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The reduction method developed previously for many-particle scattering is applied here to derive new

sets of coupled equations for electron scattering from atomic targets at low energies, fully taking into
account the exchange effect and target distortions. The reduced matrix equations have simpler structure
than the Faddeev-Watson equations, with the iteration kernels connected only in those channels which

are explicitly taken into account. Scatterings by atomic hydrogen, helium, and lithium targets are con-

sidered, and the resulting formalism is compared with the earlier work of Faddeev and others. Vari-
ous approximation procedures are described, and their applicability is tested on the electron-hydrogen
scattering system.

I. INTRODUCTION

It is well known' that the usual formulation of
the rearrangement processes in terms of the
Lippmann-Schwinger' equation does not always
give a unique solution, mainly because the ar-
rangement scattering functions are not mutually
orthogonal' and the scattering kernels are not
completely connected. 4 These, in turn, complicate
the channel projections in the unified reaction
theory. ' The mathematically more rigorous for-
mulations of the many-particle scattering problem,
which avoid the difficulties mentioned above, have
been developed by many people. ' ' However, be-
cause of the inherent complexity of these theo-
ries, their applications beyond the simplest ap-
proximation have been difficult to carry out. Most
of the accurate theoretical calculations which are
presently available were obtained by conventional
approaches without the explicit use of the rigorous
formulations.

Evidently, the requirement that the iteration
kernels of the theory should be completely con-
nected may be too stringent from a practical point
of view. Thus, we have considered"" a reduc-
tion procedure by which the hierarchy of scattering
equations may be simplified at the expense of
slightly relaxing the rigor of the original theories.
The reduced matrix equations (HME) obtained in
this way retain the connectedness property only
in the direct channels, while all the other indirect
channels are to be treated by a noniterative meth-
od. The formalism has been rediscovered re-
cently" " starting from a different point of view.
Kouri and Levin" introduce the channel coupling
operator W in the equations for the scattering
operator, in such a way that the iteration kernels

for all the open rearrangement channels are con-
nected. In its differential form, this new formula-
tion has been shown" to be equivalent to the
RME,""for the three-particle case.

. It is the purpose of this paper to explore the po-
tentiality of the RME by explicitly applying them
to the electron-atom scattering systems. The
RME contain two useful features which may be
exploited in actual applications. Firstly, the equa-
tions allow one to introduce the distortion poten-
tials in a nontrivial way. Thus, a judicious (self-
consistent) choice of these potentials in the be-
ginning of a given calculation could improve the
result in the lowest order. Secondly, a simple set
of channel projection operators can be introduced
into the RME, such that the inelastic channels
which are not explicitly included can be treated
noniteratively in order to meet the mathematical
requirement of connectedness. Such projection
operators are not easy to construct for the other"
formulations when rearrangement and exchange
channels are present. " The availability of the
projection operators will also facilitate the reso-
nance state calculation for the electron-atom sys-
tem.

The formal construction of the coupled equations
using the reduction method" is carried out in Sec.
II, explicitly for e H, e He, and e Li systems.
Since the reduced sets are not unique in general,
their properties are analyzed in some detail and
compared with the previous result of Faddeev
and others. Section III contains discussions on
approximations which are applicable to the new
sets of equations, and some of them are applied to
the e H system in Sec. IV. The main purpose here
is not so much in getting accurate phase shifts,
but rather in bringing out some of the salient prop-
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erties of the new coupled equations we have de-
rived. The formalism presented here should also
be useful in the study of positron scattering, with
positronium formation, as e'+A- (e'+e )+A'.

II. REDUCED MATRIX EQUATIONS

The general reduction method developed pre-
viously" will be applied to specific atomic sys-
tems. For definiteness, we consider electron-
hydrogen scattering in detail, and later extend the
study to e He and e I i systems. At low energies,
we have the two-channel process

structed in a very simple way, '6" as

1

0

0 Q, 0
and Q =1 P-=

P, 0 Q,

PQ=0, P=P

where

with the obvj.ous property that

P,Q, =Q,P, =O, P, P2&0, P, Q, &0

(2.8)

(2.9)

e, +(e, +p'), —e, +(e, +p'), . (2.1}
channel l channel 2

The asymptotic channel Hamiltonians are given by

In order to have the correct connectedness prop-
erty of the system, we demand that the potentials
&„which are yet to be specified, satisfy

H, =H —V„c=1, 2, (2.2) [P„Y,] =0; (2.10)

where

C=I,
(I =2 here),

H =T1 +T~+ V,0+V20+ V,2—= 1'+V,

1 10 121 2 20 21

If we write the total scattering function + as

(2.3)

(2.4)

PD P 4 = PD~ Q 4-,

QDQ ~ =-QD~P ~,

where

(2.11)

that is, the ~, are functions of &, only.
We now consider briefly Eqs. (2.5), together

with (2.8}. The projected equations are

then, the reduced matrix equations for (2.1) are
given by" -Vi —+1

V —Y

0
(2.12)

H, +&, —E

— Vi —~1

V2 —&2

H, +Y;-E
0

7

0

(2.5)

and, for later use, we also define

1 1H+F-Z
0 I (2.13)

where ~, are distortion potentials which are yet
to be specified. Of course, (2.5) is valid for any
Y,. Forms other than (2.5) are also possible, "'"
but we limit our discussion to this symmetric
case. We note that channel 2 in (2.1) is the ex-
change channel, which is being regarded here as
a rearrangement channel, and thus (2.5) will
simplify in practice. That is, the two coupled
equations reduce to a single integrodifferential
equation.

The boundary conditions on +, may be specified
now; for the total energy E below the first excita-
tion threshold, we will have only two channels
open, as indicated by (2.1), and, as r, -~,

PD P4' =0,

which is, explicitly,

P, [H, + Y, —E]P,4, = P, (v2 —Y2)P24'2—

P, [H, +Y, Z]~P = P, (V,-—Y,)P,~~.-
If we choose

(2.14)

(2.15)

Y, = (P, V P)f drdt"",(r,,—)V, d'"(r, ),,

(2.16)

(a) First of all, the homogeneous P equations
are the simple set

4,—(j),("[A,S,+B,e,], c =1, 2, (2.6) then, (2.15) reduces to the form

where 8, and 6, are the scattering functions which
behave like sine and cosine functions at large &„
and $0(" are the target ground-state functions gen-
erated by

(2. t)

The channel projection operators can now be con-

P [H E]P,@P= -P [H-E)P, 4~. . c'xc,-
(2.1'7}

which is the usual set of equations one obtains in
the static exchange approximation.

We also note that the choice (2.16) allows the
coupling in the right-hand side of (2.11) and (2.15)
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G =—-[PD P)
G'-=-[Q D Ql-'

and write the solution of (2.11) as

(2.20)

(2.21)

only to states which are orthogonal to the channel
on the left-hand side; that is, with (2.16) for Y, ,

P,(V,i —Y )P,i =P,Q, iV, P, , c'0 c, (2.18)

where the explicit appearance of Q, automatically
orthogonalizes functions to its left. The properties
(2.17) and (2.18) are valid only for the e H system,
in which [P„P,]=0.

(b) Next, consider the homogeneous Q equations
in (2.11), which are given explicitly as (c' C c),

Q,[H, + Y, —g„]Q,4 = Q, (V,-i —1;t)Q,I 4,i„,
(2.19)

where we have modified the energy value E to 8„,
as the Q space defined in this way is closed. Equa-
tion (2.19}would be useful in the study of reso-
nan. ces.

(c) The coupling between the P and Q components
in (2.11) can be formally dissolved by the use of
the Green's functions; thus, we def ine

g, =[Q,(E —H, —Y,)Q,] ', c=1 and 2. (2.27)

Therefore, the entire GQ can be generated from
the simple Green's functions g, of (2.27). This
point will be useful in developing an approximation
scheme, to be described in detail in Sec. III.

The result presented above for the e H system
can immediately be extended to the e He and
e Li systems. Once we define the appropriate
operators Do and D~ corresponding to the new wave
function +, then the formal discussion given by
(2.11), (2.14), and (2.20)-(2.24) will go through
unchanged.

The difficulties with heavier targets are twofold;
firstly, the target wave functions )))o(" are not
readily available in any simple forms. Secondly,
even if the exact (C)(" are given, the projection
operator P which projects onto the elastic and
the exchange channel is not easy to construct. On

the other hand, a simple matrix form of P such
as (2.8) can be constructed immediately for a
proper set of matrix equations. This will greatly
facilitate the resonance state and amplitude calcu-
lations for these complex systems.

For the e He system, we have, for c =1, 2, and
3

P+=P4'~+G~PD~Q4,

Q q =GoQD~P4.
(2.22) +c Ti + T2 + T3 + Vc o + V&&ro + V&& &I&

&

V, = V~ + V„.+ V„i,
(2.28)

The uncoupled equations are then

[ P D P + P D~ GoD~ P ] P )ji = 0

and

(2.23)

with c, c', c" in cyclic order. The RME assume
the following three different forms, however;
either

GQ GQ
gQ 11 12

GQ GQ
21 22

(2.25}

[QDQ +QD~ G D~Q]Q O' = QD~ P 4'~.-(2.24)

(d) Consider in a little more detail the structure
of GQ; it is given by"

or

II, + Y, -Z
Vi

II, + Y, -E

0, + Y, -Z

V2 —Y2

V3 —Y3

a, +Y, -Z
=02

(2.29)

where

G„=[Q,[Z-H, —Y, -(V, —Y,)g', (V, —Y,)]Q,]-',
G~, = G~, (V, —Y,)g„etc., (2.28)

V, -Y,
a+Y, -Z V, - Y,

a, +Y, -E
=0;

(2.30}
with or, in a more symmetric form,

-~ + Y(2) ~ Y(3) g1 1 1

1
V, 3+ 2V, o

—Y,
1V„+-,V„-Y,"'

where

1
V23+ 2V2o —Y2

Y (1) Y (3)
2 2 2

1V V Y()

V V Y(1)

1
V13+ 2V3O 3

0 + Y(»+ Y(»
3 3 3

4=0, (2.31)

Y(c ) ~ Y(c ) Y' (cl cll g c)

It is interesting to note that (2.31), with all Y, =0, reduces" to the three-particle Faddeev equations'
in the external field generated by the proton.
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The equations analogous to (2.31) for the e Li system are given by

a, +I;-E
'(Vis+ Vi4) + o Vio —I'i"

—.'(v„+v„)+-.'v„- I'&'&

a, +Y, -E (2.32)
o (V„+V,4) + o Vio —&,' '

o (V„+V,4) + 4 V,o—

&( io+ io)+ &Vio i &(Vio+ Voo)+ oVoo o

Other sets similar to (2.29) and (2.30) for the
present case can be obtained without difficulty. In
all cases considered above, the potentials are
completely screened in all channels.

The form (2.30), with I;=0, is precisely the
transpose of the set derived by Kouri and Levin. "
But, it is difficult at this stage of the development
to determine their relative usefulness. It seems
that the form (2.31) may contain more convenient
features as all three channels are coupled to each
other symmetrically. Obviously, this is not the
case with (2.29), for example, where the 4', equa-
tion is coupled directly to +, but not to +„ the
effect of 4', is transmitted on +, only through +,.
This may not always be the case in actual situa-
tions; that is, in some cases, channel 1 may cou-
ple more strongly to channel 2, or may couple to
both channels as in exchange scattering involving
identical particles.

Two additional features of the equations we have
derived above should be noted. Firstly, if we
collect all the open channels at a given E in the P
space, then g, will describe the propagation of the
scattering system in the closed channel space Q, .
Therefore, we have immediately the important
inequality

Q./(& —e,'")- d.' «, (2.33)

P, =Q P,„(Q,=1 P,), -
n=p

where

as long as &, do not introduce new discrete states
below the Q, space thresholds. Secondly, the
distortion potentials &, may not necessarily be
similar to the optical potential which occurs in
the usual formulation' of the elastic scattering,
because these potentials now' play a different role
in the new set of coupled equations in which the
coupling between the rearrangement channels is
emphasized.

The formalism presented above can immediately
be extended to inelastic scattering by simply en-
larging the P space. That is, for the case with
Ã+1 open channels, we replace P, by

III. APPROXIMATIONS

Since the structure of the coupled equations de-
rived in Sec. II is quite distinct from the usual
SchrMinger formulation, it may be of interest
to consider several approximation schemes which
may be used to solve the set of equations (2.11),
often exploiting the unusual features of these equa-
tions.

(i) The static approximation; the simplest form
of the approximation is to neglect the Q, iI, com-
ponents altogether in (2.11), and obtain (2.14). The
solution of (2.14) differs from the usual static
approximation in that V, do not appear in the diago-
nal elements of Op. The potentials &, are still left
undetermined. Due to the nonorthogonality P,P,
40 for c'4c, +, may still contain some excited
state effects in this approximation.

(ii) Close-coupling approximation; rather than
completely neglecting the Q, @,components, we

may replace

ql
Q QC 1 (3.1)

0 Q,'

where Q,' is composed of a finite number of states
Obviously, this will give rise to a set of

additional coupled equations, just as in the ordi-
nary case.

(iii) Pseudostate method; in (ii) above, Q, is
constructed using the eigenstates g" of the cluster
in the channel c. However, this is not necessary
and one can construct a set of pseudostates for
the cluster w'ith the internal Hamiltonian h„such
as (2.7). It is often convenient to form a set of
trial functions which are orthogonal to the goi"

state, and then diagonalize the energy matrix
formed with these functions and the operator h, .

(iv) As noted in Sec. II, the Q-space information
is contained in the Green's function Go of (2.21).
This, in turn, is determined by g, of (2.27), as
is clear from (2.26). Therefore, a simple approxi-
mation on g, will generate Gu and thus determine
ii' from (2.22) and (2.23). The simplest approxi-
mation on g, is of course the closure approxima-
tion

(3.2)

or a slightly improved form which approximates
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only the h, part, as

g, =Q,/(E —e, —T, —Y,). (3.3) (
CP—„,+ Y, (r, ) -lP)u, (r, )

1

(v) In place of (3.2) and (3.3), we can also intro-
duce a separable approximation

i4xe "I dr 1' e "2 ————Y u (r)=01 2 2 g y 2 0 2
0

I Q, x, )&Q.x(l
(Q.x, , [& -&.]Q.x, &

' (3.4) where we have set

(4.1)

or its generalized form involving more than one
term.

The form (3.4) can be used to immediately reduce
Go to separable forms. [See Eq. (4.5).]

(vi) Still another approximation procedure is to
determine the potentials &, which are so far left
undefined. Noting that the Q-space effect is cou-
pled to the I', components through the form

P,4, g,=-(r, )u, (r,)/r„P,C, =P,4, (1-2),
and

2E =e +A;~ = —1+k2 (4.2)

Equation (4.1) should be compared with the usual
static equation

g, , (V, —Y,)P„c'0c, (3.5)

it is reasonable to require that & be chosen such
that the quantity

~'=l(P, +„[V,, —Y,.]g',, [V, Y,]P,e,)l, (3.5}

or, a more symmetric form

v =(P,4„[V,—Y]g,i[V, —Y]P,@~) (3.7)

IV. AN EXAMPLE: ELECTRON-HYDROGEN SCATTERING

be a minimum for all possible forms of I', +,. In
fact, (3.7) has been used" to determine the Y,
potentials in the proton-hydrogen charge-exchange
collisions at high energies, with moderate suc-
cess. Further simplifications of (3.'I) with (3.2)
and (3.3) are also posslMe.

One of the major simplifying features of the
~'s which satisfy & =minimum is that the scatter-
ing equations (2.11) then uncouple, and we will
have essentially the set (2.15), with the Y 's al-
ready determined.

Some of the approximation procedures discussed
above will be tested in the next section, specifical-
ly on the electron-hydrogen scattering system.
In particular, we will explicitly consider the ap-
proximations (i) and (v), while the procedure (vi)
will be applied in detail to the proton-hydrogen
charge-exchange scattering at high energies.

+4& e ~ d&2 &28 2 -1 —~ + Qp =0.I)

%(1)= q&(1) —bgo(1), (cp, ge) =0,

where

(4.3)

TABLE I. Phase shifts calcul. ated in different approx-
imations. g is the ordinary static value. q, is for all
s states included in Q space, while ps+& includes both
s andp states. q denotes the exactL =0, S =0 phase
shift as given by Schwartz. The unbarred phase shifts
are obtained from the reduced matrix equations. q is
obtained in the static approximation, while q~ &

includes
all the s states in Q space by a one-term approximation
ong~.

Equation (4.1') gives rise to the phase shift q",
which is well known. " We have solved (4.1), with
and without the ~ potentials, where of course,
Y, (r1) = Y2(r, }by symmetry. The result is given
in Table I. 11~ is obtained from (4.1) with Y =0.
This result agrees with the values obtained by
Baer and Kouri" from their transposed equations.

We note that, when Y, (r, ) =V»(r, ) is taken in
(4.1), ti reduces to q, as expected from the dis-
cussion in Sec. D.

(ii) It is of some interest to study the Q-space
component of the equations (2.11), the homogeneous
Q equations. The Q-space trial functions are con-
structed simply as

In order to avoid unnecessary complications in
the numerical solution of the coupled equations
due to the presence of the redundant solution in
the triplet state, we consider simply the (I =0)-
wave singlet scattering. The units used are m=@
= e2 = e =1, and the length in units of ao and the
energy in the Rydberg units.

(i) We first consider the equations in the "static"
approximation (2.15). Explicitly,

ka
()

Prl

ls

~s+ p
rl

~P

~S t

0.2

1.871
1.960
2.051
2.067
2.041
2.064

0 4

1,240
1.270
1.403
1.415
1.334
1.387

0.6

0.869
0,911
1.028
1.041
0.870
0,922

0.8

0 ~ 651
0.726
0.873
0.887
0, 552
0.564
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and

~(I) = e '"', (9, 4.) =-'b,

$,(1)=e "i, g, =-(4m) '~'2g

b =8(1+a) '.
y(1) contains one nonlinear parameter a, which
we vary to study the various properties. The
functions y and y are used to define

Q,C', v=(2)v(I) = I-l},

Q.C'. -=v(1)v (2) =
I 2},

Q4' =w(1)9 (2)= I12).

(4 4)

and

(IIIII 1) (11&,ll)+ (11&I2)
(ill) ' (III)+(112}

All these quantities are dependent on the param-
eter a. The variations of the E's with respect to a
are demonstrated in Table II.

As expected, E„ is bounded from belo~ by the
first excitation threshold e, = -0.25 Hy, i.e., E„
~ e, for the crude form of the trial function (4.4)

The various energy integrals of interest are then
defined by

(12lal12) (Ila 1)+(I el2)
(12I12) ' s (1 1)+(1 2)

(II&,11)+(11&12) (Il&,11)
(Ill)

(4.5)

E~= 1H, 1 — 1V, 2 2~ 2 E22 2Vi1

(111)-'

we have chosen. On the other hand, E~ dips down
helot' e, . This is a fairly important result, be-
cause the generalized variational bound formula-
tion" corrects this E~ by adding the effect of the
shift operator, which effectively converts I1} into
I12}.

E, is the most relevant quantity here, insofar as
the Q space is concerned; it corresponds to the
operator Q(D+E)Q, and Table II shows that it is
most likely bounded from below by e, . (Since we
have used only one term in the minimization, it is
not possible to rigorously prove by this method
that the operator is in fact bounded from below.
Therefore, our result only provides a strong indi-
cation for such a bound property. )

The quantities ED and E~ are directly related to
the g, and G, as we defined in (2.26} and (2.2l),
where the approximation (3.4) is introduced in

(4.5). Both of them seem to be bounded by e„ in-
dicating strongly that G may indeed be negative
for E& e, . As will be discussed below, however,
such a bound property does not necessarily imply
a bound on the phase shift, simply because the
asymmetry in the optical potential PD~ GD~ P
does not allow the monotonicity theorem to be
operative.

(iii) As a first crude improvement on ri~ ob-
tained from the static equation, (4.1), we have
included the G-dependent optical potential term
in (2.23), in the approximation (3.4) with Q, X,
=Q, C'„of (4.4). Of course, the resulting phase
shift, denoted by g„, depends on the parameter a.
Since we have only one term in g, , q„ is fairly
sensitive to this parameter (although we expect
that, as g, is improved by adding more terms,
q„should become less and less sensitive). The
variation of q„on the parameter a is shown in

TABLE II. Variation of the E's defined by |'4) on the parameter a. The underlined values
are the minima. All values are given in the rydberg units. Note that the first excitation thres-
hold is -0.250 Ry.

0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.60
0.70
0.80
0.90

-0.122
-0.199
-0.232
—0.234
-0.211
-0.169
-0.111
—0.040
+ 0,042

'

0,135
0.350
0.600
0.873
1.239

-P.125
-0.213
-0.268
-0.298
-0.308
-0.301
-0.275
-0.225
-0.141
-0.008
+ 0.500

1,656
4.487

14.012

—0.122
-p.194
-0.217
-0.201
-0.157
-0.092
-Q.Q12
+ 0.080

0.179
0.286
p.513
0.757
1.016
1.290

-0.090
-0.150
-Q.181
-0.188
-0.175
-0.147
-0.105
-0.051
+ 0.015

0.090
0.269
0.484
0.734
1.017

-0.092
—0.155
-0.185
—0.188
-0.176
-0.155
-'0.127
-0.088
-0.038
+ 0.025

0.191
0.408
0.669
p.967

—0,127
-0.227
-0.299
-0,348
—0.376
-0.380
—"0.358
-0.304
-0.208
—0.058
+ 0.494

1.680
4.496

13.935

-0.106
-0.174
-0.205
-0.206
-0.183
-0.137
—0.066
-0.035
+ 0.175

0.368
1.008
2.301
5.264

14.909
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TABLE III. Variation of the phase shift g8& as a func-
tion of the parameter a, at ka0=0 4.

(in addition to one or more pseudostates) would
clarify the present situation.

&s~(&= 0) ~s~(& ~0)
V. DISCUSSION

0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40

1.334
1,338
1.355
1.388
1.429
1.467
1.497
1.514

1.240
1.246
1.275
1.333
1.412
1.495
1.570
1.627

-0.122
-0.194
-0.217
-0.201
—0.157
-0.092
-0.012
+ 0.080

Table III, at lao=0.4. Both cases with and without
the ~ potentials are considered.

Apparently, there is no extremum value as-
sumed by q„as the parameter a is varied; al-
though G@ seems to be bounded from above, D~
is not symmetric and this destroys the negative
definiteness of the optical potential which appears
in the P equation. The values for q„quoted in
Table I are determined with the choice a =0.20,
which gives both E~ and ED near their minima.

As is clear from the result in Table I, the good-
ness of g at small kao is unexpected and probably
accidental. On the other hand, it could be inter-
preted that the coupling to the exchange channel,
as given in (4.1), provides enough short-range
distortions to the elastic wave function. However,
we do not yet fully understand the reason why p
should be poorer at higher values of ka, . With the
addition of the Q-space distortions, q„ improved,
with apparent bound on the true phase shift q when
the parameter a is chosen in the way described
above. Again, there is no appreciable improve-
ment in q„at larger &a„ this may be caused by
the lack of the P-state contribution of the target
to the distortion. Thus, an improved calculation
which includes 1+, 2s, and 2P states explicitly

In this paper, we have reformulated the electron-
atom scattering problem using the result of the
reduction procedure. The relevant set of equations
for each system may be written down quite simply,
as shown in Sec. II. The solution is much more
difficult to obtain, and requires approximations.
Several useful techniques were described in Sec.
DI, and only the approximations (i) and (v) of Sec.
III were tested; we did not make the optimum use
of the potentials ~„ for example. Since the pres-
ence of ~ is a nontrivial feature of the theory,
the procedure for the determination of F„such
as that suggested in (vi) of Sec. III, should be
carefully examined. This will be the subject of a
report on proton-hydrogen charge-exchange scat-
tering. "

The numerical study of the e H system has re-
vealed many interesting properties of the reduced
matrix equations. In particular, the boundedness
of g, would be of great importance as the separable
approximation (3.4) is to be improved by adding
more terms, using the diagonalization procedure.
A monotonically converging approximation on the
g, does not necessarily give a bounded approxi-
mation on q. Nevertheless, we can optimize the
g, part of the calculation very effectively; once
an approximate g, is determined, the rest of the
calculation requires no further approximations.
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