charge of the formed atom, the capture cross section at all incident en-

ergies and for capture into the s, p, and d angular momentum states behaves as C/n' + O(1/n'),
where C depends on masses and charges of the particles, the final angular momentum, and the inci-

dent energy. An analytic expression for C is given. It is shown that for the low-lying levels the 1/n
scaling law at all incident energies is only approximately satisfied. The only exception is for capture
into the s states according to the Oppenheimer-Brinkman-Kramers approximation. The case for the
symmetric collisions is considered and it is shown that for high n and high incident energy F, the
cross section behaves as 1/E'. Zeros and minima in the de'erential cross sections are given in the

limit of high n for electron capture by protons from atomic hydrogen, and for positronium formation

by proton-atomic hydrogen collisions.

I. INTRODUCTION

In the passage of charged particles through gases,
the main process for neutralizing the charged parti-
cles is the capture of electrons from the surround-
ing gas. Such passages occur naturally, for ex-
ample, in the diffusion of charged particles pro-
duced by a supernova explosion in the interstellar
medium, or in the diffusion of the solar wind
through the planetary atmospheres. Similarly, by
passing a beam of protons through a gas, highly
excited states of atomic hydrogen are produced.
The atoms through an electric field are conse-
quently ionized to produce a highly ionized plasma.
The recently observed so-called exotic atoms,
such as positronium, muonium, and protonium,
are other examples where rearrangement colli-
sions play an important role in their formations.

In the examples mentioned above the capture
takes place not only in the ground state, but in the
excited states as well. A large number of the cal-
culational methods which deal with the problem of
the rearrangement collisions more rigorously and
realistically than the first Born approximation
are mainly for capture into the ground state, and
occasionally the first few excited states. In this
respect mention should be made of the close-cou-
pling approximation of Bates' and McElroy, ' the
distorted-wave approximation of Bassel and Ger-
juoy, ' the impulse approximation of McDowell' and
Cheshire, ' the continuum distorted-wave approxi-
mation of Cheshire, ' the first-order Faddeev-Wat-
son multiple-scattering approximation, ' the
second-order Born approximation, ' and the corre-
spondence-principle method of Abrines and Per-

cival. ' In all these references, except Ref. S,
capture into the ground state of the formed atom
is considered, and except Refs. 5 and V, the sys-
tem considered is electron capture by protons
from the atomic hydrogen.

The most commonly used calculation for capture
into the excited state is based on a method which
is due to Oppenheimer, "and Brinkman and Kra-
mers, "whereby the first Born approximation is
used, but the repulsive potential between the pro-
jectile and the target nucleus is neglected. The
calculation of these authors (the Oppenheimer-
Brinkman-Kramers, or for short OBK, approxi-
mation) was done for capture into the ground state.
Extension to the excited states has been done by

ay, "Butler May and johnson '3 Hiskes '4 an
this author. " More elaborate calculations for the
first few low-lying states have been done by
Mapleton'6 ( using the full first Born approxima-
tion), Coleman and Trelease" (using the impulse
approximation), and Cheshire, Gallaher, and
Ta,ylor" (using the pseudostate-expansion approx-
imation.

It was predicted by Oppenheimer that when cap-
ture takes place into s states of the excited states,
at sufficiently high incident energies the cross
section falls as 1/n . This implies that at suffi-
ciently high energies the total cross section also
falls as I/n'. On the other hand, the same cross
section according to the binary encounter theory
should fall as 1/n' (Ref. 18a). It can be shown
without any difficulty that in the OBK approxima-
tion the capture cross section for capture into any
final angular momentum falls as 1/n' for suffici-
ently high energies. It similarly has been shown
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(Ref. 18b) that for rearrangement collisions with
heavy projectile and target nucleus, where the
second Born term at extremely high energies dom-
inates the first Born term, and the leading term
contributing to the cross section does not involve
the repulsive potential, the cross section also falls
as 1/n'. The energy region where the second
Born term dominates is above 100 MeV for pro-
tons on atomic hydrogen, and is seldom en-
countered in a practical situation.

It then becomes of interest to find the asymptotic
behavior with respect to n of a general-type re-
arrangement collision in the first full Born approx-
imation. In this paper by expanding the exchange
amplitude in this approximation in inverse powers
of n, it is shown conclusively that the cross sec-
tion for capture into the s, p, and d states, and
for the sum over all the angular momentum states,
falls as 1/n'. An error in a previous article by
the author" has been corrected in the Appendix,

apd the corrected result is in agreement with the
results presented here. It. is worth mentioning
that a recent measurement by Macdonald et al."
favors the 1/n' over the 1/n' behavior.

The question of validity of the first Born approx-
imation for rearrangement collisions has been the
subject of substantial studies. However, almost
all of these studies are restricted to the case of
the heavy particle projectile, where the trajectory
can be described classically, and the heavy target
nucleus. In summary it has been shown that in an
exact calculation for the P+H system the contri-
bution of the repulsive potential to the cross sec-
tion is on the order of the squared ratio of the
mass of the electron to the mass of the proton,
and therefore is insignificantly small. ' Also
it has been shown that for high incident energies
and the forward scattering angles, where the main
contribution to the total cross section comes from,
the terms containing the repulsive potential in the
sum of the first and second Born amplitudes can-
cel out, making the cross section up to the second
Born term independent of this potential. ' " It is
also significant to note that the second Born pro-
vides the asymptotically leading term with respect
to the incident energy. "'4 "'

The above consideration for the P+H system ap-
plies to an exact solution of the problem. It was
suggested by Jackson and Schiff,"and Bates and
Dalgarno" that as long as an approximate wave
function, as is the case in the first Born, is used,
the full Born is preferable to the OBK approxima-
tion. This is substantiated by the result that for
the P+H system the cross section according to the
full Born for the incident energies above 50 keV is
in excellent agreement with the measured cross
section, while the OBK results are larger by a

factor of 5 to 2 than either the full Born or the ex-
perimenta]. resu] ts."'"'

In the formulation that follows, for the sake of
generality charges Z,e and Z, e are assigned to the
projectile and the target nucleus, and hydrogenlike
wave functions are used for the bound systems.
In applying this to a particular problem, the ap-
proximate nature of the calculation should be kept
in mind.

It should be mentioned that sometimes the first
Born approximation is called the method of Jackson
and Schiff. However, since the calculation of
these authors cannot be considered a new method,
this terminology is not being used here.

In summary, in the calculation that follows it is
shown that the first Born amplitude for charge ex-
change can be expanded at all incident energies in
terms of the inverse powers ofn. The relatedcross
section is proportional to 1/n' plus terms proportion-
al to higher inverse odd powers of n. This implies that
the low-lying levels cannot be scaled according to
the 1/es law, irrespective of the value of the inci-
dent energy. From the practical point of view, the
analytic form for the exchange amplitude given in
the text would allow an order of magnitude estimate
for the cross section for a general-type rearrange-
ment collision cross section with capture into arbi-
trary states. This estimate is specially useful for
cases where no other calculation is available.

E(i,j) p, ,)(Z,Z, )' m;m,
(2)

where p. , and p, , are the initial and final reduced
masses of the system, E(i,j) is the energy of the
(i+j) state with the principal quantum number n,

II. BASIC DERIVATION

A. General expression for the amplitude

1. Capture into a axed angular momentum state

For generality let us consider two like-charged
structureless particles 1 and 2, and one oppositely
charged structureless particle 3. The rearrange-
ment collision is represented by 1+(2+3)-(1+3)
+2, where (2+3) a,nd (1+3) stand for the bound
hydrogenlike states of 2, 3, and 1, 3 respectively. "
Let us assume that the masses and charges of the
particles are given by m„m„m„and Z,e, Z,e,
-Z,e, where e is the absolute value of the electron-
ic charge. Similarly, let the initial and final rela-
tive momenta in the center of masses be given by
hk, and kk . Then the conservation of energy im-
plies that

p-2 y2 @2y2
'+E(2, 3) -E(1,3)
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A is the rydberg unit of energy, and m, is the
electronic mass.

The exact charge-exchange cross section o(i, f)
for transition between states i,f is related to the
exact wave function for the three-particle system
by

o(i, f)=2'@,' —„' ~ T(i,f)['d(-k, k, ), (3)
2m@

T(i,f) =(g(r„r„r,)[ V»+ V,J exp(ik, r, )Q(i, r»))

=(exp(ik, r, )(P(f, r»)l V» + V»lg(r„r„r, )),
(4)

where (C)(r„r„r,) is the wave function of the sys-
tem with r; the position vector of the ith particle,
V;& is the potential between the i and j particles,
and Q(i, r, ,) is the eigenfunction of the (j+)t,) parti-
cles in state i.

Different orders of the Born approximation are
obtained from the above expression. " The first
Born approximation is obtained by replacing the
total wave function by either its initial or final as-
ymptotic form. The two forms of T(i,f) then be-
come equivalent. " If we assume that initially the
atom is in the ground state and finally in the excited

nlm state, with nlm the hydrogenic quantum num

hers, in the first Born approximation (4) reduces
to25

T(nlm, V») = (2m)3[E(2, 3) -52B~/2p, »]
x U*(nlm, C)U(100, B), (5)

T(nlm, V») =4 tZ), Z, e' U*(nlm, C —p)

xU(100, B—p) —,,dp
(6)

where U(nlm, p) is the Fourier transform of
(P(nlm, r) defined by

U(nlm, p) =(2&) 3' e'P''((()(nlm, r)dr

B = (p, 23/m, )K, —k„C=k, —(p„/m, )k, . (8)

The explicit form of U(nlm, p) for the atomic hy-
drogen can be found elsewhere. 29 We modify this
form to describe the arbitrary hydrogenlike atoms.
Making use of the generating function for the Ge-
genbauer functions, we find the following conven-
ient form for U(nlm, p):

U (nlm, p) =F(nl, p) Y(lm, p),
2 (n —) —() &

'~' 2""(lvma'~'(aP)' ~" ' '&&' m —( —))
@=0

1 + p) n-1 —p, ) P+io)

(
x

I I p-io(
p, ) n —l —1 —y.)

o. =!J,;,Z;Z, /(m, na, ) ..

(10)

Through (9) and (10) and the identity"

E(2, 3) -O'B'/2p» = E(1,3) -O'C'/2 p, », (12)

the amplitude due to the attractive potential or the
OBK amplitude, Eq. (5), in the limit of large n

will reduce to the following simple form:

T(nlm, V„)= —2'"'Tr'~'(p, s/p»)Z, Z, ,e',

x(o) ~) ~ ( n)o'+' ![l( 2+!1)!]

x C-'-'g(l, C)Y(lm, C), (13)

where no and a. refer to the initial and final bound

states, respectively, and

By its definition Q lies in the first quadrant.
Equation (14) then shows that g(l, C) lies always
between zero and one. In particular, we have the
following limiting value:

g(l, C)-1, C»1. (15)

we see that

Another point of interest is the expansion of
T(nlm, V») in inverse powers of n for n ~. Mak-

ing use of the expansion

(P = (o./C)(l —o.'/3C') + O(o. '/C'), a/C «1 (16)

n+l ) '~' /l+v —1) n —v

(n —l —1) '=' ( v —1 j n —l —v

Through (13) we then find that for small l

T(nlm, V»)()(:n '~'+O(n ' ') o(/C«1. (18)

x cos[2(n —l +1 —2v)(p],

(p =tan '~/C, n-~ . (14)
For future reference we give the expansion of

g(0, C) to two terms in n:



KAZ E M OMIDVAR 12

, en ' 4 nn
g(0 C)=1 —' —+ ——n '+0(n ).

C 9 C
(19)

It should be noted that nn is independent of n.
Evaluation of T(Y») is algebraically more complicated. In this case we introduce q=C-p. Then with

the help of (9) and (10), Eq. (6) can be written

Z (nlm y ) 26+21 &-1/2g g &2(& ol)2/2 l )
(

(
)n-1-1n(n —l —1)!

12 1 2 0 ' (n+1))

(l+l)') ( n —1 —g
x g 2 6 !1,

"
~ ~ ~

ReS(nlm!2),
/=0

2 j ), n —l —1 —p,

where Re stands for the real part of a quantity, and

' '" (2 n —l —1 —2p.)
Red(nims, ) = Q ~

(—)'o.'!" '/' ' " " J(nlm!2v),
2v

(20)

(21)

"'o f(lm, q)q"""dq ""f(lm, q) dq~(n!ml v)
~

I 2 2&n+1 2)1 + 2(n-2)1 u 1/2-) 1-«+a'r
0

Y(l m, q) dqf (lm q):
~

)2[ 2 (g )2]2
A =B C

0
(23)

We notice from (21) that the minimum value of n —2l), —v —1/2 is equal or greater than 1. Also as q-o,
or q-~, the value of f(lm, q) approaches a finite value independent of q, or zero. Then the value of the
second integral in (22) is of the order of q, , where 1d is a number greater or equal to 1. Similarly, when

q is of the order c1, the integrand in the first integral is (22) is of the order of n 2!" 2" " '/2j. Then the
value of this integrand is of the order of n, where again ~ is greater or equal to 1. The second integral
in (22) can then be neglected compared to the first one.

Since in the first integral in (22} q lies between 0 and q„and q, «I, we are justified to make a Taylor
expansion of f(lm, q) with respect to q in the integrand of this integral. Then the integral can be evaluated
analytically term by term. Introducing y = o.2 +q', (22) can be written

1 1 (N) v+ —,'(l +M+1)) 2 1 "'0 dyJ (nl m p, v) = —g —f!")(lm, 0) g n+ 1-2 )1 ll-(1+@+1)/2+ y
P' =E X=0

(24)

J)( -1

Red(nlm!1) = g, f!")(lm,o)C(nl!1),
N=N

0

(25)

2(n —l —1 —2p, ))
(

v=0 2v )

( +-.'(l +%+1))X

where N, corresponds to the first nonvanishing
term of the series, and f" (lm, o) is the Nth de-
rivative of f(l m, q) evaluated at q = 0.

Combining (24) and (21) we obtain

rithmic terms occur in (24). This does not create
particular difficulty. But since the leading term
in the amplitude arises from ¹ l, the case
N & / will not be treated here.

Evaluation of C(nl p, ) is straightforward (cf. Ref.
30). For l = 0, 1, and 2 we find that

C(nO! ) =-,'~[25(j, O) —5(j, 1)],

C(nip, ) =~102[65(j,0) —45(j, 1)+5(j,2)],

C(n2p, ) = 0~1w[205(j, 0) —155(j, 1) + 65(j,2) —5(j,3)],

j =n —l —1 —2y, . (27)

(- )'
X

n —2y, —v ——.(l +K+ I)+)1 '

(26)

For N& l, and some values of A., v, and p, , loga-

Substituting from (25) into (20), the sum with re-
spect to p, can similarly be closed (cf. Ref. 30).
For the moment we consider only the leading term
of T(nlm, V») with respect to an expansion in in-
verse powers of n. For / =0, 1, and 2 we obtain
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(28)

(29)

(30)

( 00 )
-32vZ2Z2e'ao/ a /

12 C2( 2 +A2)20
642 2 3/2 3/2 6(m, 0) 2(4v/3}'~'AI'(lm, A)T(nlm, V„)=
~3 Z,Z,e'a() 'a' '(an) C3/ 2 A2)2 C2( 2 A2)3C (no+A ) C (no+A

2(+2m Y ) 2 Z pm & ~ / (mz)
—', 5(m, 0) —', (4w(4 —m')/3]' AY(lrr&, A) ( 4r/5) 0A'Y(2m, A))C'(a'+A')' C'(a'+A')' C'(a'+A2)3

f " (lm, 0) =
l~

I'(lm, q) g(" (q, 0) dq, (31)

where g"(q, q) is found through the expansion

g(q, q) =(C'+q' —2Cqx)-'(a2, +A2+q2+2AqX) '

= g q—&' '(q, q), x=C q, X=A. q. (32)
~ oNt

By differentiating the right-hand side of the first
line in (32) with respect to q, we find that g"(q, 0)
is a polynomial in terms of X"x", where p. +v=N.
Since both X and x have odd parities with respect

This completes the evaluation of the core ampli-
tudes for l =0, 1, 2. As is seen, these amplitudes
are given analytically in terms of the incident en-
ergy and the scattering angle 6)=cos 'k, k, .

We notice that the core amplitudes have the same
n and energy dependence as the OBK amplitude
given by (13). Because of the factor of a3/2 in both
amplitudes, the cross section for both the OBK
and Born behaves as 1/n'. The energy dependence
can be seen by noticing that at high incident ener-
gies C and A behave as E,' ', where E, is the inci-
dent energy. Then studies of Eqs. (13) and (28)
through (30) show that for capture into the final l

states the cross section behaves as Eo' '. An ex-
ception is the case of the symmetric collisions
(Sec. IIB) where, for appropriate energy ranges to
be discussed later, the cross section falls as E '
for all the angular momentum states.

It remains to show now that the next higher-or-
der term in T(nlm, V„) behaves as n "'. To show
this from (23) we can write

to the reflection of j through the origin, the parity
of g"(q, 0}with respect to this reflection is N.
From (31) it then follows that f (lm, 0) vanishes
unless l+Niseven. For agiven E, Nthentakes only
odd or even integers. Through(25) we then see that if
theleadingtermof T(nlm, V»)behavesasn 3/2, the
next higher-order term behaves as n ' '.

Since the higher-order term in T(nlm, V23) is
also proportional to n ', the higher-order term
in the cross section is proportional to 1/n'.

As a check on the validity of the foregoing de-
rivation, and to clarify an error which has led to
an erroneous conclusion in a previous publica-
tion, "Eq. (28) is rederived in the Appendix by a
different method.

To find the total cross section, Eq. (3) must be
used. By changing the variable of integration from
]5, , k2 to C', and using the explicit form of T(i,f),
the integral in (3) could easily be integrated in
terms of elementary functions were it not for the
factor g(l, C) in the QBK amplitude. Because of
this factor the total cross section should be ob-
tained numerically. However, for the symmetric
collisions (Sec. II B) and also when g(l, C)-1
(Sec. IIIA), analytic expression for the cross sec-
tion will be given.

2. Summation with respect to the angular momentum

Using a formula due to Fock" we can sum the
squared modulus of the amplitude with respect to
I,m, and find a closed expression. It will be
shown that at high energies the s states dominate,
and the total cross section behaves as 1/n'. From
(6) by introducing q=C-p we obtain

g ~ T(nlm, V»))2 = (4wZ, Z2e')',
,

U(100, A+q)U*(100, A+q')(C-q)-2(C-Q')-2 dqdq'

x QU*(nlm, q)U(nlm, q') . (33)

For evaluation of the sum with respect to Lm we use the sum rule for the four-dimensional spherical
harmonics"

8e'
QU*(nlm, q}U(nlm, q') = (34)

where I/ is a function of Q and q' given by
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4sin'2w =($ —h') +(q —7} ) +(& —& ) +4
and $qg}t are the Cartesian coordinates of a four- dimensional unit sphere related to q by

(3 5)

(
sin8cosp)

(P+q2 sln8 sing ' }( (P+q2
cos8 j

with 8 and Q the angular part of the polar coordinates of q.
By finding the form of U(100,p) from (9) and (10), Eq. (33) can now be written

g( T(nlm, F»)(2 =(4vZ, Z2e2)264m 4(o.,u)'n'
2 2,' 2,» . dqdq',

f(q, q') =(C-q) '(C-q') '[~'. +(A+q)'1 '[~'. +(A+q')'] '
(37)

(38)

The function f(q, q') remains finite as n - 0. Fol-
lowing the argument given in Sec. IIA1, we make
a Taylor's expansion of f(q, q'), and keep the zero-
order term, f(0, 0). Qn the right-hand side of
(37) the only term which depends on the angular
coordinates of q and q' is sinnw/sinw. Realizing
that sinnw/sinu is a scalar quantity, for integra-
tion over the angles of q and j' we can take the
z axis along q. Then, introducing cosy =q q',

Comparison of this with (28) indicates that for the
zero-order expansion of f (q, q'), the total cross
section is equal to the s capture cross section.
The higher-order terms of expansion of f (q, q')
with respect to q and q', as can be seen from (38),
lead to results which fall faster with respect to
energy compared to the zero-order term, and
therefore can be neglected.

dq dq' = ~ . siny dy.
'pl 8M' 'pl ~ () slnso

(3 9)

""sinnw - -, 4v ' sinnpsinnp'
clq dq

& „nsinw n sinp sinp'

Equation (37) can now be written

(41)

Q ~ T(nlm, V»)(' =2"(Z,Z, )'ea', 'fo(0, 0)

(
,

""sin(np)qdq '
2 2+q

For evaluation of the integral in (42) we break up
the range of integration into ranges 0 to q, and q,to, where q, is chosen such that n «q, «I. An
argument similar to one given following Eq. (23)
then shows that the integral due to the second
range compared to one due to the first range can
be neglected. The latter integral can be evaluated
and in the limit z -0 it approaches the value
(-1)" '2/2. It then follows that

( T( l ~ )(2
(327l'Z~Z2e ) BOD

C'(o.' +A') (43)

The variable of integration can be changed from
y to gg through the relationship"

cosw = cosp cosp'+ sinp sinp' cosy,

p=cos '(', ,') .

When the integration is carried out, me find that

B. Symmetric collisions

We refer to the charge-exchange collisions as
symmetric when m, = rn, . The resonance collisions
as defined by Bates and Dalgarno" refer to the
case when m, =m„Z, =Z„and the capture takes
place into the ground state. The resonance colli-
sion is then a special case of the symmetric colli-
sions. In treating this case we keep in mind that
quantum mechanically we cannot separate the ex-
change from the direct amplitude. The following
treatment is valid provided there is no considerable
overlap between the particles' 1 and 2 wave func-
tions.

It wa, s first recognized by Mapleton that in a
resonance collision, in particular in electron cap-
ture by protons from the atomic hydrogen, the
cross section at high energies behaves as 1/E' in-
stead of the gneral behavior of I/E2. However, the
1/E' behavior does not appear until the incident
energy is well above 100 MeV. Below this energy
the 1/E' behavior dominates. The similar case of
the exchange colbsion between positron and posi-
tronium has been treated by Chen and Kramer. '
The case of exchange collision between electron
and atomic hydrogen has been overlooked by both
authors. This case mill be treated here. In addi-
tion, we like to show that the 1/E' behavior also
appears for capture into the highly excited states,
and probably appears for capture into any excited
state. The excited states have not been previously
treated in the literature.
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We apply the results to the inelastic exchange
collision of electrons with atomic hydrogen, and
show that the high-energy behavior is given only
through the 1/E' behavior.

The 1/E' behavior as shown by Mapleton arises
from the baekscattering and is due to the core po-
tential. We then consider the cross section due to
T(nlm, V») only. I.et us introduce M = y, »/ms
= p. »/m, . From the definition of B and C we
find; that

(44)

grith reference to Egs. (28)-(80), and by taking
the z axis along C, we see that the cross section as
defined by (8) is of the form of a sum with respect
to i and j of an integral I(i, j) defined by

(45)

By changing the variable of integration in the above
equation from k, -k, to C', the integration can be per-
formedby elementary methods. It then is realized
that in the high-energy limit the main contribution

A A

comes from k, k, = —1, which corresponds to back-
scattering. In this limit we find that

I(i, , j)=[2(j -l)(I -M)'(I+M)"o. ', ' ' k', ~"") '.
(46)

Substituting from (28)-(30) into (8), making use of

the above equation, and summing the cross section
with respect to the magnetic quantum numbers, we

find the following high-energy limit capture cross
sections:

case all angular momenta contribute to the total
cross section, although as it can be seen from (47)
the contribution becomes progressively less as l
increases. In the nonsymmetric-case contribution
comes from the s states only.

10

1O-4

1p
—31

10 32

III. APPLICATIONS

A. Protons on atomic hydrogen

In Fig. 1 the differential cross section for cap-
ture into states of high s is plotted versus coso,
where 8 is the scattering angle. It is seen that as
is the case for capture into the 1s state the cross
section peaks in the forward direction both in the
Born and the OBK approximations. The cross sec-
tion also peaks in the backward direction for high
incident energies in the Born approximation as is
seen for 2.5 MeV incident energy. The magnitude
of the peak for the backward capture is less by
about S orders of magnitude compared to the for-
ward capture. This can be seen by comparing
Figs. 1 and 2. There is no backward peak for the
Born approximation at 25 keV, since collisions
are not strong enough. Since there is no nuclear-
nuclear interaction in the OBK approximation,
there similarly is no backward peak in this approx-
imation.

In Fig. 2 the differential cross section is plotted
for very small scattering angles. In the Born ap-
proximation the cross section becomes zero for
angles of the order of the electron to proton mass

n'o(ns)/ma', = -', 2'p, »(m, p, , )
'

10 1p 33

XZiZ2Z~(1+M) (1 —M) (E/R)

o(nP) =~(Z,/Z, )'o (ns), (47)

(x(nd) = ~~(Z,/Z, )4o(ns),

E/R»Z', .
In these equations E/R is the center-of-mass ener-
gy in rydberg units related to k', through E/R
= (m, /p, ,)a'P', with a, the Bohr radius. It should be
realized that the restriction on E/R given by (47)
is not restrictive enough. For each value of m,
and m, the next-to-leading term in (45) should be
worked out, and the validity criterion should be
given aeeordingly. This will be done for P +H and
e+H systems in the next section.

An important difference between the symmetric
and nonsymmetric collisions is that in the former
case capture into any final-state angular momen-
tum l behaves as 1/E', while in the nonsymmetric
case this behavior is 1/E"'. In the symmetric
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FIG. 1. Differential cross section forP+H(ls) H(ns)
+P, n2 »1. 8 is the scattering angle, 8 and OBK stand
for the first Born approximation, and the Oppenheimer-
Brinkman-Kramers approximations. 25 keV and 2.5
MeV are the energies of the primary protons.
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figure provides an upper limit to an envelope of
curves bounded from below by the x axis, each
curve within the envelope designating the ratio
of the cross section for a particular transition
to the cross section for the lowest member of
the transition.

If the excited-state cross sections at sufficiently
high energies were scalable from those of the
ground state by the 1/n'-law, the ordinates of all
the curves should approach unity in this energy
limit. However, except for the s captures ac-
cording to the OBK, this limit is not reached,
indicating the approximate nature of the 1/n'
law for the low-lying states in other cases.

Making use of the results which will be derived
shortly [cf. Eq. (50)] and the results of Ref. 12,
we can show that

100

—2.0 —1.8 —1.6 —1.4 —1.2 —1.0 -0.8 —0.6 —0.4 —0.2 0

. Iog (~/~0)—2

FIG. 7. Total cross section for ns, nP, nd, and their
sum in the Born approximation as a function of the square
of the relative velocity.

t
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log (v/vp)

FIG. 8. Ratio of the o(1s nl)/o(ls ~nol), n &&1,

where np —l +1, as a function of the squared of the rela-
tive velocity. The lower three curves are due to the
OBK approximation, and the upper three curves are due
to the first Born approximation.

n'ooa„(1s - ns)
1

n'oo~„(1s - nP) 4

ooa~(ls-1s) ' 8oo~„(1s-2p) 3

n'oo~„(1s - nd —2.025, —, /
27ooB~(1s - 3d)

(48)

Similarly, making use of (51) and a result of Ref.
25, we can show that

n'oa (1s- ns) -1.23, n-~ v/v -~ . (49)oa(1s - 1s)
Equations (48) and (49) substantiate the nonscal-
ability of the low-lying levels. The ratios in the
Born approximation for the P and d captures can-
not be found, since the high-energy limits of
os(1s-2P) and oa(ls-3d) are not available.

Another useful aspect of Fig. 8 is in throwing
some light on the simplifying assumption of Bates
and Dalgarno (cf. Ref. 26) that the scalings in the

Born and the OBK approximations are the same.
While this assumption simplifies many calcula-
tions, Fig. 8 clearly shows that this assumption
is not being satisfied.

It is of interest to show the connection between
the capture cross sections for the low-lying levels,
as worked out by other authors, and the asymptotic
capture cross sections as obtained here. In Figs.
9-11 the scaled cross sections n'o/(nao) for the P
+H system and for the final s, P, and d angular
momentum states are plotted versus (v/v, )'. As
expected from the statement preceding Eqs. (48)
and (49) and these equations, the cross sections
due to the low-lying levels don't approach their
asymptotic forms with respect to n even at high
energies. However, it is not understood why the
2s, 3s, 4s, and 5s curves converge into a single
curve at high energies. The same can be said of
the 3P and 4P curves.

Recently Khayrallah et al."and Bayfield eI; al. '
have measured electron capture by protons from
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proximation. The results
for capture into 1s through
5s states are obtained from
the calculation of Mapleton
(Ref. 16), the result for
capture into ns, n —~
states is due to the present
calculation. The asymptotic
cross section with respect
to energy is shown by the
dashed line.

I I I I I I I I I I I I I I I I I I 1 I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I i I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I 1 I I

06 08 10 12 14 16 18 20 22
LOG (v/vo)

2.4 2.6

the atomic hydrogen, where the capture takes place
within the quantum numbers n =13 to n = 30. Their
results are shown in Fig. 12. Their experimental
uncertainty is +30'%%uo. In the same figure results
obtained by the impact-parameter approximation
of Butler and Johnston, " and May" are also shown.
Shown also are the OBK results. The impact pa-
rameter and the OBK results are almost identical,
and cannot be distinguished on the graph. Finally,
using asymptotic form with respect to n, the cross
section due to the first Born approximation is also
shown. As was shown in Sec. II, correction to the
asymptotic form is of the order of 1/n'. It will
also be shown later" for n =13, by what percentage
the Born cross section has converged to its asym-
totic form. The discrepancy of more than a factor

of 3 between the first Born and the experiment can-
not be due to the use of the asymptotic form. In
the light of the fact that in the range 40-60 keV
incident energy the first Born is in excellent agree-
ment with measurement when capture takes place
to all n values from 1 to infinity, "the lack of
agreement in Fig. 8 is puzzling. This disagree-
ment suggests that the criterion for validity of
the first Born for capture into the highly excited
states is different compared to that for capture into
the ground state, and better agreement may be
obtained at higher energies. It should also be
noted that Jackson and Schiff scale the ground
state according to the 1/n' law to obtain the ex-
cited states capture cross sections, therefore
underestimating these cross sections (cf. Fig. 8).

C)
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b
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C4

FIG. 10. Notations are
the same as in Fig. 9, but
capture takes place into
the P states. The results
for capture into 2P, 3P, and

Q states are due to Maple-
ton (Ref. 16).
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An accurate estimate of the excited-state cross
section should modify the total cross section of
these authors.

Improvement in the first Born approximation
has been obtained by Band, "who orthogonalizes
the initial and final wave functions of the system.
In the range 50-60 keV his calculated cross sec-
tion agrees with the measurement within the ex-
perimental errors.

In the limit of high energies the total cross
section can be found analytically. The difficulty
in carrying out the integration with respect to the
scattering angle is the factor f(l, C) in the OBK
amplitude given by (14). However, in the limit
indicated by (15) the integration can be carried
out. For the P+H system the major contribution
to the cross section comes from small scattering
angles. Then following H. Schiff" we expand C'
and (B—C)', which appear in the integral expres-
sion for the cross section, in terms of this angle,
and keep the leading terms. Vfe then find the fol-
lowing values for the cross section:

o(ns) =o»K(ns)[1 —,Z, a'+2+, Z', a'],
o(nP) =oosK(nP)(1 —-,'Z,a'+,—",, Z,'a'),
o(nd) =o»K(nd)(1 —0.4648Z, a'+0.07941Z ,'a'),
n'oo, ~ (nl) 2""' '(2l +1) l! ' Z'+ "Z'

5 + [ (2f +] ) t s12+2lalo+2l

a =1+Z',s ', s =v/v, »1. (50)

In these expressions o and ooBK stand for cross
sections in the Born and OBK approximations.

For Z, =1, which corresponds to the P+H sys-
tem, (50) simplifies and we get the following ratios:

)0—1

10

10
10 20 30

E(Inc j/KeV

40 50 60

FIG. 12. Sum of the capture cross sections for
P +H(1s) H(n ZL) +P,I =13-30 according to the measure-
ment designated by Ex(BKK) (Refs. 33 and 34), impact
parameter designated by IP (Refs. 35 and 36), OBK, and
the first Born approximations. The sum designated by
a~ is in units of A . In the figure the normalized data of
Ref. 34, which are slightly lower than Ref. 33, have been
used. The error in the experimental data shown by the
error bars is +30/g.
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=0.811, =0.684,o,„(ns) ' c, (np)

=0.615, s»1.
~ogK(nd)

(51)

o'(ls) 1.23x10'
ra', (E/R)' (53)

By putting c=Z, =Z, =1 in (52) we see that the co-
efficient of (E/R) ' in (52) is 15.9 times larger
than a similar coefficientin(53). This canbe taken
as an indication that the ground state cannot be
scaled to the highly excited states.

Assuming that protons are distinguishable, we
can also compare cross sections for direct and
exchange excitation for the p +H system with a
highly excited final state. For the direct excita-
tion we have"'"

(54)

A(ls-nl) =6(l, 1)-', [(nl ~Z, r/aJ ls) [',
where A(ls-nl) and B(1s-nl) are atomic con-
stants independent of the nuclear charge and py
is the reduced mass of the system. Using the
values of these constants, "for Z, =Z, =1, and an
incident energy of 100 MeV, we find that

It is interesting to compare the first of these equa-
tions with a similar expression for capture into
the ground state given by Jackson and Schiff, which
is a(ls)/ao, „(1s)=0.661.

Finally, let us investigate the E ' behavior for
capture into the highly excited states. This be-
havior for capture into the ground state has been
investigated by Mapleton. " Applying Eqs. (47) to
the p+H case, we obtain

n o(ns) 32cZgZ2 E/R 5/3

mao 3e(EQ)' '

(52)

where the validity condition is obtained by con-
sidering the next-to-highest term in (45). c in (52)
is the ratio of the target nucleus mass to the proton
mass. A similar expression fora(np) and o(nd) can
be obtainedusing(47). It shouldbe noted that the valid-
ity condition in (52), consistent with the condition
given by Mapleton, indicates the 1/E' behavior
appears for energies well above 100 MeV. The
result given by Mapleton is

However, as Z, and Z, increase, the exchange
effect becomes more important in a complicated
way. Using our simple model, from (47) and (53),
the first ratio for example increases as (Z,Z, )'.

For relativistic incident and bound electron en-
ergies, Mittleman4' has shown that the cross sec-
tion behaves as 1/E

For the exchange scattering of electrons from
the atomic hydrogen, as will be discussed in the
next section, the 1/E'behavior appears at much
lower energies, and there is no 1/E' asymptotic
behavior.

B. Exchange scattering of electrons from the atomic

hydrogen

Since in this case m, =m„we also are dealing
with a symmetric collision. This case has not
been treated by Mapleton. A proper treatment
for this problem when the electron spins are not
polarized, similar to the p+H problem, would be
to use an antisymmetrized wave function in which
case the direct and exchange cross sections can-
not be separated from each other. However, to
get an idea about the relative size of the exchange
to the direct amplitudes, we use (13) and (47) to
get

n'op~„(ns) 2'Z,'
va' (E/R)' '

(55)
n'o(ns) 2'

ma', 3Z, (E/R)' '

where E/R is the incident energy in rydbergs.
Then 1/E' behavior becomes valid at much lower
energy compared to the P +H case. Expressions
similar to (55) can be found for P and d captures

Comparison of (55) and (54) shows that the ratio
of exchange to direct cross section for the e+H
system increases as S„ the nuclear charge of
the H isoelectronic sequence. For 20-Ry:electrons
on atomic hydrogen this ratio is 0.115.

At sufficiently high impact energies where the
two electrons of the system are distinguishable we
can get the following picture for the differential
cross section. For forward scattering angles
where the direct scattering dominates the differen-
tial cross section behaves as lnE/E with E being
the impact energy. 4' For the backward direction
the exchange scattering with a $/E' behavior dom-
inates.

C. Exchange scattering of positrons from positronium

o~"(ns)/u (ns) =0.85x 10 ",
v *(np)/ (nupD) =0.22xl0 ",
v "(~)/o~(nd) =0.67x10 " .

This problem has been treated by Chen and
Kramer, considering capture into the ground state
and applying the first-order Faddeev-Watson
multiple-scattering approximation. ' As a result of
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the e'-e' interaction, they find that at high energy
the cross section behaves as 1/E'. We like to
show' that similar behavior is obtained using the
first Born approximation and considering capture
into the highly excited states. By putting m,
=m, =m, =m, and making use of Eqs. (47), we
find that

n'o (ns) 2"
-81(E/R) ~

'/'"' (56)

where E/R is the center-of-mass energy, equal
to —, of the incident energy. Similar expressions
can be obtained for capture into the np and nd
states. If the first Born cross section as given
in Ref. 7 for capture into the ground state is found
from a, graph in this reference, the coefficient of
(E/R) ' on the right-hand side of (56) for n =1 is
found to be 1.66, while this coefficient in (56) is
25.3. The ratio of the two coefficients is 15.2,
almost the same as this ratio for the P+H system.

D. Positronium formation in e +H collisions

The difficulties arising in the first Born approxi-
mation in the case of the heavy particle projectiles
does not arise in this case, and the validity of this
approximation is less known. For capture into
the ground state it is found that"'" the cross sec-
tion given by the first Born approximation is an
order of magnitude smaller than that of OBK.
There are some indications from the measure-
ments"' "' that the first Born cross section is
also too large at the threshold of Ps formation.

By putting m, =m, =electron mass, m, =proton
mass, and Z, =1 in the general formula (13) and
(28)-(30), and using (3), appropriate cross sec-
tion for capture into the high n can be obtained.
The cross sections obtained should provide use-
ful order-of-magnitude estimates for captures
into the s, p, and d states.

Unlike the p+H case, few details will be given
here. It is of interest, however, that as in the
p+H case, the differential cross section for s
captures according to the first Born approxima-
tion goes to zero for some scattering angle.

To show this we equate the right-hand sides of
(13) and (28) in the limit r„(0,C)-1. This limit
is satisfied if a,C,„»1. From (8) we see that
C' = k', + & 0', —k', 0, cos ~. Therefore aoC,„»1 cor-
responds to a,k', » l. Under this condition and

Z, =1, the angle at which the zero occurs is given
by C' = 2B C. Using (8) we then f ind that

of this zero in the differential cross section is of
great interest. As the nuclear charge of the target
increases, this angle should decrease.

IV. CONCLUSIONS

In the calculation presented two objectives have
been achieved. First it has been established that
in the full Born approximation the 1/n' scaling law
also holds. The main difference from the OBK
approximation is that in the latter approximation,
and only for capture into the s states, the 1/n' law
holds for any n, provided the incident energy is
large enough, while for the full Born the 1/n' law
holds only for large n.

Secondly, in the limit of high n an analytic ex-
pression was obtained for the differential cross
section with respect to the scattering angle for a
general-type rear rangement collision. The total
cross section can be obtained analytically or by
means of a single numerical integration. The
existing analytic expression will allow, within the
validity of the Born approximation, an order-of-
magnitude estimate for capture cross sections into
any excited state. As is shown (cf. Fig. 8), for
estimating the extreme case of capture into the
ground state, or the lowest n value corresponding
to capture into the p or d angular momentum
states, the estimated cross section in the region of
interest is off by a factor of 2 to 3, but the discre-
pancy decreases as n gets larger, and the error
involved is of the order of 1/n'.
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APPENDIX

The error in Ref. 19 is in choosing a variable
z axis for the evaluation of the integral in (5) of
this reference while the integrand is not scalar ex-
cept for the s states. Here we show that for the s
states one can use the results of Ref. 19 to obtain
Eq. (28) of the text. Keeping in mind the transfor-
mation between the spherical and parabolic hydro-
genic wave functions, 4' we can write

do(ns)/d8=0 for &=29'. (57)

The angle is much larger than the similar angle
for the P +H case. The experimental verification

" ' ( 2(n —1) p(n —1)

2(n, -n, ) 2(n, —n, ) 0)
x T(n 0n, V»), (A1)
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where the large parentheses on the right-hand side
denote the 3-j symbol, and T(nn, o, V») is given by
Eq. (15) of Ref. 19.

A phase correction should be applied to Eq. (8)
of this reference by replacing 2n, in this equation
by n, —n, . Since n, —n, is even for odd n and is
odd for even n, the derivation that follows Eq. (8)
is valid for odd n. For even n the derivation should
be slightly modified, but the final result is the
same as the one which will be given here.

Then for odd n, Eqs. (7) and (15) of Ref. 19 imply
that

T(nn, n, m, V») = T*(nn,n, m, V»)

= —T(nn, n, m, V»), n, o n, . (A2)

The interchange of the first two columns of the 3-j
symbol is equivalent to the interchange of n, and

n, . This interchange leaves the 3-j symbol invari-
ant. Then the right-hand side of (Al) vanishes
unless n, =n, . It follows that"

( 2(n —1) 2(n —1) 0)
o o oi

x T(nn, =n, o, V„)
32 Z Z e»~2~3~2

( )(tl 1)/2 1 2 0 (A8)C2[a', +(5 —0)']' '

where for T(nn, =n, o, V») Eq. (9) of Ref. 19 has
been used. Except for a phase factor, (AS) is the
same as (28) in the text.

The error in Ref. 19 was discovered through a
correspondence with R. A. Mapleton. Y. B. Band
had independently recognized the source of the er-
ror (cf. Ref. 88).
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