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Rotational excitation of HF in slow collisions with Hef
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Low-energy rotational-excitation cross sections have been calculated from model-potential surfaces
constructed to represent the interaction of atomic helium with hydrogen fluoride (HF). Quantum-
mechanical solutions of the coupled equations were obtained including as many rotational states
(open and closed) as needed for convergence. The behavior of the cross sections as a function of
energy and the sensitivity to various model-potential surfaces are discussed.

I. INTRODUCTION

Recent interest in collisions between atoms and
diatomic hydrides has arisen in such diverse fields
as laser physics and astrophysics. For instance,
rotational excitation of certain hydrides, in par-
ticular hydrogen chloride, by collisions with he-
lium and molecular hydrogen appears to form an
important cooling mechanism in the dense inter-
stellar clouds. ' In laser physics, the hydrogen
fluoride laser appears to offer the prospect of a
rather high yield device which may have applica-
tions to fusion research. In studies aimed at in-
creasing the eff ic iency of such a device, detailed
knowledge of such quenching mechanisms as ro-
tational de-excitation is needed. " In this paper,
we present the results of quantum-mechanical
close-coupling calculations of the cross sections
for rotational excitation of the lowest few rota-
tional levels of hydrogen fluoride (HF) by colli-
sions with ground-state helium (He) atoms. The
details of these calculations are presented in the
following sections. Beginning with Sec. II, we
describe a method for generating a model poten-
tial surface for this system. This is followed
in Sec. III by a brief description of the methods
employed for determining the cross sections.
Finally, we present and discuss the results of
these calculations in Sec. IV.

II. POTENTIAL SURFACE

A simple procedure has been developed for
modeling the interaction surface between an inci-
dent helium atom and target diatomic molecule.
The potential is divided into long- and short-range
regions as

V(R, O) =V (R, O)+V (R, 8),
where R is the relative position vector for the
centers of mass of the interacting particles and 8
is the orientation of R with respect to the figure
axis of the molecule.

The short-range part of the potential V (R, 8)
is modeled by averaging an electron-atom effec-
tive potential V"" over the charge density of the
molecule. This procedure is a generalization of
a method used previously by Hickman and Lane4
for atom-atom interactions. We chose the effec-
tive potential to resemble the electron-atom
pseudopotential of Kestner et al. ' This potential
contains exchange, Coulomb, and kinetic contri-
butions for a single electron interacting with the
atom. Previous studies' have indicated that the
general features of this interaction can be rep-
resented by the analytical expression

V""(s)=-(2/s)e "+be "~'", (2)

Vs(R, O) =2n )t V"'(s)p(r, 8)r'sin& drd&. (3)

The integration over the azimuthal angle Q has
been carried out explicitly since the surface ex-
hibits cylindrical symmetry. This potential sur-
face is then expanded in a Legendre series of the
form

Vs (R, G) = g vs~(R)P~(cos8), (4a)

with

2~+1
vs~(R) = Vs (R, 8)P~(cos8) sinO d8.

(4b)

Equation (4b) may be placed in a more tractable
form by expanding p and V"' in Legendre series of
cos8 and cos~, respectively, with the radial ex-

where s is the electron-helium separation, related
to r and 3 by s' =R'+r' —2rR cos3 (see Fig. 1),
and a, &, and 0 are adjustable parameters. This
effective potential is then averaged over the un-
perturbed one-electron charge density of the mole-
cule p(r) to obtain the interaction of all molecular
electrons with the incident atom as
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He

Fig. 1. Geometry of the interaction of a molecular
electron with coordinates (r, 8, Q) and a helium atom at
position (8, OH, 4).

pansion coefficients given by a~(r) for the charge
density and v„(R, r) for the effective potential. By
using the addition theorem of spherical harmonics,
v', (R) can be expressed as

v'~(R) = — a~(r) v~(r, R)r'dr4n

+ p
(5)

The a~(r) coefficients must be determined by nu-
merical quadrature; however, the v~(R, r) terms
have convenient analytical forms. ' The radial ex-
pansion coefficients are then fit to the exponential
form

(6)

The fit is made in a region where v), is monoton-
ically decreasing with increasing R. Although the
above method was derived for atom-molecule sys-
tems, the procedure works equally as well for
atom-atom interactions. In this case, the inter-
action potential depends only on R and is given by
Eq. (5) with & equal to zero; a, (r) then becomes
the charge density of the target atom.

The short-range interaction surface obtained by
this method includes Coulomb, exchange, and
kinetic contributions for the interaction of the
molecular electrons with the atom. The nuclear
repulsion term, the interaction between the atomic
electrons and molecular nuclei, and correlation
effects are neglected. Although the nuclear repul-

TABLE I. Parameters (in atomic units) of the model
He-HF potential surface.

Coefficient

Sp
V)
Vp

53
V4

128.275
10.356
29.253
10.739
3.875

2.494
2.151
2.379
2.173
2.115

3.42
6.78
1.55
1.41
1.23

sion and atomic-electron-molecular-nuclei terms
are large, they contribute to the energy with op-
posite signs and, for small tightly bound atomic
systems, approximately cancel. Therefore ne-
glecting these terms in interactions between mole-
cules and a small closed-shell atom such as he-
lium does not introduce serious errors. However,
for interactions involving larger atoms, this
technique is less suitable. Since we have also
neglected correlation effects, the method best
approximates the interaction in the region of small
charge overlap. However, we find that a vq(R)
approximated by a fit to Eq. (6) does give rea-
sonable results for small intermolecular separa-
tions. It should be noted that since the unperturbed
charge density is used the method is applicable
only to closed-shell systems.

We have applied the above procedure to the
He-HF system. An appropriate effective potential
was determined by fixing the parameters a, b,
and o independent of the HF system. Since ab ini-
»0 potentials were available for He-He interac-
tions, "the parameters were varied until the re-
sulting potential curve agreed to within 10% of
these more detailed calculations in the region
beyond 3.0a, . This effective potential was then
used in Eq. (5) along with the Hartree-Fock charge
density of HF, ' to determine the He-HF interac-
tion surface. The v~z coefficients were fit to the
exponential form of Eq. (6) in the region between
four and five Bohr radii (4-5 a,). The appropriate
values of A z and &z for the first five short-range
radial expansion coefficients are given in Table I.
Finally, in Fig. 2, we compare several of the
radial coefficients of the surface with those deter-
mined from the more detailed ab initio restricted
Hartree-Fock (RHF) potential surface recently
calculated by Bender. " The rather good agree-
ment leads us to believe that the effective-poten-
tial method provides a rapid, economical pro-
cedure for calculating interaction potentials be-
tween a closed-shell molecule and tightly bound
atom provided the electron-atom pseudopotential
and molecular charge density are known. Thus
the effective-potential method complements other
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placement d of the centers of mass and charge
within the molecule. " The para. meters used in
this study mere as follows: &„F,~ =2.48"; O'„„,II
= 5.34 "; &H, = 1.42 "; p Hp= 0.765 "; QHp = 0.541 's;
I„,=0.904; I„~ =0.581; and d =0.2. All quantities
are given in atomic units (a.u. ) and referred to
the center of mass of the appropriate system.
The values of the C), terms are presented in the
last column of Table I.

The total radial expansion coefficient v~(R) is
given by the function

v~(R) =vs'(R) + v~ (R).
-2

IO

-3
IO

2.0 3.0 4.0

Fig. 2. First three short-range radial expansion coef-
ficients e((It) for the He-HF system as a function of in-
termolecular separation A. Comparison is made between
the restricted Hartree-Fock calculations of Bender
(0, H, 8 ) and the effective-potential (pseudopotential)
method (solid line) developed in the text.

To avoid the singularity in the long-range part at
small values of R, v~~(R) was truncated by the
factor 1 —exp[-(R/R, ) j. The resulting potential
interaction surface for He-HF is given in Fig. 3
for Ao«1. The surface is rather asymmetric,
with the nonspherical terms v„v„and v, making
comparable contributions. The coeff icient v,
closely parallels v„while the term v, is a factor
of 2 or more smaller than any of the first three
nonspherical terms. Both v, and v4 are omitted
from Fig. 3 for reasons of clarity. Higher-order
terms (»4) make successively smaller contribu-
tions and can be neglected in calculations involving
the lowest few rotational levels (j ~3). Since the
spherical term v, is somewhat stronger overall
than the nonspherical ones, we consider this a
case of intermediate anisotropy, hence inter-

approximate procedures for generating interac-
tion potentials such as the Gordon-Kim method
(see Ref. 7 and references therein), which has
the added advantage that it can. be easily extended
to larger atomic systems.

The long-range part of the potential surface was
also expanded in a Legendre series in cosO. The
radial expansion coefficients v z(R) were taken to
have the form

vs(R) =-C)R
where m was set to 6 for ~p and v„ to 7 for v,
and v„and to 8 for v4. Buckingham" has shown
that for the case of a spherical atom interacting
with a polar molecule the Cz terms may be ex-
pressed in terms of the atomic and molecular
static dipole and quadrupole polarizabilities
( H Hp, ll +HF, J. +Hp, ll and +HF, J. ) permanent
dipole and quadrupole moments (p, HF and QHF),
and ionization energies (I„„,I„,). Both dispersion
and induction contributions are included in this
express ion.

For the He-HF system, we have considered
only induction contributions to v, and v4. In addi-
tion, the dispersion term in v, has been repre-
sented by an approximation in terms of the dis-
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Fig. 3. Radial expansion coefficients for the He-HF
potential surface as a function of intermolecular separa-
tion A. vs closely parallels v&, and v4 is a factor of 2
smaller than v3. v3 and v4 are omitted for clarity.
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mediate coupling. In contrast, a weak anisotropy
corresponds to the case where the spherical term
is much larger than the nonspherical components,
while a strong anisotropy implies one or more of
the nonspherical terms becomes larger than v, .

III, SCATTERING FORMALISM

The rotational excitation cross sections for
He-HF collisions were calculated within the close-
coupling formulation of Arthurs and Dalgarno, "
with HF treated as a linear rigid rotor. The re-
sulting set of coupled equations was solved nu-
merically by the integral-equations technique of
Sams and Kouri. " At each value of the total ener-
gy, the cross sections were calculated using a par-
ticular basis of rotational states. Both open and
closed channels were included. The size of this
basis was increased until successive values of the
cross section agreed to within better than 5/p.
For energies below 0.05 eV, four basis states
were adequate for convergence; however, above
this energy, as many as seven states were needed.
The results of these calculations are presented in
the next section.

IV. RESULTS AND DISCUSSION

Total cross sections for transitions between the
lowest few rotational levels of HF in collisions
with He were calculated at energies of 0.017,
0.025, 0.05, 0.10, and 0.15 eV. The results are
summarized in Table II. In Fig. 4, we present
the cross sections o~(j- j') for excitation from
the ground rotational state, g =0, to the three
lowest excited states of HF as a function of total
angular momentum ~ at an energy of 0.05 eV. We
recall that J is formed by coupling the orbital
angular momentum 1 of the incident atom and
rotational angular momentum j of the molecule.
In this sense the cr~(j-j') may be loosely regarded
as a partial-wave decomposition of the total cross
section o'(j—j')."

We have tested the sensitivity of the cross sec-
tions to the manner in which the long- and short-

range parts of the potential surface were merged
by varying the parameters Ro and m. These pa-
rameters determine how far the long-range term
penetrates into the short-range region. We fix
m at 6 and consider the following two cases:
(i) R, very small (« I); (ii) R, =5.0a, . The first
case, corresponding to the solid curves in Fig. 4,
represents calculations made with an untruncated
(i.e. , Ro-0) long-range term. The crosses, on

the other hand, denote values of the cross sections
calculated for a potential whose long-range part
was truncated somewhat with Ro chosen near the
zero of the spherical component v, . The two sets
of cross sections differ by less than 25%, indi-
cating that the total cross sections are only mildly
sensitive to the manner in which the two parts of
the surface are joined. The potential surface of
case (i) was used to determine all cross sections
reported in Table II.

Ano'ther important feature of Fig. 4 is the rela-
tive strengths of the rotational cross sections.
In a case of a weak or intermediate strength po-
tential, the ordering of the cross sections roughly
follows the relative magnitudes of the coupling
matrix elements which directly connect the initial
and fina1. states. Since the nonspherical radial
components are comparable in magnitude, the
variation in coupling between states is due mainly
to the Percival-Seaton (PS) coefficients, "which
represent the angular integral in the coupling ma-
trix element. Thus the ordering observed in Fig.
4 is expected, since the PS coefficients between
the ground and higher rotational states g' decrease
as j' increases. The actual relative magnitudes of
these cross sections depend on the complicated
interplay between all coupled channels. An inves-
tigation of Table II reveals that the relative im-
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TABLE II. Rotational excitation cross sections (in
units of a~p) vs energy (in eV) for He-HF.
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I ig. 4. Partial rotational excitation cross sections
0 (j—j') as a function of 4 for an energy of 0.05 eV.
The solid curve represents a long-range cutoff with
Rp «1 and m=6. Crosses (+) represent a long-range
cutoff with Ap =5.0ap and m =6.
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portance of the cross sections for transitions
to high rotational levels grows with increasing
energy. Thus excitation to, or de-excitation from,
high rotational levels may prove to be important in
causing a redistribution of rotational populations.

We have presented a simple procedure for
determining the interaction potential surface be-
tween closed-shell systems, which has been ap-
plied to the case of helium collisions with hydro-
gen fluoride. Using this potential surface, total
rotational excitation cross sections were calcu-
lated at several energies within the close-coupling
formulation including as many channels (open or
closed) as needed for convergence. The sensitivity
of the cross sections to changes in the model sur-
face has also been investigated. The strengths of
the cross sections for excitations to high rotor
states indicate that these processes must be in-
cluded in any detailed study of relaxation mecha-
nisms. In a future paper, "we shall study trends
encountered in going from one hydride system to

another by presenting rotational excitation cross
sections for collisions between helium and such hy-
drides as DF, HCl, and DCl. In addition, we shall
investigate various approximation techniques
applied to the coupled equations and their applica-
bility to these systems.
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