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A comprehensive theory of electron scattering from atoms and ions at high energies is formulated,

incorporating the coupling of the scattering system to the radiation field. In particular, the photocapture
process is discussed in detail, which can proceed either by a direct radiative capture or by dielectronic
recombination following a radiationless capture into excited states. The latter process involves a collisional

excitation of the inner-shell electrons of the target, followed by radiative decay of that excited state. The
required sum over excitation probabilities to all the allowed bound states is estimated using the semiclassical

projection operators and the single-particle model for the target system. A preliminary estimate of the cross
sections for these modes of capture is obtained for the case of a hot-electron plasma interacting with highly

ionized impurity ions.

I. INTRODUCTION

%hen high-energy electrons collide with ions of
asymptotic charge Zl, many reaction channels
are open for the final state of the system, such as
the elastic, inelastic and the ionization channels.
In particular, the coupling of the system to the
radiation field produces one or more photons in
the final state; thus

e +A. (Z c,Z, )- e' +A (Z c, Z, ) + y (1.1)

(1.2)-A(Zc, Z, —1)+y

-A*(Zc, Z, —l)-A(Zc, Z, —1)+y

(1.3a)

-A(Zc, ZI}+e,
(1.3b)

where Zl is the degree of ionization of the target
A and S& is by definition the core charge. The
process (1.1) is termed bremsstrahlung for a
composite target and has been the subject of
many studies. '' It is distinguishable from the
other processes by the presence of a continuum
electron and a photon in the final state, while
the target atom may or may not stay in its ground
state. Direct radiative capture' is represented
by (1.2), and dielectronic recombination' by (1.3a)
which competes' with Auger emission (1.3b).
Again, the atom in the final state need not be in
the ground state, and all possible excited states
have to be summed incoherently in the estimate
of the reaction cross sections.

The radiative processes (1.1)-(1.3a) are of
special interest here, because they are important
mechanisms for energy loss in a hot-electron
plasma. ' For example, electrons of high velocity
in a fusion device are spatially confined by a
strong magnetic field. However, photons pro-

duced by these electrons through the processes
described above have a much longer mean free
path to escape from the confinement area, thus
continuously cooling the plasma itself. The rate
of cooling depends critically on the relative cross
sections for these reactions, in addition to other
factors such as the density of the electrons and

impurity ions. It is the purpose of this paper to
formulate a comprehensive reaction theory which
includes these channels, thus providing a sys-
tematic framework for more detailed future cal-
culations of these cross sections.

The general formalism for the reactions (1.2}
and (1.3) is presented in Sec. II in the case when

typical radiation widths involved are rather small,
so that the target system is not affected by the
radiation field in the lowest order. The brems-
strahlung (1.1), and other processes which are
higher order in the coupling to the radiation field,
are considered in Sec. V.

The cross section for direct radiative capture is
considered in detail in Sec. III. The target system
is represented by a simple single-particle model
of Green et +l.,' while the sum over many avail-
able excited (bound} states is carried out using the
semiclassical projection operators' developed
earlier. This is followed by a detailed discussion
of the two-step process, dielectronic recombina-
tion, in Sec. IV. Obviously, for complex atomic
targets, specific autoionization levels are not
well known except in some special cases, and

perhaps it is not even possible to single out a
subset of these states. Thus, we have considered
both the isolated and overlapping resonance states.
The earlier work' on multiple ionization of atoms
and ions by high-energy electron impact is modi-
fied slightly to obtain estimates of this effect in

the nonresonant situation (with the actual numeri-
cal estimate given in Sec. Vl).
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Refinements and extensions of the theory pre-
sented in Sec. II are considered in Sec. V, where
higher-order effects in the radiation coupling
are presented, including those corrections to the
simple bremsstrahlung process. Throughout the
formal discussion, however, the nonradiative part
of the interaction is treated exactly to all orders.

Finally, a crude estimate of the dielectronic re-
combination cross section is presented in Sec. VI
and the results compared with the value for direct
capture. Although the calculation presented here
is useful in clarifying the physical picture of what
is going on with the system, the present paper
puts emphasis on a formal and unified develop-
ment of the theory and on collecting some of the
methods which are useful in actually carrying
out the more detailed calculations.

are immediate, as e.g. , with H„, =H+D, ,
~~' =4;»+GD»@,»+ (GD»)'4&»+

where

G = (E+ i@—H) ' (q -0') .

(2.5)

4 (r„r)=P@~Q4(—=@„) (2.8)

The form (2.5) will be considered further in Sec.
V.

The above formulation presupposes that the
effect of the radiation field on the atomic structure
is sm. all so that +;, and +~ are determined in the
absence of the coupling to the radiation field. Now,
consider the solution of (2.4) for +,», which we
simply denote without the subscripts. It is pure-
ly a scattering problem, for which we follow the
usual reaction theory formulation. ' Thus,

H. THEORY OF RADIATIVE CAPTURE AND

RECOMBINATION

We consider the collision process in which an
electron of energy E, collides with ions of core
charge Z~ and degree of ionization Z~. We are
interested in the capture of the electron with
emission of a photon. That is,

with

P = (0(r)) ( g(~) (r'), Q =1, -P, (2.7)

e+A(Zc, Z, )-B(Ze,Z, —1)+y . (2.1)

The matrix element for this process to first order
in the coupling with the radiation field is given by

M»-&@s ID, I @,»&, (2.2)

ZA

D, =-e+ 7 r, ~. (Z„=Zc-Zx). (2.3)

Throughout the paper, we omit the explicit photon
state indices from the wave functions and alsodhe
photon operators from D, to simplify notations.
The correct normalization for the photon-electron
coupling is given by o' . In (2.2), 4', » is the initial
wave function, with full interactions between the
e andA. taken into account, and +~ is for the
final (bound) state. Thus, +„satisfies

(H —E) 4', » =0,
where

H=H„(r». . . , r~)+&, +V(r», r)+H„d

(2.4a)

where D, is the electromagnetic coupling operator,
which, in the long-wavelength nonretardation limit,
is given by

The g„'s are properly antisymmetrized for all the
target electrons. The scattering equation (2.4) is
then written as

P(H- E)P@=-PH4,
Q(H E)Q+ = —Q—HP+ .

(2.8)

(2.9)

We remark here on the problem of antisym-
metrization between the projectile electron and
those electrons in the target atom. Since the el.ec-
tron energy is quite high (E; &1000 eV), we may
be able to neglect the antisymmetrization when Z~
is small. On the other hand, when Z~&10, the
inner-shell electrons are bound with the energies
of the same order as E; and thus the scattering is
no longer in the "high energy" regime. (However,
when we introduce the single-particle model for
the target states („, the problem may be less
critical. ) In so far as the formal theory of this
section is concerned, this approximation is not
needed, as we will simply assume that a proper
form of P, different from that given in (2.7),
exists. " This question will be discussed more
fully in Secs. III and IV, however. The set of equa-
tions (2.8) and (2.9) may be solved formally using
the Green's functions

and similarly

(H-E» )@»„=0. (2.4b}
and

G =[P(E+i7l —H)P] (2.10)

The effect of the coupling to the radiation field is
neglected in (2.4a) and (2.4b); the modifications
necessary to include the higher-order effect in D,

Go = [Q (E+iq —H)Q] (2.11)

The inelastic channel Green's function G~ can in
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turn be represented in terms of the eigenstates
of QHQ, defined by

q[H- a„]qC„=0, (2.12)

Go =Goe+QC )(E —8 ) '(QC (2.13)

where G~ represents the "smooth" background
contribution. The effective optical potential for
the elastic channel may be defined in the usual
way" as

U =PHGHP = U~ + U„, (2.14)

where QC'„describes a multiply excited (auto-
ionization) state. As will be seen in Sec. IV, an
isolated state QC'„with the energy 8„=E assumes
a dominant role in G~. In such cases, we may
conveniently split 6 into two parts as

transitions (i.e., sum over f} .(ii}As electrons ap-
proach the target, they can radiate by the brems-
strahlung process, i.e., continuum- continuum
transitions (real transitions). This will be dealt
with separately in Sec. V, and is related to the
sum over f discussed in (i). (iii) The effect of
the radiation field on the atomic scattering system.
This is neglected throughout.

Now we explicitly consider all the kinematic fac-
tors which are needed to obtain cross sections
from the matrix elements we have defined above.
To begin with, the transition probability for the
process i -f is given, to first order in the elec-
tromagnetic coupling, by

W, q
--(2v/k)py I My(l ', (2.22)

where
where U„ is the resonant part of U involving the
Qc'„state. As it is in general extremely difficult
to estimate U or U, , we introduce an approximate
phenomenological potential U~ which simulates
U in the elastic channel and the scattering equa-
tion

M~~ f

and

K'=X +K'

(2.23)

(2.24)

P[H —E+Ur]P4' =0

with

(2.15)

P+'=-4.(rW,'(r, ) . (2.16)

The function P4 may be compared with P4
defined in terms of U, as

P[H+U, -E]Pe"=0 (2.17)

and the corresponding Green's function defined by

P[H+U, —E]PG ~P =-P . (2.18)

Since both these functions have to be introduced
phenomenologically in actual calculations, we will
use them interchangeably, P+ =P+ '.

The collision amplitude M« for the transition
i (= ik)- f (=Bm) is given to first order in D, by

for the electric and magnetic couplings
2A x /2

8 271'0 - ikx'=
m

~'p e ~ ' +H.c.
1=0

~ (ice)(2m')"'-„„-

(2.25)

The differential cross section is then given by

v~, dQ = W~/E, = (2w/-@)IM„I'(p, /P, ) ~ (2.26)

The explicit forms for the final-state density

p& and the initial-state flux &, depend on. the
normalization of +, and +& in the matrix element
JVf i

For the photocapture process of interest here,
we have

Mgg =(+y ID. I @;&, (2.19)

which may be conveniently written in the form
p

p&
— » dQ and E, =— (2.27)

MI; =(+~ I D~l P4'( )

Moog
=( +g I D. G'H IP+ ~'& .

(2.21)

Here we have neglected the following effects: (i)
Radiative capture to excited states, followed by a
cascade down with y emissions and with the target
still in the ground state. This process will be
included in the direct radiative capture amplitude
by summing over all the allowed excited-state

M~, = ( 4~ I D, I P4', ) + ( %~ I D, GoH
I P4q )

=M~) +M~, (2.M)

where

for the case in which +,. and +& are normalized,
for example, as

4', =e'p' ' "$0(r},
(2.28)

In the absence of retardation and in the electric-
dipole approximation, +' reduces to a form,

K' =3C,' D, , n = (2@@~/~' (2.29)

where D, is defined by (2.3) and we have used
in (2.29) the usual replacement p, -imu&r, with-
out making a distinction between ~ and the fre-
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quency obtained by the projection of p, on the
polarization axis. Inserting (2.27) into (2.26},
we obtain the capture cross section, in the same
approximation,

e.g. , by Bethe-Salpeter' for the capture to the
1s state from the P-wave continuum; for the
polarization of the emitted photon in the s direc-
tion, we have

(2.30)

By detailed balance, the photodisintegration
cross section is related to the above by

2'Zeo exp[ —4(Zo /k) arctan(k/Z o)]
3(Z»c+k')' 1 —exp(-2mZo/k)

ocaP @chic Fd ~g k gc
0'dis &u~u Fc dc P A

(2.31) 2' n" ' exp( —4n' arccotn')
3Zc4 1+n" 1 —exp(-2nn') (3.3)

where g, and g~ are the appropriate statistical
weighting factors for the capture and disintegra-
tion processes.

Finally, we note that the dipole approximation
without retardation, (2.29), may have to be im-
proved eventually as higher-energy electrons
are involved with subsequent emission of high-
energy photons. However, for inner electrons
of the target ions, the interaction size a is rather
small, and the relevant ka factor may still be
considerably smaller than the unity, if the photon
energy is not too high.

III. DIRECT RADIATIVE CAPTURE

In this section, we derive the amplitude for the
direct capture of electrons by ions of core charge
Z~ and the degree of ionization Z~. The amplitude
is given by (2.21) in the dipole approximation

(3.1)

where, again omitting the photon state function
for simplicity, we have

(3.2)

the final bound state specified by the quantum
number m. The approximation (2.29) in the
original matrix element is not necessary here,
but used for convenience of notation. When ~
corresponds to the lowest unoccupied state, ~«
describes the one-step capture process. On the
other hand, for m corresponding to any of the
higher excited bound states, M&; implies a radia-
tive capture followed by further cascade transi-
tions with additional photon emissions. This latter
category of processes should eventually be in-
cluded in the energy-loss estimate. (The only
process which is not explicitly included here is
then the bremsstrahlung corresponding to the
continuum- continuum transitions. This will be
considered in Sec. V.)

The simplest case described by (3.1) would be
the capture by a completely stripped ion, with

Z~ =Z~. In this case, the dipole matrix element
can be calculated exactly analytically, as given,

n = —Z„/ka„Z„=Zz +1 or Zz,
o „=argi'(I, +1+i o.) .

The function u which appears in (3.3) is normal-
ized as'

u =u„. (2/n'k)'~'

and thus

(3.6)

Of course this difference in the normalization is
compensated by the change in the expression for
the incident flux.

A slightly different form for the capture cross
section is also given by Bond, Watson, and
Welch. " This form will be discussed in Sec. VI.

For Z~+Z, , we have one or more electrons
attached to the target ion in addition to the in-
coming electron. The effective potential that the
incoming particle sees is then no longer pure
Coulombic, although, for Z~ large and Z~ &Z~,
the Coulomb approximation is still effective. We
may take the screening effect into account by a
simple single-particle model' defined by the poten-
tial

V = (I/x)[(Z —Z —1)Y(r) —Z ] (3.6)

where

k =ME» —= v'2ii',

with

W=E»/2 (a.u. ) and n'=Zc/k .
To compare the expression (3.3}with that in

(3.1), we have to adjust the normalization of the
continuum wave function. In (3.1), we have used
the function u, which behaves at large & as

u», , (r)- sin(kx ——,
'

L, w+ 5, , + &« —o. ln2kr)

x Y, (6t, y)/kr, (3.4)

where
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Q(r) =[H(e" i" —1)+1]
H= n (Zc-Z~ -1)"d,

where

v =0.4, ~ =1.00,

r2 +2V+ e„, 8„, r ~0l~(ii+1)
n y nip

(3.7}

As Z& gets large, it is more convenient to re-
scale' the variable & in the actual calculation of
these radial functions; thus we set

and the parameter 4 is tabulated in Ref. 7, with
the value, for example,

d =0.500, Zc =10

d =1.154, Z~ =20, etc.
Thus, the radial-parts of u„, and u„& are given byn ] n

g

for screening. '
The direct radiative capture cross section &

will be estimated for the cases Z~ =20 and 40,
with various degrees of ionization Zi . The cal-
culation is crude, but gives a reference point
with which we can compare the magnitude of the
dielectronic recombination cross section. Where-
ever possible, the numerical integration result
is compared with the exact form obtained from
(3.3). The electron energy is taken to be 1 keV.
The details of the numerical results are dis-
cussed in Sec. VI.

As noted previously, the results given by (3.3}
or by (3.9) do not include the possibility of capture
to many of the allowed excited states, followed
by cascades with additional photon ernissions.
Although the initial capture to outer shells is
known to be less likely, it is of interest to take
into account these processes as well by summing
over all the allowed states. Thus, by carrying
out an incoherent sum,

&- s =2&'e,nl

V-V(r-s, d -d'=2v'e„, d) .
Equation (3.8) replaces (3.7) by

(
2V(s) 1 (l~ +-,')' —~

4 s
nlrb

(3.8)

=&P+'Iu, A, D, IP+') . (3.10)

d 2V(s) (I, + I )~ —4

Therefore, we have

(3.7a)

In (3.10), As is the appropriate projection opera-
tor. It is not always possible to obtain A~ in a
simple and usable form. However, a semiclas-
sical approximation to this operator is possible,
as given by'

M, =&4's
I D, l 4', (r)) = u*, Zu„, ,(r)d r

=C» r'R~, (r)Rai dr,j p

where

Cr i, =
ly p l]p

(3.9)
where

= (2 w '/u') (s inGs —sinG„),

u= r —r', v =& r+r'

Gs =uPs(v)/5, G~ =uP„(v )/I',

Pa(v ) = ( 2 m[Es —V(v)]j '~2,

P„(v ) =(2 m[E„—V(v)]] 'i',

(3.11)

(3.12)

L~+1
[(2lq+1)(21, +1)]'" '

L

[(2 l~ + 1)(2 l, + 1)]' I' '

The form (3.6) has recently been improved' to
take into account the effect of screening for dif-
ferent subshells. However, we prefer the simpler
form (3.6) for the simple reasons that our esti-
mate will be only preliminary and further that the
wave functions thus generated for a given (Zc, Z, )
would be mutually orthogonal. For different
shells, we could also use the effective charges

and where &~ and E„are the upper and lower
bounds of the spectrum projected on by A~. A

slightly more convenient form for A~ is that cor-
responding to a specific angular momentum pro-
jection of (3.11},given by'

As (r, r') =, (sinPs u —sinP„"u}, (3.13)

where

(3.14)
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and

P~" =[2Ee —2V(v) —Lm, v 2]'~~, etc.

where @~ is the core mave function, mith symboli-
cally

wcB
(3.15)

with the obvious notation LIB~' =A~. A semiclas-
sical approximation to this operator is given by

(rI II&""(6, a)I r' }

In the evaluation of the cross section using
(3.10), however, an additional frequency-de-
pendent factor &u' in (2.30) has to be incorporated
in an averaged form, + - . To improve on this
approximate procedure requires a modification
of the projection operator A~ as

e, +e, +C =A+e, =B . (4 4)

&+' = (1/~2)[V~ (T)&~ (|I)+ V~ (|}0g(1)~ @c

(4.5)

where the excitation of y, electrons is assumed
to dominate the contribution in (4.2}. Otherwise
(4.5) should be modified to include electrons in

higher excited states as mell. u~ is the mave
function for the incoming electron with the dis-
tortion by the elastic optical potential.
We also have

Similarly, denoting the highest occupied state of
the ionsA by y, , me let

(2m) '2
gxx

(3.16)
or

IV. INDIRECT CAPTURE —DIELECTRONIC
RECOMBINATION

We consider here the second part of the matrix
element in the capture amplitude

M,',. =&+, ID, G'aI pe') . (4.1)

A. Resonant capture- isolated resonance states (for Z~ small,

orZ gZ, )

From (2.21}, the leading term among the singu-
lar amplitudes is'

(4.2}

with

As in the direct capture, both I'+ ' and +f may
be obtained from the single-particle model. On
the other hand, Qc'„requires at least two elec-
trons in the excited states, corresponding to the
two-particle one-hole configurations, and thus
we may have for example

Qc', =(1/~2)[y,.(I) A ((})+p,.(t})p, (I)~~

(4.3)

With a simple model for the target atom and an
approximate form for Go, (4.1) may be simplified.
We first consider the case in which a single reso-
nance state dominates, followed by the ease in
which many resonance levels overlap.

The forms (4.6}are dictated by the single-particle
nature of the operator D, . The evaluation of the
integrals involved in (4.2) is straightforward

Two remarks are appropriate here: (i) Except
in a two-electron model for the system & =A+ e
= C + 2e, the construction of the projection opera-
tor I' with full exchange effect is difficult, because
the projection operator for one channel does not
commute with that for the other exchange channels
when the target ions contain more than one elec-
tron. However, explicit forms for the projection
operator can be constructed in the single-particle
formulation of scattering. " (ii) Except in the
helium isoelectronic sequences, the degeneracy
in the angular momentum operator L is not pres-
ent, and consequently, the presence of reso-
nance states does not follow in general from the
main term involving different & states for the
same n.

Incidentally, the matrix elements involved in

(4.2} may, in some cases, be obtained from the
result of an earlier study on the fluorescence
yield. ' In particular, the matrix element involving
the initial configuration

can be obtained from the Auger transition ampli-
tude. In fact, it is the inverse Auger process,
with both direct and exchange effects. Typically,
in terms of the single-particle orbitals y„,
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rl~ro'pr' r1 Vr" rp ~
I po r u ' r

r1 —ro I

(4.7)

B. Overlapping resonances

In this case, it is not desirable from a practical
point of view to construct individual resonances
and to sum them all at the end. Instead, we treat
the entire set of states (QC'„} as a "smooth" con-
tinuum. The matrix element is given by

M,', =&@,lD, a'HIJ e'&

= P&+tlD, IQc.& H &
&Q+.IHIJ'+') .

(4.8)

First of all, we note that the particular configura-
tion +& will limit the number of allowed single-
particle states in Q@„, because D, is a sum of
single-particle operators. Thus, if we were to
write, for example,

=-Q Into, l'
n'n"

= g &~;Il ~ ~:D,lq. -&&q. ID, tf.'~. , l~;&.
n'n"

(4.16)
Two alternative ways to evaluate IM&&I' will be

considered below:
(a} As a first possibility, we recognize the fact

that the first part of the amplitude in M&, ,

&Q@.I HI-~~' ), (4.1 f)

is the same matrix element one evaluates in the
Auger transition. ' Thus, the result of a previous
study, as in (4.7}, may be used directly for this
matrix element. On the other hand, the second
part of M~],

and

4q --y„ (1)q(„ (0)4',

D, =D, (0), (4.10)

H-=&a, lD, IQ4„&,

with

Q@ = q. (1)q.(o ),

(4.18)

(4.19)

Q4' =q. (1)q.(0)~, . (4.11)

then, all the Q@„are of the form (neglecting the
exchange term}, with the same n',

e.g. , involves simply a single-particle radiative
dipole decay of an excited atom, which is straight-
forward to evaluate.

The energy denominator in (4.8)

Now, with

H(0, 1)=H,

f'+"' = q n(1 ) &o' (o)+c

we have

(4.12)

(4.13)

(E h )

may be evaluated approximately by the single-
particle values, as

E —8„=E —e„—e —Vn'm; n 'm y

thus,

M&, =g &q. (T)q.-(o)ID, (o)lq. (1)q (o)&

~ E &
&q. v.lHlq»&& &

E- e„.—e —V„. . „
In our simple model above,

Rnt nti a nt ~ Rntt ~

(4.20}

where

=& q.-(0)l D, (0)a.' (0, 0') 1;,(0')I ~;(0')&,

(4.14)

go (6, 5') =[q„(E+iq—e„—t, —v„}q,]
q~=l », fn=qa&-&qa . (4.15)

When Mf~, is summed over the final allowed states,
f = (n', n"), n' e b, then

=&@„ I IDy ) (independent of n') .
The amplitude (4.20}may also be used to estimate
the amplitude for the two-step process, e +A- e +A*- e +A+&, by taking the state n' to be
in the continuum. Aside from the sum over the
intermediate states m, the problem has been con-
sidered in some detail earlier. "

(b} The second alternative possibility is to follow
the previous work on the multiple impact ioniza-
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tion. That is, in the plane-wave approximation
for the incoming electron at high energies, the
Auger ionization cross section is given by

O' = Uf&f ~

where

(4.21)

Mn'"'=&nil r A'~'r'I nl&, (4.23)

which is chosen such that E, =ED & E~ = 0 for the
projection between E, and E~.

Three modifications of (4.21) are needed; first,
the incoming electron energy is low (except for
very low Zc) such that the Coulomb distortion
should be incorporated. Second, W„ is to be re-
placed by ~ . Third, we should have the Coulomb-
distorted (continuum or) bound-state function for
the final state of the (incoming) electron. Thus,
we have'

with & the momentum of the initial state electron,
&„ the initial kinetic energy, &„ the ionization en-
ergy, Z„—=Z„, =2(2 I+1), W„=1—F, Y„ the
fluorescence yield, and

Mn =[3(2 1+1)] '[(1+1)M~"+ LMD' ], (4.22)

I" -=2~&Q~I «(P[E -H .If')l"IQ+&;

that is, the on-shell probability amplitude for the
excitation to the Q space in the matrix S is singled
out. . Thus, in this approximation, the dispersive
effect is neglected in the G~ propagator. With

6(Q[E-H]Q)-a, ,

we essentially recover (4.22).
On the other hand, the Green's functions such

as g $ in (4.14) may be obtained approximately
using the semiclassical method, as noted earlier
in Ref. 8; in this way, the drastic approximations
on G, as in (4.25), may be avoided.

V. BREMSSTRAHLUNG AND HIGHER-ORDER
PROCESSES

The matrix elements considered in Sec. II, and
in more detail in Secs. III and IV, are linear in the
electromagnetic coupling D„except for the fact
that the final states C~ are summed over m inco-
herently so that any further decays of these states
by additional photon emissions are approximately
included. To make the formal part of the analysis
more complete, we consider here all the matrix
elements which are quadratically dependent on the
coupling D, .

In place of (2.4) we now consider

where

(4.24)

with E(Z, , E)-1 as Zz-0 being the Coulomb cor-
rection factor for the incoming electron both in
the initial and final states. The present approach
with (4.24) is roughly equivalent" to taking in the

QM~,-,

(H„,—E)4",'„' = 0,
where

Ht t
—=H+D,

with H defined in Sec. II. Obviously,

+7k +zk+ GD6+Sk +2k+ ~D6+kk ~

where

G=(Egin —H) ' (q&0).

The exact amplitude is then given by

M„,=(4 ID, I4',;"&,

(5.1)

(5.2)

(5.3)

(5.4)

(5.5)
(G )'= — 6(Q[E- H]Q)/( I'/2),

where

(4.25)
which, to second order in D„can be written out
explicitly in the form

M..= &+..I &.I P+ .&+ &+..I &.G'~l I'+ &+ &+..ID,G'D.
I
I'+;.&+ &+..I D.G'~. If'+, ,&+ &+..I

&.G'«'&. If'+.&

+(~..l&.Go«D. IJ'~~.&+&~..ID.G~D.G'I'I~~~.&+&~..lfl.G'D.G'I
I p+~.& (5 6)

As noted earlier, for 4~ which are limited to the
bound-state configurations only, the first and the
third terms may be combined simply by summing
over I incoherently. However, if we extend the
sum over nz to include the continuum as well, the
bremsstrahlung process and its correction are

also contained in the resulting terms. The second
term of (5.6) involves excited target states and pos-
sible resonance states, as described in detail in
Sec. IV.

The fourth term is thus the first leading correc-
tion which contains D, twice. However, the nature
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of the operator D, implies that the P -Q transition
there describes a photoexcitation of the target by
absorption of a photon, which is unlikely at the
photon density of interest here. Therefore, we ex-
pect this term to be very small (unless the elec-
tron correlation is very strong). Now, we expand
the Q-space Green's function as

where

Q+ GQVG, Q+ .. (5.7)

VI. NUMERICAL RESULTS

GJ=(q[z+fq-a„- r, -a...]qj-',
and obtain

&~..I D.G'D.
I I'~).&

= &~..I D.GoD.
I
I~;.&

+ &e,„lD,Go v(."oD,
I pe, „& .

(5.8)

The second term on the right-hand side of (5.8)
is, in principle, of the same order as the last four
terms in (5.6). In fact the fifth term is very much
of the same form as above. The sixth term in (5.6)
is also a correction to the bremsstrahlung process
in that the incoming particle emits a photon, fol-
lowed by a dielectronic recombination similar to
the second term. Finally, the seventh and the
eighth terms are the two-photon corrections to the
second term, and, as with the third term combined
with the first, we can include these terms in the
second by extending the sum over m. Therefore,
by performing an incoherent sum over rn of the
final states C~ with different energies, we can
effectively include all the higher-order terms (in
power of D, ) in an approximate way. In addition
to these corrections, the relativistic effect should
be taken into account as Z~ increases. This effect
is known to be important for Z~~ 40, although the
energy for the incoming electron will be taken to
be in the region of -1-10keV.

The result presented here and in Sec. IV may be
compared with the discussion given in Ref. 13 of
the process e-+A -e-'+A*- e '+A+ y. The prob-
lem is formulated there in terms of the noninter-
acting states generated by H, = T& +H„+II,«. This
is not so convenient for the capture process, how-
ever, because the interaction V plays a crucial
role in (2.20) in generating the final state 4&.

ZI ZC (6.1)

for this case, the exact amplitude (3.3} is available
for checking the numerical accuracy, with the ap-
propriate scaling factor given in (3.5). We have
calculated first the single-particle energies by an
iteration method for different degrees of ioniza-
tion. The result is summarized in Table I. The
incident kinetic energy of the electron being cap-
tured is taken to be EI, =1 keV, which corresponds
more or less to the value attainable at presently
available plasma confinement devices, although it
may be far too low for the fusion threshold.

The inatrix elements iM, l' are collected in

Table II for some of the typical transitions, for the
case E~ =1 keV; that is, for &7' r&,', where

r)' =—&e r), sin'8 . (6.2)

They decrease quite rapidly as E„ increases, and
the values at Z~=10 keV are compared in Table
III. The cross sections are then estimated using
the expression (2.3}. For convenience we may
write the 0 in the form

e' ' mc
&& r&'a. (a.u. )

g~ & mc2
& & ' r) g, (in wa20)2m' vT e' mc'

3

((.53 x 10')( ( e r )' („(wa*), (6.3)

where E„ is the incident energy and the factor g,
is the degeneracy of the states involved. The re-
sult of this calculation for different sets defined

TABLE I. The single-particIe energy is calculated for
the nuclear charge Z& = 20 and 40, and for different de-
grees of ionization Z&. The singI. e-particle states are
denoted by (n, l ) and the energy is given in rydberg units.
The single-particle potential used is given by Eq. {3.6).

Zg Zg 1s 3P M

20 18 398.0
16 391.4 92.84
10 362.0 72.25 70.70

culated numerically using the single-particle radial
wave functions defined by (3.7a) for the potential
(3.6). For the nuclear core charge Zc= 20 and 40,
we have a pure Coulomb field when the degree of
ionization Zz is

As a preliminary to a series of more detailed
calculations of the radiative capture process to be
reported on subsequently, we present here a rather
crude estimate of the relative contribution of the
two amplitudes considered in Secs. III and IV, in
particular, those given by (3.9) and (4.24).

(1) The direct radiative capture amplitude is cal-

40 38 1598
36 1591
30 1559
28 1547
22 1503
12 1419

391.3
365.2
355.1
322.1
261.1

364.6
354.0 142.8
319.2 119.5 117.2
254.5 79.0 76.0 70.0
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TAIlLE II. The dipole matrix element (s ~ r) 2 in the
no-retardation approximation for the transition, contin-
uum {E&,l&) bound (n, l), with E&=l keV. The Coulomb
distortions are included. The values for (e r) 2 are
given in atomic units (8 =8=~ =& = 1), scaled up by 10 .

TABLE IV. The direct radiative capture cross section
0 is estimated from the matrix elements given in Table
II, at EI, =1 keV. {On=m/2. )

0'+ {7tu (2))

20

40

19
10

39
12

(n, l )

Is
1s
28
2p
2p

1s
Is
2s
2P
2p
3s
3P
3p
3d
3d

p
p
p
S
d

p
p
p
S
d
p
S

p
f

(s ~ 1 )2x 10

3.63
4.8

16.8
0.4

20.5

0.36
0.5
5.9
0.2

12.6
16.0
0.9

33.0
0.6

40.0

20
40
70

10
12
24

s,p, d
p f
P J'

3.0 x10 7

2.3x 10 7

2x10 7

apparent sensitivity of the integral M~ of (3.10)
around that point, we were not able to obtain an
estimate to the desired accuracy. The problem
is further aggravated by rapid oscillations and
subsequent cancellations within the integrals in-
volved.

In connection with the direct capture discussed
above, we also note the semiclassical formula
considered by Bond, Watson, and Welch. " The
classical result obtained earlier by Kramer' is
modified to take into account the quantum mechan-
ical effect by introducing the Gaunt factor graf .
Thus, we have

TABLE III. The energy dependence of the integral
(7' r')~ for E& =I keV and EI, =10 keV. The nuclear core
charge Zz = 20.

EI, =1 keV
&F. r» x10'

EI, = 10 keV
(s r)txlO~

19
10

ls
1S
2s
2P
2p

3.6
4.8

16.8
0 4

20.5

0.041
0.046
0.014
0.000
0.030

by go, Zi, nl, kl, ) is given in Table IV. The values
given in Table IV do not contain the, factor 8s/3
which comes from the integration over the photon
angular distributi. on. The a«, should include this
factor.

Obviously, there are many points in the above
calculation which have to be improved. First of
all, the dipole no-retardation approximation should
be modified as the photon energy increases.
Second, the single-particle nature of the bound
states used in M~ may be an oversimplification;
this has a direct bearing on the correction terms
discussed in Sec. V. Third, the major drawback
of the present estimate neglects the possible con-
tribution of captures to all the excited states, fol-
lowed by additional cascade decays, as described
by (3.10}. Some attempts have been made to evalu-
ate the relevant matrix elements using the semi-
classical projection operators. However, due to
inherent uncertainty in such operators in the
region close to the classical turning point and

g ~ ghee fl (~g2] 0 4$
[n5(Z +I )Z ] ' (6.4)

where E, and I„are the energy of the incoming
electron being captured and the ionization energy
of the bound electron in the @th shell, respective-
ly, and are given in the rydberg units. The multi-
plicity factor Z„ is approximately given by Z„
=(n —1)2(2 l+1)=4n', while g,z is of the order
unity.

(2) The dielectronic recombination cross sec-
tion is estimated using the simple form (4.24},
neglecting the possibility of isolated-resonance
contributions. Although the formula is less likely
to be effective at E~ =1 keV than at the higher elec-
tron energies, we expect that the estimate should
be a reasonable indication of the importance of
this process in comparing with the direct capture
cross section o . In evaluating the cross section
0, we have neglected the Coulomb correction
factor E for both the initial and final states, and
set

J (Z„Z)=1,
where the statistical weighting factor S„is chosen
to be

Z„=2(2l, +1) . (6.5)

The required transition amplitudes M D have
been calculated for ZAN=20 and 40, and for dif-
ferent states of ionization Z, . The result is given
in Table V.

The evaluation of the cross section o requires
an estimate of the fluorescence yield ~, which
provides the probability of the autoionization state
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TABLE V. The dielectronic recombination matrix elements are summed over all allowed
bound states to which the incident electron can be captured without radiation emission, thus
forming an autoionization state. M~~, as defined by (4.23) is given for Zc = 20 and 40. The
arrows indicate that the transitions involve LI, =l +1 (t) or l& =l -1 (h), where l is the orbital
angular momentum of the bound target electron.

Zc ZI Trans. 1s

20 19
18
16
10

0.0057
0.0057
0.0019
0.0014

0.0029
0.0950 0.0707

0.0427

40 39
38
36
30

22

0.0014
0.0014
0.0014
0.0004

0.0004

0.0001

0.0001

0.0258
0.0222

0.0224

0.0023

0.0022

0.0022
0.0094

0.0024
0.0003
0.0037
0.0003
0.0047
0.0004

0.0862

0.1039

0.1251

0.0895
0.0652
0.1279
0.0818

0.0983
0.0502

~'=1 keV. (6.6)

Thus, (4.24} becomes, with E„=1keV and in the
units (wa', },

&o=[4Z /(&„a )2]ln(4)M "F„
= (7.6x10 2)Z~M gF„ (6.7)

The result for 0 is summarized in Table VI;
only the terms with. ('}are included in the
cross section estimate. The result may be com-
pared with the values in Table IV. It should be
emphasized in examining the result in Table VI
that the poor accuracy in ~ for the higher shells
makes it difficult to estimate the corresponding
contributions. The M~, on the other hand, in-
creases rapidly for higher shells, which indicates
that, although ~~ gets very small for outer shells,
the corresponding o' may still be appreciable and
that the values for &„given in Table VI may be
grossly inaccurate. We have sketched the ~~ in
Fig. 1.

Now we compare the result of Table IV for the
direct radiative capture with that for the dielec-
tronic recombination given in Table VI. Obvious-
ly, o is much smaller than o , by a factor of

being decayed by radiative transitions. To simpli-
fy the estimate, we take the result of the previous
calculations as summarized by Bambynek et al.s

The parameter &~ in (4.24) is taken to be the
ionization energy of the last electron for a given
ion (Zc, ZI ); in the case of impurity ions in the
hot plasma in quasiequilibrium,

10' or more for most cases. As noted above,
however, the contribution to o may have been
underestimated due to the neglect of captures to
all the available excited states. Many of the de-
ficiencies in the derivation of (6.7) have already
been discussed eariler; in particular, we should
stress the fact that (6.7) is based on the nonreso-
nant picture of the two-step capture process. The
Coulomb distortion effect and the dipole approxi-
mation introduced in the calculation of M& should

Zc Zr (n, l )

20 10 ls
2s
2P

Z~ Ffy

a =2.8x10 ~ ma2

0.0005 2 0.15
0.032 2 0.002
0.020 6 0.002

o =1.3x10"~gg2

DZO.FO. (x 10 )

1.5
] 3cl

2.4

40 12 1s
2s
2p
3S
3P
3d

0.000 03
0.0007
0.0011
0.042
0.038
0.026

2 0.75
2 0.025
6 0.025
2 0.0003
6 0.0003

10 0.0003

0.45
0.35
1.65
025
0.69
0.78

o =0.6x10 ~ 7ta20

70 24

Only these values are included in the o~ estimates.

TABLE VI. The cross sections for the dielectronic
recombination are estimated using the result of Table V,
for E& = 1 keV, and Zc = 20, 40, and 70. The radiation-
less part of transitions and subsequent radiative decays
are estimated using (4.24) or (6.7).
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FIG. 1. Average fluorescence yields ~ for the E, L, ,
and M shells are given as functions of the atomic core
charge Zc. These values are extracted from Ref. 5,
and used here in the evaluation of the dielectronic re-
combination cross section 0.

I'IG. 2. Direct radiative capture cross section 0+ and
the dielectronic recombination cross section 0~ are given
as functions of the atomic core charge Zc. The equili-
brium temperature is set at kT=l keV, while the inci-
dent electron energy EI, is taken to be 1 keV and 10 keV.
The cross sections are given in units of ~ao.

VII. DISCUSSION

further be improved before a more reliable esti-
mate for o ~ can be made. We also note that the
logarithmic factor in (4.24) and in (6.7) was ob-
tained' from the Bethe integral involving two con-
tinuum functions without regard to inelastic energy
loss by the projectile electron. For incident en-
ergies comparable to the typical excitation en-
ergies, the final-state wave function should be
modified to represent correctly the reduction in
the projectile energy.

In view of these approximations and the crude-
ness of the calculation, the result presented in
Tables IV and VI and Fig. 2 for o and o ~ can only
suggest roughly the relative magnitude of these
quantities and could easily be off by a factor of
10. Incidentally, the value for o ~ estimated
earlier by Burgess~ for the case Z~ =26 and Zz
=15, compares favorably with the interpolated
value from Table VI, i.e.,

oo=6&&10 ' za20 (Burgess),

=3x10 ' ma20 (from Table VI),
for the case of incident electron energy EI, =1 keV.

The general theoretical formulation we have pre-
sented in Secs. II-V is reasonably complete, in
which the electronic interactions are fully taken into
account, while the coupling between the particles
and the radiation field has been treated by perturba-
tion theory. The theory will be the basis for further
consideration of many of the details which shouM
be worked out separately for each individual case.

The estimate we have obtained in Sec. VI is, of
course, very crude and may not be totally reliable.
On the other hand, it has served its purpose in
suggesting future directions for improvements.
Any serious comparison of the data calculated here
with measurements is thus entirely

Premature.

The following areas seem to require more careful
study: (i) An improved estimate of the incoherent
contribution to the direct capture cross section
o~, resulting in cascade transitions. This contri-
bution, which includes the bremsstrahlung, seems
to be consistently small. (ii:) The validity of the
dipole and no-retardation approximations as the
photon energy increases. (iii) The Coulomb dis-
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tortion of the incoming electron wave functions both
in the initial and final states as they appear in the
dielectronic recombination amplitude. This may
seriously affect the present estimate. (iv) Some
isolated resonance contributions may be large, al-
though we have neglected this possibility in our
estimate of a'. (v) Even for the approach based on
(4.24) for ao, better values of Y for higher sub-
shells may improve the estimate, rather than the
crude approximation used in Table VI. (vi) Many
of the higher-order corrections to the amplitudes
we have formulated should be estimated approxi-
mately to ascertain their effect. The general dis-

cussion given in Sec. V should be useful for this
purpose.

Additional work along the lines suggested above
is in progress.
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